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ABSTRACT 

Five carbonate derivatives of 5´-O-2´,3´-dideoxyinosine (DDI, 1) have been synthesized by 

combination with aliphatic alcohols, with their in vitro anti-HIV activity and cytotoxicity, being 

afterward evaluated in human peripheral blood mononuclear cells (PBMCs). One particular compound, 

namely DDI-Penta exhibited an outstanding performance because it was found to have both a higher 

inhibitory potency and a lower cytotoxicity than the lead compound, resulting in a 100x enhancement 

in its selectivity index. In order to further study this phenomenon, the ability of these derivatives to 

bind to the cytoplasmic 5’-nucleotidase (ncN-II) was studied by in-silico methods. Also, the higher 

calculated lipophilicity of the synthesized compounds was proposed to improve their permeability 

through the cell membrane since said lipophilicity would allow a higher concentration of the 

corresponding prodrug inside the infected cell. Overall, a combination of an optimal lipophilicity and 

the ability of DDI-Penta to bind to ncN-II are suggested due to the higher potency and lower 

cytotoxicity observed for this compound. Based on the reported findings, we believe that the 

combination of certain aliphatic alcohols and DDI through a carbonate linkage could significantly 

increase the performance of this class of therapeutic compounds; therefore, it merits further 

evaluations. 
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 2 

Highlight: These prodrugs of DDI with increased lipophilicity and good antiviral performance should 

be of interest in HIV therapy. 
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 3 

1. Introduction 

Since first reported in the 1980s, type-1 human immunodeficiency virus (HIV-1) has spread rapidly 

through the human population and become one of the most devastating infectious agents facing 

mankind.
1-2

 HIV-1 is the etiologic agent that causes Acquired Immunodeficiency Syndrome (AIDS) 

which results in life-threatening opportunistic infections and malignancies. The increasing incidence of 

resistance to anti-HIV drugs together with many serious side effects and long-term complications for 

patients decrease the efficacy of the therapeutic compounds currently in use, which justifies the search 

for novel antiviral agents.
1-2 

Didanosine (2´,3´-dideoxyinosine, DDI, Figure 1.a) is a nucleoside reverse transcriptase inhibitor 

(NRTI),
3
 which is usually used in combination with other antiviral agents like zidovudine (AZT, Figure 

1.b) and lamivudine (3TC, Figure 1.c) in the Highly Active Antiretroviral Therapy (HAART) against 

HIV-1 infection in adults. After reaching the cell cytoplasm, DDI is first phosphorylated by a 

nucleotidase enzyme to form DDI-5’-monophosphate (DDI-MP),
4 

with 5’-nucleotidase ncN-II (ncN-II) 

identified as the main protein isoform involved that has been vastly characterized and studied from a 

biochemical and structural point of view.
5-6

 In a second step, DDI-MP is converted to 

dideoxyadenosine-5’-monophosphate (DDA-MP) by adenylosuccinate synthetase and lyase, with 

subsequent phosphorylation to DDA-5’-triphosphate (DDA-TP) by adenylate kinase (miokinase). 

DDA-TP constitutes the active metabolite that is responsible for the inhibition of the viral reverse 

transcriptase, acting as a competitive inhibitor or alternative substrate unlike the normal ones which 

leads to the termination of viral DNA chain elongation.
7-9 

However, DDI exhibits several 

pharmacokinetic disadvantages like short plasma half-life (≈ 1h), relative low bioavailability, and a 

limited penetration into the central nervous system.
10-12  

 

 

 

 

 

 

Figure 1. Chemical structures of: a) didanosine (DDI), b) zidovudine (AZT) and c) lamivudine (3TC). 
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 4 

The design of prodrugs is one of the methods selected to improve the anti-HIV efficacy of a drug 

molecule by enhancing its spectrum of chemotherapeutic properties for the effective treatment of 

AIDS. The mentioned prodrugs would lead to a major distribution and retention of the parent 

compound in the body for a longer time.
13-15 

Thus, the prodrugs have been rationally designed to 

decrease the toxicity associated with nucleoside drugs, to release active species from their degradative 

metabolisms and to allow larger amounts of drug to enter the cell.
13,16-20 

Although several DDI 

prodrugs have been prepared and evaluated in vitro and in vivo to overcome some of these problems, 

none of them are currently in routine clinical use.
21

 

Many nucleoside analogues with interesting biological properties have been developed by 

substitution at the 5’-O position of the NRTI with lipophilic chemical moieties linked by enzymatically 

hydrolysable functions such as ester and carbonate bonds.
19-27 

The lipophilic character of the side 

chains at the 5´-O position should influence their ability to cross the cell membrane by passive 

diffusion, which is a key feature in the absence of an active nucleoside transport system.
22-24,28-29 

As 

stated by Parang et al,
20 

more selective compounds can be designed by using the strategy of 5’-O-

carbonates substitution. Although the clinical application of these approaches remains unknown, they 

hold the promise of becoming an important tool in the treatment of HIV infection and its related 

consequences. 

Recently, we synthesized and evaluated the anti-HIV activity of carbonate prodrugs of lamivudine 

(3TC) with the aim of generating 3TC derivatives that were able to suppress HIV-replication more 

efficiently than its parent drug, with some promising results being reported.
30

 Therefore, as part of our 

ongoing efforts to search novel antiviral agents,
28, 30-34

 we also used the 5’-O-carbonate substitution 

strategy to link the aliphatic alcohols on the 5´-O position of DDI in order to enhance their 

lipophilicity, to facilitate their diffusion through the cell membrane independently of the nucleoside 

transport system, and to improve the in vitro anti-HIV activity of DDI.
35-36

 

 

2. Results and Discussion 

2.1. Chemistry 

Since the synthesis of 3TC prodrugs with ethanol, n-butanol, n-pentanol and n-hexanol moieties has 

previously demonstrated to be the most active compounds of the series against HIV
30 

 and HBV
37 

viruses, in this work the synthetic protocols were extended to obtain the corresponding prodrugs of 

DDI. In addition, the synthesis of the prodrug including n-heptanol is first reported with the aim of 

including an additional methyl moiety in the explored series of n-alcohols. 
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 5 

Taking into account that didanosine (DDI, 1, Figure 2) has one primary reactive functional group 

such as 5’-OH, an imidazole carboxylic ester, N, N-carbonyldiimidazole (CDI, 2, Figure 2) was used in 

the controlled and selective formation of carbonate derivatives of DDI. Thus, in the current study, our 

synthesis strategy was focused on the association of 5´-OH of DDI with the selected aliphatic alcohols. 

29-30, 36 
This strategy was achieved in a two-step reaction sequence (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Synthetic protocol for the obtaining the novel DDI derivatives and chemical structures of 

didanosine (1, DDI) and their derivatives (4-8). 

 

The didanosine intermediate named DDI-5’-CI (3, Figure 2) was obtained in quantitative yields by 

refluxing DDI with CDI in a dry mixture with dimethylformamide (DMF) at 40 °C for one hour. 

As figure 2 shows, the in situ reaction of DDI-5’-CI with the respective aliphatic alcohols, ethanol, n-

butanol, n-pentanol, n-hexanol and n-heptanol then gave the corresponding carbonates in 80-95% 

yields called 2´,3´-dideoxyinosine-5´-yl O-ethyl (DDI-Etha, 4), 2´,3´-dideoxyinosine-5´-yl O-butyl 

(DDI-Buta, 5), 2´,3´-dideoxyinosine-5´-yl O-pentyl (DDI-Penta, 6), 2´,3´-dideoxyinosine-5´-yl O-hexyl 

(DDI-Hexa, 7) and 2´,3´-dideoxyinosine-5´-yl O-heptyl (DDI-Hepta, 8) carbonates, respectively. In all 

cases, unreacted DDI and CDI were not detected from the reaction media. 
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 6 

The reaction proceeds via the formation of an imidazole anhydride intermediate which decomposes 

after either intra- or internucleophilic attack by an imidazole group of CDI, as proposed by Rannard et 

al.
38-39 

The purity of the synthesized compounds was checked by TLC and HPLC, and the structure of 

the resulting nucleoside derivatives 4-8 was identified by spectroscopic techniques such as 
1
H-NMR, 

13
C-NMR, DEPT 135 and COSY homo and heteronuclear spectra of 4-8, being performed in DMSO-

d6. 
1
H and 

13
C-NMR (see Experimental Section).These techniques are in full agreement with the 

structures proposed for 4-8 (Figure 2), showing that their 
1
H and 

13
C resonances signals are 

characteristic of each of the moieties constituting structures of C-5’ substituted pyrimidine nucleoside 

analogues (4-8). 

In the 
1
H-NMR spectra, the signals of the protons of these prodrugs were identified on the basis of 

their chemical shifts, multiplicities and coupling constants. The proton signals of H-2, H-8, H-1’, H-

2’and H-3’ correlated well with those of DDI, while H-4’ ( 4.10 ppm) and H-5’ ( 3.50 ppm) 

showed certain chemical shift differences of about   0.30 ppm and   0.40 ppm, respectively, from 

the parent compound. Proton signals were successfully assigned using COSY homo (H-H) and 

heteronuclear (C-H) spectra. 

The most significant features in the 
13

C-NMR spectra of 4-8 were the signals at   154-155 

corresponding to the CO carbons from CDI. The rest of the
13

C-NMR signals are also in concordance 

with those of DDI and the corresponding alcohols. 

In the IR spectra of 4-8, characteristic vibrational regions of the structural features were found.
40 

The 

intensive absorption at 1690 cm
-1

 and 1744 cm
-1

 indicated the presence of carbonyl groups and the 

characteristic stretching of the carbonate moiety, respectively, as well as the characteristic of 

conjugation with the purine base. The hydrogen stretching region exhibits a broad band due to NH 

stretching bands and small C-H stretching bands. Other strong bands are the C-N stretching band at 

1200 cm
-1

and the C-O-C stretch of tetrahydrofurfuryl alcohol. 

 

2.2. Antiviral and cytotoxicity evaluation 

As previously described,
30,34 

 the reported DDI prodrugs (4-8) were evaluated in vitro for anti-HIV 

activity in a primary cultures of activated peripheral blood mononuclear cells (PBMCs) infected with 

HIV, with the corresponding inhibitory activities being compared to that of DDI as the reference 

standard. Assays on infected and uninfected PBMCs were performed in order to calculate the 

concentration of the drug that inhibits both 50% of viral replication (IC50) and 50% of normal cell 
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growth (CCID50), respectively. Selectivity indexes (SI = CCID50/IC50) were in turn calculated for each 

compound and compared to that of DDI. Results are shown in Figure 3 and summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cytotoxicity (A) and anti-HIV inhibitory effect (B) of DDI and its novel derivatives in 

PBMC. Dots represent the mean of three replicates  SD. Lines represent the best-fit dose-response 

curves, calculated using GraphPad Prism 5.0 software. 
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 8 

 

Table 1. Anti-HIV activity, cytotoxicity and selectivity indexes (SI) of the DDI derivatives in PBMC
a
. 

 

Compound CCID50 (mM)
b
 IC50 (mM)

c
 SI

d
 clogP

e
 

DDI 0.1000.010 0.0400.001 2.30.1 -1.92 

DDI-Etha 0.5700.0850 0.4900.068 1.20.3 0.20 

DDI-Buta 0.2900.018 0.1000.002 2.90.2 0.50 

DDI-Penta 7.0000.094 0.0300.001 2006 1.03 

DDI-Hexa 0.2200.004 0.0400.001 5.20.2 1.56 

DDI-Hepta 0.5200.026 0.3000.010 1.70.1 2.09 

 
a
PBMC = peripheral blood monocellular cell. 

b
CCID50 = concentration of drug that inhibited 50% of cell growth. 

c
IC50 = concentration of drug that inhibited 50% of viral production. 

d
SI = Selectivity Index, defined as CCID50/IC50. 

e
clogP = Log P values obtained from the CLOGP program. 

 

In uninfected PBMCs, the values of CCID50 for the studied prodrugs followed the order: DDI < 

DDI-Hexa< DDI-Buta< DDI-Hepta< DDI-Etha< DDI-Penta. These compounds showed CCID50 values 

similar or slightly higher to that of the parent drug. It is important to point out that DDI-Penta exhibited 

a marked increase in its CCID50 (≈ 70-fold) compared to DDI, which indicates that this compound is 

significantly less cytotoxic than the parent drug. As regards IC50 values, DDI-Penta and DDI-Hexa 

exhibited similar antiviral potencies to DDI (i.e. showed similar IC50), while the rest of the derivatives 

showed higher IC50 values. In turn, the SI values calculated for all the prodrugs were similar to that of 

DDI, with the exception of DDI-Penta for which a 100-fold higher SI was observed. This result is 

mainly driven by a combined high antiviral potency and a marked decrease in its cytotoxic effect, 

suggesting a selective and effective bioactivation of this particular prodrug within the PBMC cell. 

In order to further characterize the anti HIV performance of DDI-Penta, its anti-HIV activity was 

evaluated in PBMCs infected with wild type (WT) and NRTI-resistant primary viral isolates (see 

Experimental section for details). The calculated IC50 and fold resistance (Fold-R!) values for DDI-
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 9 

Penta and the parent drug were both similar (Figure 4, Table 2) when using WT or NRTI-resistant 

primary isolates. This indicates that DDI-Penta maintains similar antiviral effect against HIV 

laboratory-adapted and primary strains with less cytotoxicity if compared to DDI. As will be supported 

later in this manuscript, the above commented observations merit the continuity of the investigation 

into this derivative. 

 

 

 

 

 

 

 

 

Figure 4. Dose-dependent inhibitory effect of DDI and DDI-Penta against WT and NRTI-resistant 

primary viral isolates, respectively. Dots represent the mean of three replicates  SD. Lines represent 

the best-fit dose-response curves, calculated using GraphPad Prism 5.0 software. ■ DDI ▲DDI-Penta. 
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 10 

Table 2. Values of inhibitory concentrations (IC50) of DDI, DDI-Penta and AZT against wild type and 

resistant HIV strains. 

 

 

 
IC50 (mM)

b
 

     DDI DDI-Penta AZT 

WT
a
 0.003418 0.006485 0.0002162 

R!
c
 2.863 3.537 0.8291 

Fold-R!
d
 900X 600X 4000X 

 
a
WT: PBMCs infected with a Wild-Type HIV primary isolate. 

b
IC50 = concentration of drug that inhibited 50% of viral production. 

c
R! = PBMCs infected with a primary isolate presenting NRTI resistance-associated mutations. 

 d
Fold-R! = Fold-resistance.

 

 

2.3. Molecular modeling studies 

2.3.1. Molecular docking 

To further study, if the anti-HIV performances of the prodrugs were related to their ratio of 

phosphorylation, the interaction with the enzyme ncN-II could be studied by molecular docking 

methods. Besides, the binding of DDI in its monophosphorylated form (DDI-MP) and that of the 

reported inhibitor AdiS were also analyzed and used as reference compounds. Table 3 shows the 

docking rank obtained together with the corresponding energetic components for the intermolecular 

interaction as calculated by the Chemgauss4 force field. 
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 11 

Table 3. Energetic components derived from the molecular docking of the studied compounds. 

 

 

 

 

 

 

 

 

As can be seen in table 3, DDI-MP exhibited the highest affinity for ncN-II (i.e. it was the first 

ranked ligand) which is in some way expected since this is the compound formed by the enzyme. When 

the energetic components were analyzed, a high stabilization derived from electrostatic interactions (-

9.39) was calculated, while a minor contribution from van der Waals contacts (-6.39) was found. As 

Figure 5.a shows, this high stabilization is mainly caused by the interaction between the phosphate 

moiety of DDI-MP and the positively charged side chain ofGln453. Besides, an additional contribution 

is gained by a hydrogen bond formed with Tyr457. When the binding of the studied prodrugs was 

analyzed, all of them showed similar orientations within the catalytic site of the enzyme, with the 

following predicted affinities: DDI-Hepta>DDI-Hexa> DDI-Penta> DDI-Buta> DDI-Etha. The 

docking rank clearly followed the order of lipophilicity of the prodrugs that showed higher predicted 

affinities for the most lipophilic prodrug. Figure 5.b presents the intermolecular interaction pattern 

obtained for DDI-Hepta. Although all the studied prodrugs exhibited a similar binding mode, subtle 

differences were observed for DDI-Penta (Figure 5.c) in which a higher number of electrostatic 

interactions between the purine moiety of the prodrug and ncN-II are established. This observation is 

also supported by the higher electrostatic component calculated for DDI-Penta (-8.45) if compared to 

the rest of the prodrugs. When studying the binding of DDI to this receptor (plot not shown), it was 

observed that this drug exhibited a lower binding affinity than the prodrugs, mainly caused by a minor 

Ligand Rank Tot. Score VdW
b
 Elect.

c
 Prot. Des.

d
 Lig. Des.

e
 

DDI-MP 1 -9.09 -6.39 -9.39 2.75 3.93 

DDI-Hepta 2 -8.00 -9.24 -8.09 4.84 4.49 

DDI-Hexa 3 -7.96 -11.33 -6.59 5.18 4.79 

DDI-Penta 5 -7.66 -7.61 -8.45 4.05 4.35 

DDI-Buta 6 -7.28 -10.83 -6.81 5.57 4.79 

DDI-Etha 7 -7.11 -9.03 -4.58 3.58 2.93 

DDI 8 -5.79 -5.57 -7.91 3.21 4.47 

AdiS
a
 9 -5.15 -6.54 -4.52 2.69 3.23 

a
 Anthraquinone-like inhibitor reported in ref [6]. 

b
 Van der Waals component obtained by molecular docking using the Chemgauss4 scoring function. 

c
 Electrostatic component obtained by molecular docking using the Chemgauss4 scoring function. 

d
 Protein desolvation component calculated using the Chemgauss4 scoring function. 

e
 Protein desolvation component calculated using the Chemgauss4 scoring function. 
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 12 

VdW contribution. Finally, it is noteworthy that the AdiS inhibitor ranked in the last place among the 

whole set of compounds (Figure 6.d). The results obtained by molecular docking suggest that the newly 

synthesized prodrugs of DDI are able to occupy the catalytic site of ncN-II, establishing an 

intermolecular interaction with key aminoacid residues. 

The above commented results have confirmed that the prodrugs of DDI can fit into the catalytic site 

of ncN-II; however, the rigid-body molecular docking techniques are not precise enough to definitively 

assess the time-dependent conformation of the studied inclusion complex and the corresponding 

evolution of intermolecular forces involved.
41-42  

Although the docking methods are very powerful to 

predict the initial pose of the complex, they may then be subjected to further refinement by molecular 

dynamics methods, in which the flexibility of cnN-II is taken into account and the effect of temperature 

and solvent can also be modeled. 
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Figure 5. Intermolecular interactions predicted by molecular docking between ncN-II and: a) DDI-MP, 

b) DDI-Hepta, c) DDI-Penta and d) AdiS inhibitor. 

 

2.3.2. Analysis of MD trajectories 

After obtaining the corresponding MD production runs for the ligands: ncN-II complexes, their 

quality was checked by evaluation of their potential, kinetic and total energies (plots not shown). 

Structural properties were also measured in order to asses if the studied ligands remained bound into 

the corresponding binding site, with values of their root mean square deviation (RMSD) indicating that 

in all cases the ligand:cnN-II complexes remained stable throughout the simulated time (1 ns). 

a) b) 

c) d) 
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Table 4 presents the energetic components derived from the MMPBSA decomposition analysis 

performed throughout the whole production trajectory. In agreement with what was observed by 

molecular docking, DDI-MP exhibited the highest interaction energies, which is somehow expected 

since it constitutes the natural ligand of ncN-II. It is noteworthy that the binding of this compound is 

highly stabilized by electrostatic interactions (-593.84 Kcal/mol) which are mostly caused by the 

interaction of the ionized phosphate moiety with Arg144, Lys362 and Arg456. This observation 

suggests that this kind of interaction is the main driving force for the binding of ligands to the catalytic 

site. When the rest of the ligands were analyzed, the AdiS inhibitor appeared as the molecule with the 

second highest electrostatic component (-274.57 Kcal/mol), which was again caused by the interaction 

with the three above mentioned aminoacid residues. Due to the interaction between Lys359 and 

Lys362, DDI-Penta was the third ligand that exhibited the highest electrostatic interaction component (-

262.16 kcal / mol). This observation suggests that DDI-Penta may be a ligand with a similar affinity for 

ncN-II as AdiS, which has a reported Ki of 2 mM,
6 

and may be efficiently hydrolyzed and further 

phosphorylated by this enzyme. These results could be consistent with its high anti-HIV potency and 

diminished cytotoxicity. The rest of the studied prodrugs exhibited significantly lower electrostatic 

interaction components, a fact that seems to be caused by a less efficient complementarity of their 

three-dimensional conformation to the enzyme binding site, preventing the interaction with key 

aminoacid residues. 
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 Intermolecular interaction component (Kcal/mol) 

Ligand VdW
a
 Elect.

b
 Gas

c
 Pol. Solv.

d
 NP Solv.

e
 Total

f
 

DDI-MP -27.26 -593.84 -621.10 551.37 -5.01 -74.74 

DDI-Hepta -49.68 -41.30 -90.98 60.10 -7.29 -38.17 

DDI-Hexa -49.76 -39.11 -88.88 57.24 -6.75 -38.38 

DDI-Penta -24.79 -262.16 -286.95 258.19 -4.34 -28.76 

DDI-Buta -43.61 -95.93 -139.54 90.69 -6.16 -55.01 

DDI-Etha -33.95 -37.50 -71.45 48.83 -5.52 -28.13 

DDI -26.13 -37.32 -63.45 48.55 -4.43 -19.32 

AdiS -22.14 -274.57 -296.71 267.92 -4.66 -33.45 

Table 4. Energetic decomposition analysis and component values derived from the molecular 

dynamics simulations of the studied compounds. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusion 

The synthesis of five 5´-O-2´,3´-dideoxydidanosine prodrugs with the further quantitation of their in 

vitro anti-HIV activity in PBMCs and associated cytotoxicity has been described. These studies have 

shown the utility of the carbonate linkage in creating prodrugs from DDI and also indicated how the 

physical-chemical properties of this drug have been substantially modified to produce different 

compounds with increased lipophilicities and good antiviral performance (inhibitory potency and low 

cytotoxicity). 

The outstanding increase in the selective index of DDI-Penta compared to that of the parent drug 

could be related to the ability of this prodrug to efficiently bind to ncN-II, which would in turn generate 

higher intracellular levels of DDI-MP. Besides, based on their higher calculated lipophilicities, we 

believe that an improved permeability through the cell membrane would aid in reaching higher 

concentrations of these prodrugs within the target cells. 

Founded on the above commented aspects, the use of a carbonate linkage at the 5’-OH position of 

DDI combined with the use of n-alcohols appears to be a very promising strategy to enhance the 

potency and security of this NRTI. Among the studied prodrugs, DDI-Penta outstands as the most 

promising candidate for further evaluations. 

a
 Van der Waals interaction energetic component. 

b
 Electrostatic interaction energetic component. 

c
 Total interaction energy in the gas phase (VdW + Elect). 

d
 Total polar solvation energy. 

e
 Total non-polar solvation energy. 

f
 Total interaction energy calculated by the MMPBSA method. 
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4. Materials and Methods 

4.1. Chemistry 

All chemicals, reagents and solvents were of analytical grade. The nucleoside 5´-O-2´,3´-

dideoxyinosine (Didanosine, DDI, 1), a generous gift from Filaxis Laboratory (Buenos Aires, 

Argentina), and N,N-carbonyldiimidazole (>97% purity, Sigma) were used without purification. 

Dimethylformamide (DMF) was dried over 4Å molecular sieves. All solid reagents were dried for 

several hours under high vacuum. Thin layer chromatography (TLC) was performed on Merck Sil 

G/UV254 silica gel plates with fluorescent indicator, and the spots were visualized under 254 nm 

illumination. All glassware was oven-dried at 130 ºC overnight, and cooled in a desiccator over 

anhydrous CaSO4. All 
1
H NMR and 

13
C NMR spectra were recorded on a Bruker Avance 400, 

Ultrashield, Frecuency of 
1
H NMR 400.16 MHz and that of 

13
C NMR 100.62 Hz, Dual BBI Probe, at 

25 ºC using DMSO-d6 (99.8%, Merck) as solvent. The assignment of all exchangeable protons (OH, 

NH) was confirmed by the addition of D2O (99.9%, Sigma). Chemical shift values are reported in parts 

per million (δ) relative to tetramethylsilane (TMS); internal standard and coupling constants (J) are 

given in Hertz (Hz). The splitting pattern abbreviations are as follows: s, singlet; t, triplet; m, multiplet; 

and dd, doublet of doublet. All 
13

C NMR spectra were proton-decoupled confirmed by using the 135º 

DEPT technique as well as COSY (
1
H–

1
H) and HSQC (

1
H–

13
C) correlation. Infrared spectra were 

recorded on a Bruker IFS 66 FTIR-spectrophotometer in the 4000–400 cm
-1

 range using the KBr pellet 

technique. Raman spectra were obtained with a Spex-Ramalog double monochromator spectrometer, 

using the 514.5 nm line of an argon ion laser for excitation. The rotating disk technique was used to 

avoid burning of the compound by the laser light. High resolution mass spectrometry (HRMS) was 

performed in a Bruker MICROTOF-Q II, equipped with an electrospray (ESI) interface configured in 

positive mode. Ultraviolet spectrophotometric (UV) studies were carried out with a Shimadzu Model 

UV-160A spectrophotometer with 1 cm quartz cells. 

 

4.1.1. General procedure for the synthesis of 5´-O-carbonates of DDI 

1.2 eq. of N,N-carbonyldiimidazole (170 mg; 1 mmol 1.2 eq.) was added under N2 stream to 1 eq. 

(200 mg, 0.847 mmol, 1 eq.) of 1 in dried DMF (2.0 mL). The reaction mixture was stirred at 40 ºC for 

1h leading to an intermediate of DDI (DDI-5´-CI). The progress of the reaction was monitored by TLC 

using CH2Cl2:MeOH, 5:5 v/v as a mobile phase. Afterward, the aliphatic alcohol (1.5 eq.) was added, 

and the reaction mixture was then maintained in the same conditions until total conversion of DDI-5´-

CI with the formation of the corresponding carbonate product. The solvent was removed under reduced 
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pressure, and the residual oil was dissolved in CH2Cl2 (1 x 20 mL). The organic phase was successively 

extracted with water (3 x 20 mL) and then dried over Na2SO4, filtrated and evaporated to give the crude 

product. Finally, 4-8 were recrystallized from CH2Cl2-hexane. Rf values were determined using 

CH2Cl2:MeOH (5:5) as a mobile phase. 

 

2´, 3´-dideoxyinosine-5´-yl O-ethyl carbonate (4, DDI-Etha) 

According to the general procedure, by adding ethanol (0.148 mL, 2.617 mmol, 3 eq.), the title 

compound 4 was obtained as a white solid. Yield: 224 mg (90%); Rf: 0.45; MW: 308.2. 

1
H-NMR (DMSO-d6):  12.37 (s, 1H, H-1),  8.25 (s, 1H, H-8), 8.02 (s, 1H, H-2), 6.22 (dd, J = 6.6, 3.0 

Hz, 1H, H-1´), 4.30 (m, 1H, H-4’), 4.20 (m, 2H, H-5’), 4.03 (m, 2H, H-2”), 2.40 (m, 1H, H-2’a), 2.20 

(m, 1H, H-2’b), 2.05 (m, 2H, H-3’), 0.90 (t, 3H, H-3”). 
13

C-NMR (DMSO-d6):  158.2 (C, C-4), 154.97 

(C(O), C-1”), 148.20 (C(O), C-6), 146.17 (CH, C-2), 138.55 (CH, C-8), 124.82 (CH, C-5), 84.82 (CH, 

C-1’), 78.78 (CH2, C-4’), 69.06 (CH2, C-5’), 67.82 (CH2, C-2”), 31.72 (CH2, C-2’), 12.87 (CH3, C-3”) . 

UV (H2O)/nmmax: 248.2. IR (KBr disk) max: 3100.0-3400.0 (NH), 2900.8 (CH2, C=C), 1760.1 

(OC(O)O), 1700.6 (CO) cm
-1

. MS (ESI): m/z 331.1 (M+23). C13H16N4O5 (308.2). 

 

2´,3´-dideoxyinosine-5´-yl O-butyl carbonate (5, DDI-Buta) 

In accordance with the general procedure, by adding n-butanol (0.239 mL, 2.617 mmol, 3 eq.), the 

title compound 5 was obtained as a white solid. Yield: 257 mg (90%); Rf: 0.56; MW: 336.2.  

1
H-NMR (DMSO-d6):  12.36 (s, 1H, H-1), 8.22 (s, 1H, H-8), 8.06 (s, 1H, H-2), 6.23 (dd, J = 6.5, 3.2 

Hz, 1H, H-1´), 4.29 (m, 1H, H-4’), 4.20 (m, 2H, H-5’), 4.02 (t, J = 6.8 Hz, 2H, H-2”), 2.45 (m, 1H, H-

2’a), 2.14 (m, 1H, H-2’b), 2.05 (m, 2H, H-3’), 1.54 (m, 2H, H-3”) 1.31 (m, 2H, H-4”), 0.87 (t, J = 7.2 

Hz, 3H, H-5”). 
13

C-NMR (DMSO-d6):  157.05 (C, C-4), 154.97 (C(O), C-1”), 148.20 (C(O), C-6), 

146.17 (CH, C-2), 138.55 (CH, C-8), 124.82 (CH, C-5), 84.82 (CH, C-1’), 78.78 (CH2, C-4’), 69.06 

(CH2, C-5’), 67.82 (CH2, C-2”), 31.72 (CH2, C-2’), 30.55 (CH2, C-3”), 26.43 (CH2, C-3’), 18.83 (CH2, 

C-4”), 13.95 (CH3, C-5”) . UV (H2O)/nmmax: 248.2. IR (KBr disk) max: 3100.0-3400.0 (NH), 2900.2 

(CH2, C=C), 1760.5 (OC(O)O), 1702.6 (CO) cm
-1

. MS (ESI): m/z 337.1 (M+1). C15H20N4O5 (336.2). 

 

2´,3´-dideoxyinosine-5´-yl O-pentyl carbonate (6, DDI-Penta) 

In line with the general procedure, by adding n-pentanol (0.284 mL, 2.617 mmol, 3 eq.), the title 

compound 6 was obtained as a white solid. Yield: 279 mg (94%); Rf: 0.59; MW: 350.2. 
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1
H-NMR (DMSO-d6):  12.36 (s, 1H, H-1), 8.20 (s, 1H, H-8), 7.84 (s, 1H, H-2), 6.23 (dd, J = 6.5, 3.2 

Hz, 1H, H-1´), 5.40 (m, 1H, H-4’), 4.10 (m, 2H, H-2”), 3.47 (m, 1H, H-2’a), 3.20 (m, 1H, H-2’b), 1.60 

(m, 3H, H-3’), 1.54 (m, 2H, H-3”) 1.32 (m, 4H, H-4” H-5”), 0.88 (t, J = 6.6 Hz, 3H, H-6”). 
13

C-NMR 

(DMSO-d6):  157.05 (C, C-4), 154.97 (C(O), C-1”), 148.20 (C(O), C-6), 146.17 (CH, C-2), 138.55 

(CH, C-8), 124.82 (CH, C-5), 84.82 (CH, C-1’), 78.78 (CH2, C-4’), 69.06 (CH2, C-5’), 67.82 (CH2, C-

2”), 31.72 (CH2, C-2’), 30.55 (CH2, C-3”), 26.43 (CH2, C-3’), 18.83 (CH2, C-4”), 15.41 (CH2, C-4”), 

13.25 (CH3, C-6”). UV (H2O)/nmmax: 248.2. IR (KBr disk) max: 3110.2-3400.0 (NH), 2910.6 (CH2, 

C=C), 1760.5 (OC(O)O), 1702.6 (CO) cm
-1

. MS (ESI): m/z 350.2 (M+1). C16H22N4O5 (351.1). 

 

2´,3´-dideoxyinosine-5´-yl O-hexyl carbonate (7, DDI-Hexa) 

According to the general procedure, the addition of n-hexanol (0.327 mL, 2.617 mmol, 3 eq.) 

afforded the title compound 7 as a white solid. Yield: 271 mg (88 %); Rf: 0.63; MW: 364.2. 

1
H-NMR (DMSO-d6):  12.34 (s, 1H, H-1), 8.20 (s, 1H, H-8), 8.03 (s, 1H, H-2), 6.20 (dd, J = 6.5, 

3.2Hz, 1H, H-1´), 4.28 (m, 1H, H-4’), 4.18,(m, 2H, H-5’), 4.02 (t, J = 6.5 Hz, 2H, H-2”), 2.45 (m, 1H, 

H-2’a), 2.08 (m, 1H, H-2’b), 1.55 (m, 4H, H-3’ H-3”), 1.30 (m, 6H, H-4” H-5” H-6”), 0.75 (t, J = 5.1 

Hz, 2H, H-7”). 
13

C-NMR (DMSO-d6):  157.05 (C, C-4), 154.97 (C(O), C-1”), 148.19 (C(O), C-6), 

146.17 (CH, C-2), 138.54 (CH, C-8), 124.82 (CH, C-5), 84.83 (CH, C-1’), 78.78 (CH2, C-4’), 69.09 

(CH2, C- 

5’), 68.12 (CH2, C-2”), 31.74 (CH2, C-2’), 31.24 (CH2, C-3”), 28.47 (CH2, C-3’), 26.43 (CH2, C-4”),   

25.23 (CH2, C-5”), 22.41 (CH2, C-6”), 14.31 (CH3, C-7”). UV (H2O)/nmmax: 248.2. IR (KBr disk)  

max: 3108.2-3400.0 (NH), 2910.6 (CH2, C=C), 1772.6 (OC(O)O), 1714.8 (CO) cm
-1

. MS (ESI): m/z  

365.1 (M+1). C17H24N4O5 (364.2). 

 

2´,3´-dideoxyinosine-5´-yl O-heptylcarbonate (8, DDI-Hepta) 

In agreement with the general procedure, the addition of n-heptanol (0.366 mL, 2.617 mmol, 3 eq.) 

afforded the title compound 8 as a white solid. Yield: 256 mg (80 %); Rf: 0.65; MW: 378.2. 

1
H-NMR (DMSO-d6):  12.35 (s, 1H, H-1), 8.22 (s, 1H, H-8), 8.15 (s, 1H, H-2), 6.18 (dd, J = 6.5, 

3.2Hz, 1H, H-1´), 4.28 (m, 1H, H-4’), 4.18,(m, 2H, H-5’), 4.02 (t, J = 6.5 Hz, 2H, H-2”), 2.45 (m, 1H, 

H-2’a), 2.08 (m, 1H, H-2’b), 1.55 (m, 4H, H-3’ H-3”), 1.35 (m, 8H, H-4” H-5” H-6” H-7”), 0.63 (t, J = 

5.0 Hz, 2H, H-8”). 
13

C-NMR (DMSO-d6):  157.05 (C, C-4), 154.97 (C(O), C-1”), 148.19 (C(O), C-6), 

146.17 (CH, C-2), 138.54 (CH, C-8), 124.82 (CH, C-5), 84.83 (CH, C-1’), 78.78 (CH2, C-4’), 69.09 

(CH2, C-5’), 68.12 (CH2, C-2”), 31.74 (CH2, C-2’), 31.24 (CH2, C-3”), 28.47 (CH2, C-3’), 26.43 (CH2, 
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C-4”), 25.23 (CH2, C-5”), 22.41 (CH2, C-6”), 14.31 (CH2, C-7”), 14.20 (CH2, C-8”). UV 

(H2O)/nmmax: 248.2. IR (KBr disk) max: 3108.2-3400.0 (NH), 2910.6 (CH2, C=C), 1772.6 (OC(O)O), 

1714.8 (CO) cm
-1

. MS (ESI): m/z 379.0 (M+1). C18H26N4O5 (378.2). 

 

4.2. Antiviral Activity Assays 

4.2.1. Cells and HIV-1 strains 

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll–Hypaque (Amersham 

Pharmacia Biotech, Sweden) gradient centrifugation from peripheral blood of HIV-1seronegative 

patients and cultured at 37°C in RPMI-1640 medium (Sigma-Aldrich, USA) supplemented with 2 mM-

glutamine (Gibco BRL, USA), 100 U/ml penicillin (Gibco BRL), 100 mg/ml streptomycin 

(GibcoBRL), 10% fetal bovine serum (FBS, Gibco BRL) and 10 U/ml interleukin-2 (IL-2, BD 

Biosciences, USA). Prior to infection, PBMCs were stimulated with 0.1% phytohaemagglutinin (PHA) 

for 3 days. 

Stock of HTLV-IIIB strain of HIV-1 was derived from chronically infected H9 cells. Two different 

primary HIV isolates were obtained by co-culture of PBMCs from HIV-infected and HIV non-infected 

donors. Nucleotide sequencing of pol gene revealed that one of the isolates showed a WT sequence 

(WT isolate) while the other (NRTI-resistant isolate) harbored several mutations associated with 

resistance to nucleoside RT inhibitors (D67N, T69D, K70R, A98G, V118I, M184V, T215F and 

K219Q). 

 

4.2.2. Antiviral activity and cytotoxicity assays 

PBMCs were infected at 6.45×10
5
 TCID50/10

6
 cells for 2 h at 37°C. After infection, cells were 

washed and dispensed in a 96-well plate in the presence of 10-fold serial dilutions of compounds. The 

experiments were performed in triplicate. Untreated wells and wells treated with DDI were also 

monitored as controls of antiviral activity. Culture medium was changed on the fourth day maintaining 

the original concentration of the drug. On the seventh day, supernatant fluids were harvested and 

production of p24 antigen was subsequently evaluated using a commercial enzyme linked 

immunosorbent assay (ELISA) (Vironostika, The Netherlands). Based on p24 quantitation, the dose 

that inhibited 50% of the viral production (IC50) was determined. 

Cytotoxicity studies on uninfected PBMCs were performed in parallel in order to determine the 

concentration of the drug that inhibited 50% of cell growth (CCID50). Cellular viability was evaluated 
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by trypan blue (TB) staining and subsequent counting of viable cells on Neubauer chamber. Assays 

were performed in triplicate.
30, 34, 43

 

Once both parameters (CCID50 and IC50) were obtained, the selectivity index (SI), which is defined 

as CCID50/IC50, was determined. When assaying NRTI-resistant virus isolate, fold-resistance (fold-R!) 

was calculated as the ratio between the IC50 obtained in Resistant-infected and WT-infected cultures. 

Results obtained in cultures treated with AZT are also shown as reference. 

 

4.3. Molecular modeling studies 

4.3.1. Molecular docking 

The structures corresponding to the studied ligands were constructed using the Gabedit graphical 

interface,
44 

and were afterwards subjected to energy minimization using semi-empirical and ab-initio 

methods as implemented in the Gaussian03 package.
45 

The minimum energy conformation was then 

subjected to ionization and tautomers analysis considering a pH of 7.0 by applying the algorithms 

implemented in the MOKA software (Molecular Discovery Ltd.),
46-47 

with the resulting structure being 

used as a starting point to generate a conformer database intended for the rigid-body docking protocols. 

The OMEGA software was used to generate this database,
48-49

 applying an energy threshold of 10 Kcal 

and assigning BCC system charges to each conformer to model the corresponding intermolecular forces 

during docking runs. 

The receptor model used for docking assays corresponded to the crystal structure of ncN-II in 

complex with an anthraquinone derived inhibitor (AdiS), which has been recently reported by 

Jordheimet al.
6
 The structure was retrieved from the Protein Databank (pdb code: 4H4B). Before 

performing the docking runs, crystallographic water molecules present in a 6Å radius from the ligand 

were retained. A docking box of 10000 Å
3 

was generated and centered on AdiS, with standard 

ionization states being considered for the rest of the protein. 

The ligands conformer libraries were docked to the above mentioned receptor using a fast rigid 

exhaustive docking approach as implemented in the FRED software,
50-51

 with the corresponding 

docked poses being scored using the Chemgauss4 function as implemented in the software package. 

The lowest energy binding pose was selected, analyzed and subjected to posterior molecular dynamics 

(MD) studies. Visualization and analysis of intermolecular interactions were performed using the 

VIDA, VMD and LigPlus software packages.
52-53 
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4.3.2. Molecular dynamics (MD) simulations 

MD simulations were performed using the Amber12 software package.
54

 Charges and parameters of 

ligands were assigned from the GAFF atomic force-field,
55

while the parameters for the receptor 

corresponded to the ff03ua force field.
56

 Initial coordinates of the corresponding complexes were 

obtained by the molecular docking procedures described above, and simulated under implicit solvent 

conditions. The protocol applied included the following stages: a) minimization stage (10000 steps), b) 

heating phase (20 ps, target temperature 300 K) performed under constant volume conditions, c) an 

equilibration step (200 ps) at constant volume and temperature (300 K) conditions and finally d) a 

production run (1 ns) obtained at constant pressure and temperature (300 K). In all cases, an integration 

time step of 2 fs was used applying the SHAKE algorithm to restrain the bonds involving the hydrogen 

atoms. Analysis over the MD trajectories were applied using the Ccptraj module of Amber12, while 

total and per-residue energetic decomposition analysis were performed using the Molecular Mechanics 

Poisson-Bolzmann Surface Area (MM-PBSA) approach.
57

 

Molecular dynamics trajectories were obtained using CUDA designed code (pmemd.cuda). The 

computational facilities were provided by the GPGPU Computing group of the Facultad de 

Matemática, Astronomía y Física (FAMAF), Universidad Nacional de Córdoba, Argentina. 
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