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Abstract Cannabinoid receptor 1 (CB1) antagonists have potential to be used clinically to treat 

obesity, but there are currently no such drugs on the market. Since no X-ray crystal structure is 

available for CB1, considerable attempts have been made to prepare CB1 protein homology 

models, but in this work we propose a new CB1 inactive state model which is specific to CB1 

antagonists, as validated by its enrichment performance. We first built multiple CB1 homology 

models. The enrichment performance of these models was then systematically examined using 

two datasets. A small dataset that contains 72 highly active CB1 antagonists was docked into 

these models. Only one of the models was able to dock all the compounds. After minimization 

and followed by redocking, two more models were able to dock all the 72 compounds. Next, a 

large dataset that contains 181 active CB1 antagonists and 3439 inactive CB1 antagonists/decoy 

compounds was used to assess the enrichment performance of the 3 models. One of the models 

was found to have much better enrichment performance than the other 2 models. This best CB1 

model will be used in future virtual screening studies. 
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1. Introduction 

The cannabinoid receptors are G-protein coupled receptors (GPCR). There are two known 

receptor subtypes, CB1 and CB2,1 though increasing evidence now suggests that a third subtype 

may exist.2, 3 The localizations of CB1and CB2 are primarily in the central nervous system4, 5 and 

immune system,6, 7 respectively. Recently, attempts to discover novel ligands that are able to 

bind to CB receptors (CBrs) have attracted considerable interest, due in part to the important 

physiological roles that CBrs play in vivo.8-10 For example, it is known that CB1 antagonists can 

be used to treat obesity11 and CB2 agonists can be used to treat pain.12 Although a number of CB 

ligands with quite different skeletons have been reported,7, 13-16 investigations to discover novel 

CB ligands are of great importance and interest. However, the lack of experimentally determined 

crystal structures of CBrs has significantly hampered the progress of the discovery of CB ligands 

using protein structure-based approaches, which, as a result, makes ligand-based approaches, 

such as pharmacophore modeling17 and quantitative structure-activity relationship models,18, 19 

more popular in this field.  

We are interested in the discovery of novel CB1 ligands using protein structure-based 

methods. So far, several CB1 model structures have been reported in the literature.20 Most of 

these studies used the crystal structure of bovine rhodopsin as the template, including the works 

by Shim and coworkers in 200321 and 2008,22 Salo and coworkers in 2004,23 Páez and coworkers 

in 2005,24 Martinelli and coworkers in 2006,25 and Gonzalez and coworkers in 2008.26 By 

contrast, the more recently reported crystal structures of the β2-adrenergic receptor and human 

adenosine A2A receptor were used as the template by Shim and coworkers in 2009,27 and Chang 

and coworkers in 2012.28 In some of these studies, the obtained models were relaxed by 

molecular dynamics methods, and well known CB1 ligands, such as WIN55212-2,25, 28 

anandamide (AEA),23, 25 2-arachidonoylglycerol (2-AG)23 and CP55244,22 were docked into the 

protein binding site to further assess the value of the obtained structure models. In addition, the 

homology models were used for virtual screening to identify new CB1 antagonists.29 However, 
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there has still been a lack of systematic examination of the enrichment performance of CB1 

models, an important measure of the potential value of the models for use in virtual screening 

studies. One way to test if models will be efficient for discovery of new CB1 ligands is to 

examine the ability of the models to enrich the selection of known active CB1 ligands from a 

large dataset of inactive and decoy compounds. In this work, we report a new strategy to build 

multiple homology models of the CB1 inactive state, and we assessed the enrichment 

performance of the models to retrieve active CB1 antagonists from a large dataset. The best 

obtained model will be suitable for future virtual screening studies. 

 

2. Computational methods 

Sequence alignment 

We modeled the CB1 structure from V71–L472, as done by Páez and coworkers,24 because 

the first 70 amino acid residues, which belong to the long CB1 N-terminus, are thought not to 

play any role in ligand binding.30, 31 The crystal structure of bovine rhodopsin (PDB: 1F88) was 

used as the template. The alignments of the transmembrane (TM) regions, TM1, TM2, TM3, 

TM4, TM6 and TM7, were taken from Shim and coworkers’ study.21 For TM5, we used the 

alignment reported by Tuccinardi and coworkers.25 Because TM5 in CB1 lacks the highly 

conserved proline residue, a gap was inserted at that position according to the method used in 

Tuccinardi and coworkers’ study.25 The N-terminus, IL1, EL1, IL2 and EL3 were aligned using 

CLUSTALW,32 with the Blosum matrix, a gap open penalty of 10 and a gap extension penalty of 

0.05. The alignments of the long loops, IL3 and C-terminal were taken directly from Tuccinardi 

and coworkers’ study.25 The EL2 in CB1, however, is significantly different from that of bovine 

rhodopsin.1 In most GPCRs, a disulfide bridge is formed between EL2 and TM3,33 which makes 

EL2 bend down and locate itself above the ligand binding pocket. However, this is impossible 

for CB1 because its TM3 does not have any cysteine residue. Hence, aligning EL2 of CB1 to that 

of bovine rhodopsin may not be able to yield accurate models. Therefore we modeled EL2 

without any template. The overall alignment used in our study is shown in Figure 1. 
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Model building 

Based on the above alignment, 150 CB1 homology models were generated using the 

Modeller software.34 During model building, two constraints were employed. First, it has been 

suggested from experimental studies that C257 and C264 in the EL2 region may form a disulfide 

bond.1, 35 Hence, a disulfide bond constraint between these two residues was used when building 

the models. In addition, it was found that D338 and R214 form a salt bridge,36 which is important 

for keeping the receptor in the inactive state for antagonist binding. Hence, a harmonic distance 

constraint between the key heavy atoms in these residues was also employed during the model 

building process. After the models were obtained, Ramachandran analysis was performed using 

the PROCHECK program.37 

 

Compound database 

We built our database by collecting 223 compounds shown to be CB1 antagonists from 13 

papers.38-48 Compounds were classified as active if Ki ≤ 50 nM, or IC50 or EC50 ≤ 100 nM. 

Otherwise, they were classified as inactive. By using this criterion, 181 compounds were 

classified as active while 42 compounds were classified as inactive. For the compounds in each 

paper, except those in the work by Pinna and coworkers48 in which no active CB1 ligands were 

reported, the six most active compounds were selected to form dataset I for a small scale 

enrichment study. This dataset hence has in total 72 compounds. 

A second dataset was then made to use for a large scale enrichment study. A total of 3397 

compounds, whose molecular weight, number of hydrogen bond donors, number of hydrogen 

bond acceptors and number of rotatable bonds are in the same of range as those of the above 223 

compounds, were randomly selected from the Asinex Gold Collection database. These 3397 

compounds, which we assumed to be inactive and thus labeled as inactive, were combined with 

the 223 CB1 antagonists to form dataset II. This dataset has in total 3620 compounds, of which 

181 (5%) were active. 
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Docking 

All docking calculations were performed using the Glide software.49 The standard precision 

(SP) module in Glide was used. The residue W279 was set as the central point for Glide docking. 

In addition, a hydrogen bond constraint was set on K192 during docking, because it has been 

shown in several studies that this residue is crucial for CB1 ligand binding.1, 50-53 

 

3. Results and discussion 

Homology modeling 

Figure 2 shows the superposition of the 150 CB1 models generated from Modeller. It can be 

seen that these models cover a large degree of the conformational freedom of the receptor. In 

particular, the loops show much more conformational variability than the transmembrane regions. 

In addition, the sidechains of the transmembrane regions have a greater conformational freedom 

than the backbones. These models hence cover a large portion of the conformational space of the 

receptor, while maintaining the overall fold of the protein, which can be beneficial features when 

considering their suitability for use in docking and/or virtual screening studies. 

We also performed Ramachandran analysis using the PROCHECK program on the 150 

obtained models. The results are listed in Table S1. For all the models, the residues in the most 

favored, additionally allowed, generally allowed and disallowed regions are in the range of 

85.3%–91.7%, 6.7%–12.3%, 0.3%–2.7% and 0%–1.6%, respectively. In addition, the overall 

PROCHCECK scores are in the range of –0.17 to +0.33, which are well above the acceptable 

PROCHECK score of –0.5. Hence, these statistical results show that all of the obtained 150 

models are geometrically reasonable. 

 

Enrichment study 

We first performed an enrichment study using dataset I, which has 72 compounds. Because 

the compounds in dataset I were selected from the most active ones in each published paper, and 

the reported highest IC50 from among them is only 64.7 nM, we set as a criterion that a 
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reasonable CB1 model should be able to dock all these 72 compounds. After docking, only 1 out 

of the 150 models met this criterion. In addition, 11 of the models could not dock any of the 

ligands. A possible reason is that the above homology models were not relaxed. In order to allow 

the protein to be relaxed, for each of the models together with its best-scoring docked compound, 

a minimization was performed using the OPLS2005 force field as implemented in the 

MacroModel program.54 After that, all of the 72 compounds were redocked into the relaxed 

protein models. This time, 2 different models successfully docked all of the 72 compounds. The 

numbers of compounds that could be docked into each non-minimized and minimized model are 

provided in Table S2 and a graphical illustration is shown in Figure 3. It is interesting to note 

that these 2 models were different from the previous model that could, before being relaxed, 

dock all the 72 compounds. In other words, the model that was able to dock all the compounds 

before geometry minimization failed to do so after minimization. This may be due to the 

significant induced-fit effects for the protein, in which during the minimization the protein 

structure adapts its local structure to be appropriate for the particular ligand that is located in the 

binding pocket. This can allow the binding pocket to undergo significant changes, rendering the 

model unable to accommodate other ligands. 

After the above filtration, three models were left, one from the non-minimized and two from 

the minimized homology models. We then performed an enrichment study on the three models 

using a large dataset II containing 3620 compounds. The enrichment curves for the models are 

shown in Figure 4. It can be clearly seen that the performance of two of the models was even 

worse than random selection. Only one model had a reasonable performance in the enrichment 

study, which was one of the minimized models. In the top 20% of the hits, for the best model, 91 

CB1 antagonist compounds (50.3%) were retrieved. This hence indicates the importance of 

evaluating the enrichment capabilities of the models and the importance of the relaxation of 

homology models to be used in virtual screening. The three-dimensional structure of this best 

model is available in PDB format in the Supplementary Information. 
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Protein-ligand interactions 

So far, neither the crystal structure of CB1 itself nor that of CB1 with a co-crystallized ligand 

is available. One of the best studied CB1 antagonists is rimonabant. It has been found from 

mutagenesis studies that the key residues involved in rimonabant binding to CB1 are K192, 

which forms a hydrogen bond with the carboxamide oxygen,51 and W279-W356-F200, which 

form hydrophobic interactions with rimonabant.53 To further validate our model, rimonabant was 

docked into the best model and the obtained protein–ligand complex was further minimized 

using the OPLS2005 force field as implemented in the MacroModel program.54 The final binding 

mode is shown in Figure 5 (and is given in PDB format in the Supplementary Information). It 

can be seen that the obtained binding mode matches well with previous findings. For example, 

the hydrogen bonding interaction between K192 and the carboxamide oxygen of rimonabant was 

observed. In addition, the aromatic moiety of rimonabant forms hydrophobic interactions with 

W279-W356-F200. Therefore, this shows the reliability of our obtained model to study the 

interactions between CB1 antagonists and the protein. 

Figures 6 and 7 show the binding modes of two typical ligands from dataset I. The ligand in 

Figure 6 has the best docking score among all the ligands in dataset I. The experimentally 

measured IC50 of this ligand is 1.96 nM.46 In addition, it contains a carboxamide functional 

group similar to rimonabant. It can be seen from Figure 6 that the carboxamide again forms a 

hydrogen bond with K192. In addition, the (4-chlorophenyl)cyclopropyl moiety hydrophobically 

interacts with W279-W356-F200. Furthermore, there are several other hydrophobic residues in 

the binding pocket, such as F379, L359, M363, L193 and L276, which help the stabilization of 

the ligand via hydrophobic interactions. 

The ligand shown in Figure 7 has an experimentally measured IC50 of 6.57 nM.40 Different 

from rimonabant, it does not have a carboxamide functional group. However, a nitrogen atom 

from the thiadiazole moiety of the ligand still forms a hydrogen bond with K192. In addition, 

hydrophobic interactions between the ligand and W279-W356-F200 were again observed. Hence, 

all these docking studies show that our model is able to reproduce the well-known key 
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interactions between CB1 antagonists and the protein, which further validates the reliability of 

our model. 

4. Conclusions 

The work reported in this study provides a new strategy to develop useful homology models 

that can be applied for virtual screening purpose. We first built multiple CB1 homology models. 

These models were then systematically examined based on their docking performance. Using a 

small dataset that has 72 active CB1 antagonist compounds, only one model was found to be able 

to dock all the 72 compounds. After minimization by the OPLS2005 force field to allow the 

protein to relax, two more models were found to be able to dock all the 72 compounds. These 

three models were then assessed in enrichment studies using a large dataset containing 3620 

compounds, in which 5% were known active CB1 antagonists. One of the models showed the 

best enrichment performance to retrieve the known actives at a significant rate. Rimonabant, one 

of the best studied CB1 antagonists, was then docked into this model and the obtained docking 

pose matches well with previous experimental mutagenesis studies. The obtained best CB1 

model is expected to be useful for virtual screening to discover novel CB1 antagonists. 

 

Acknowledgment Thanks for assistance with manuscript preparation to Haneen Matalgah and 

Austin Boler. Thanks for helpful discussions to Dr. Kuldeep Roy, Dr. Khaled Elokely and Pankaj 

Pandey. This publication was made possible by Grant Number P20GM104931 from the National 

Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health 

(NIH). Its contents are solely the responsibility of the authors and do not necessarily represent 

the official view of NIGMS or NIH. This investigation was conducted in part in a facility 

constructed with support from research facilities improvement program C06RR-14503-01 from 

the NIH NCRR. 

 

Supplementary Information. The best CB1 homology model is available in PDB format. Also 

available is the best CB1 model after rimonabant docking and minimization. 
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Figure captions 

 

Figure 1. The sequence alignment of CB1 with bovine rhodopsin used in our study. The 

transmembrane regions are colored in red and the identical residues in the transmembrane 

regions are marked in yellow. The identical residues in the regions outside the transmembrane 

regions are marked in cyan.  

 

Figure 2. The superimposition of (a) 150 CB1 models and (b) TM1, (c) TM2, (d) TM3, (e) TM4, 

(f) TM5, (g) TM6 and (h) TM7 of all CB1 models. 

 

Figure 3. A graphical illustration of the number of non-minimized (in green) and minimized (in 

orange) models that could dock a particular number of compounds from the small dataset of 72 

CB1 antagonists. Only a few models could dock all (70-72) of the compounds. 

 

Figure 4. The enrichment curves for the three best CB1 models. The two models that included 

minimization are shown in red and the model without minimization is shown in blue. 

 

Figure 5. The obtained binding mode for rimonabant docked into the best CB1 model.  

 

Figure 6. The obtained binding mode of a selected ligand that has a carboxamide functional 

group into the best CB1 model. 

 

Figure 7. The obtained binding mode of a selected ligand that does not have a carboxamide 

functional group into the best CB1 model. 
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Figure 1. 

 

Page 14 of 21Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



15 

 

 

 
 

Figure 2. 
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Figure 3.
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Table of Contents Graphic (could also be used as cover art) 

 

Table of Contents Text: 

 

Multiple cannabinoid 1 receptor models were prepared and the best one was selected based 

on the models’ performance in selecting known ligands from a pool of competitors.  

 

Page 21 of 21 Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t


