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Christopher E.M. Griffiths 7 & Royston Goodacre 1 3 

 

Psoriasis is a common, immune-mediated inflammatory skin disease characterized by red, heavily 

scaled plaques. The disease affects over one million people in the UK and causes significant physical, 

psychological and societal impact. There is limited understanding regarding the exact pathogenesis 

of the disease although it is believed to be a consequence of genetic predisposition and 

environmental triggers. Treatments vary from topical therapies, such as dithranol, for disease of 

limited extent (< 5% body surface area) to the new immune-targeted biologic therapies for severe 

psoriasis. Dithranol (also known as anthralin) is a topical therapy for psoriasis believed to work by 

inhibiting keratinocyte proliferation. To date there have been no metabolomics-based investigations 

into psoriasis. The HaCaT cell line is a model system for the epidermal keratinocyte proliferation 

characteristic of psoriasis and was thus chosen for study.  Dithranol was applied at therapeutically 

relevant doses to HaCaT cells. Following the optimisation of enzyme inactivation and metabolite 

extraction, gas chromatography-mass spectrometry was employed for metabolomics as this 

addresses central metabolism.  Cells were challenged with 0-0.5 µg/mL in 0.1 µg/mL steps and this 

quantitative perturbation generated data that were highly amenable to correlation analysis.  Thus, 

we used a combination of traditional principal components analysis, hierarchical cluster analysis, 

along with correlation networks. All methods highlighted distinct metabolite groups, which had 

different metabolite trajectories with respect to drug concentration and the interpretation of these 

data established that cellular metabolism had been altered significantly and provided further 

clarification of the proposed mechanism of action of the drug. 
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 12 

INTRODUCTION 13 

Psoriasis is a chronic immune-mediated inflammatory skin disease that affects approximately 2-3% of the world 14 

population. The disease manifests as red, heavily scaled plaques most commonly on the scalp, elbows or knees 15 

although any skin surface can be affected. Nail involvement and inflammatory arthritis may occur in up to 50% and 16 

30% of patients respectively. Psoriasis is currently incurable and can produce significant psychosocial disability for 17 

those it afflicts resulting in high rates of depression. Most cases present before the age of 35 years and the disease is 18 

usually life-long. Plaques are characterised by epidermal keratinocyte proliferation and loss of differentiation 19 

accompanied by an inflammatory infiltrate. Underlying pathomechanisms are beginning to be understood and it is 20 

known to be a genetically predisposed condition that is triggered and exacerbated by environmental factors 21 

including streptococcal infection. Management of psoriasis is dictated for the most part by extent, in that limited 22 
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disease (< 5% body surface area affected) is treated with topical therapies including vitamin D3, corticosteroids and 23 

dithranol. An understanding of immune mechanisms involved in psoriasis has transformed the management of 24 

severe psoriasis with the advent of new biologic therapies targeted at cytokines including tumour necrosis factor 25 

alpha and interleukins 23 and 17. 26 

 27 

Dithranol, one of the oldest yet most effective of topical therapies is known to accumulate in the cellular 28 

mitochondria [1]. However due to drug interactions being host specific (that is to say these may be different 29 

between different individuals as is any drug toxicity) [2] and the unpredictable nature of psoriasis incidence and 30 

flare, cell-based analyses are still popular in the area of psoriasis; therefore, in this study we used HaCaT cells [3]. 31 

These are an immortalised keratinocyte cell line, that display a keratin expression pattern typical of that seen in 32 

psoriatic epidermis and are thus invaluable cellular skin models. These cells were dosed with various levels of 33 

dithranol that caused a minimal amount of apoptosis [4-6]. 34 

Metabolomics is an analytical science, which aims to measure low molecular weight molecules present in cells, 35 

tissues or organisms that are involved in metabolic processes [7,8] and is becoming an increasingly popular science 36 

aimed at understanding biochemical processes. An important factor in any metabolomic-based analysis on a 37 

cellular system is the effective quenching of that system and this depends on whether the cells are in suspension 38 

[9,10] or adherent [11,12]. HaCaT cells are adherent, attach to the bottom of the culture flask and can readily be 39 

separated from culture supernatant. Moreover, unlike other adherent cells (e.g. Hela) they are not contact inhibited 40 

and thus grow as a layer; hence are very good mimics for skin making them a highly relevant model for psoriasis.  41 

After quenching cellular metabolism, metabolites are extracted [13-16] and analysed by a variety of analytical 42 

techniques [17] so as to maximise the coverage of the metabolome.  43 

 44 

In order to probe the response of HaCaT cells to various doses of dithranol we used profiling metabolomics using 45 

gas chromatography-mass spectrometry (GC-MS). The metabolites one would expect to detect with this technique 46 

are those involved in central carbon and amino acid metabolism. We used GC-MS following protocols initially 47 

pioneered by Fiehn and colleagues [18], and refined by Dunn and co-workers [19,20]. These incorporated in-house 48 

metabolite standards so that most metabolites are identified definitively and ensuring we were wholly compliant 49 

with the Metabolomics Standards Initiative (MSI) [21]. 50 

A dose-response approach was used to investigate the response of the HaCaT cells to dithranol. To interrogate the 51 

resulting metabolomic dose-response data it is typical to use multivariate discriminant statistical models such as 52 

partial least squares-discriminant analysis, Fisher’s linear discriminant analysis (also referred to as discriminant 53 

function analysis or canonical variate analysis); however, due to the dose-response nature of these data, resorting to 54 

such methods was theoretically inappropriate, and ultimately unnecessary (Partial least squares-regression (PLS-R) 55 

was however performed as a comparative analysis and for completeness of the manuscript results from which are 56 

shown in SI). Instead, for this study on a whole, we employed classical univariate hypothesis testing, together with 57 

three complementary multivariate correlation based methodologies. These included the rather traditional 58 

exploratory analyses of principal components analysis (PCA) [22] and hierarchical cluster analysis (HCA) [23,24] 59 

as well as a more novel correlation network approach [25,26]. Although similar in theoretical basis, each method 60 

helped build up a clear picture of metabolite perturbation in a unique manner.  61 

EXPERIMENTAL PROCEDURES 62 

Cell Culture and Drug Exposure 63 

Drug compounds and reagents were purchased from Sigma Aldrich (Gillingham, UK), and cell culture 64 

consumables from GIBCO (Invitrogen Group, Paisley UK), unless otherwise stated. 65 

All culture work was conducted within a Microflow biological safety cabinet and all work areas thoroughly cleaned 66 

with 70% ethanol before use. The cell culture medium utilised in this work was Dulbecco’s Modified Eagle 67 

Medium (DMEM) supplemented with 10% Foetal Bovine Serum (FBS) and to avoid any bias in this undefined 68 

reagent we used a single batch. All DMEM used in this work also originated from a single batch. 1% Penicillin 69 

(5000 units/mL) and Streptomycin (50 mg/mL) were used to inhibit bacterial and fungal growth.  To ensure 70 
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sufficient biomass for GC-MS analysis HaCaT cell growth was conducted in 225 cm
2
 culture flasks utilising 71 

standard cell culture procedures.  72 

Dithranol was applied when cells were determined by microscopy to be ~90% confluent and then incubated further 73 

for 24 h. Dithranol was dissolved in 100% acetone and applied to the cells to give a final concentration range of 74 

0.1-0.5 µg/mL (0.4-2.2 µM) in 0.1 µg/mL steps.  In addition to these 5 concentrations a control was used which 75 

involved the application of acetone only at the relevant volume. All drug solutions were made afresh before 76 

application to the cells. As shown in Figure 1 all drug exposures plus control were performed in triplicate. 77 

Microscopic inspection was undertaken and no obvious differences in cell confluency or cell structure were 78 

observed between the control and drug treated flasks after 24 h and the concentration range of dithranol was 79 

comparable with doses that induce minimal apoptosis in highly confluent HaCaT cells [4-6]. 80 

Metabolome Sample Preparation 81 

Sample preparation was performed as detailed in Figure 1. Briefly both the cells as well as the spent culture media 82 

(footprint or exometabolome) [27] were analysed.  The method for cellular analysis was essentially the same as 83 

Teng et al. [28], but rather than washing with ice cold phosphate buffered saline (PBS) we used room temperature 84 

PBS (15 mL) in order to reduce temperature shock to the cells.  This brief washing (Fig. 1; step 6) took ca. 5 s, 85 

after which the cells were quenched and extracted using 100% methanol (7 mL, -48 °C) and detached from the 86 

surface by scraping the cells with a disposable cell scraper (Corning, UK). The methanol/cell mixture was then 87 

transferred to a centrifuge tube for extraction. Extraction was aided by three freeze-thaw cycles to liberate as many 88 

metabolites as possible [9].  After centrifugation (14°C, 5 min, 16200 g) to pellet the cell debris the supernatant 89 

was stored at -80°C.  90 

The spent culture media were aspirated from each culture flask and filtered through a 0.45 µm pore size cellulose 91 

acetate membrane syringe filter to remove any remaining cellular debris. The filtered metabolic footprint samples 92 

were aliquoted (1 mL) into centrifuge tubes and immediately snap frozen in liquid nitrogen. All samples were 93 

stored at -80°C. 94 

Metabolome GC-MS Analysis 95 

Footprint (200 μL) and fingerprint (1 mL) aliquots (7 mL in total) were spiked with 100 µL internal standard 96 

solution (1.32 mg/mL succinic d4 acid, 1.12 mg/mL malonic d2 acid, 1.08 mg/mL glycine d5); vortex mixed and 97 

lyophilised overnight (Eppendorf Vacufuge Concentrator 5301, Eppendorf, UK). 98 

A two-stage chemical derivatisation was performed on the dried sample, 80 µL of 20 mg/mL O-99 

methylhydroxylamine solution was added and heated at 40°C for 90 min followed by addition of 80 µL MSTFA  100 

(N-acetyl-N-[trimethylsilyl]-trifluoroacetamide) and heating at 40°C for 90 min. 20 µL of a retention index solution 101 

(4 mg/mL n-decane, n-dodecane, n-pentadecane, n-nonadecane, n-docosane dissolved in hexane) was added and 102 

the samples were analysed in a random order using a Agilent 6890 N gas chromatograph and 7683 autosampler 103 

(Agilent Technologies, Stockport, UK) coupled to a LECO Pegasus III electron impact time-of-flight mass 104 

spectrometer (LECO Corporation, St Joseph, USA) as detailed in [20,29]. Initial data processing of raw data was 105 

undertaken using LECO ChromaTof v2.12 software to construct a data matrix (metabolite peak vs. sample no.) 106 

including response ratios (peak area metabolite/peak area succinic-d4 acid internal standard) for each metabolite 107 

peak in each sample. 108 

Metabolite identifications were assigned through searching and matching against an in-house constructed library 109 

and also the NIST02 and Golm metabolome libraries. A definitive match (MSI level 1) means that the retention 110 

index and mass spectrum match that of an authentic standard analysed on the same instrument [30].  A putative 111 

match (MSI level 2) implies that the mass spectrum can be matched only to a non-Manchester library and cannot be 112 

confirmed via an in-house comparison. This process corresponds with the minimum reporting standards proposed 113 

for chemical analysis detailed within [21]. 114 

 115 
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Data Analysis 116 

Profiled data were separated into two data matrices (fingerprint, footprint). Each matrix had the dimensions 18 117 

samples (3 biological replicates for each dosage concentration of 0-0.5  µg/mL (0-2.2 µM) in 0.1 µg/mL steps) by 118 

the number of reproducibly detected (< 20% missing values) metabolite features (this resulted in 127 metabolite 119 

features). The data were row normalized using probabilistic quotient normalization (PQN) [31] to equalize signal 120 

intensities to a reference profile, i.e. to reduce any variance arising from subtly differing dilutions of the biological 121 

extracts.  Missing values were replaced by the lowest measured value for the given metabolite divided by two – as 122 

an approximation of a value below the limit of detection. Data were log2 transformed, both to stabilize variance, 123 

and in order to approximate a multivariate normal distribution for each treatment group. Unidentified metabolites 124 

were then removed from both data sets and subsequently disqualified from further data analysis. 125 

For each remaining metabolite in turn, the null hypothesis that there are no differences in population means 126 

between the dosage groups was tested using one-way ANOVA. Correction for multiple comparisons was 127 

performed using the method described by Benjamini and Hochberg [32] and corrected p-values were reported. 128 

Principal components analysis (PCA) was then performed [33]. PCA is routinely used in metabolomics studies to 129 

visualize the principal multivariate variance in high-dimensional metabolomic data via mathematical projection 130 

into (usually) a two- or three-dimensional orthogonal subspace (principal components; PCs). A scatter plot of PC 131 

score vectors (a “scores plot”), where each point represents an individual sample, can be used to identify 132 

biologically interpretable patterns and/or clusters. When a specific PC score is related to a phenotype of interest, 133 

such as time course or group information, the corresponding PC loading vector (a mathematical vector describing 134 

of the influence of each metabolite feature on the PC score) is evaluated to discern biological inferences [22]. 135 

Bootstrap resampling/remodelling was used to determine which metabolites contributed significantly to the PCA 136 

loadings vector following standard protocol for multivariate models [34,23].  137 

Unsupervised two-way agglomerative hierarchical cluster analysis (HCA) then assessed the similarities between 138 

individual metabolomic profiles [23,35]. This algorithm used a multivariate Euclidean distance metric and Ward’s 139 

group linkage. The results were displayed as a heat map (green=low metabolite concentration, red=high metabolite 140 

concentration) with associated cluster dendrograms; the lower the linkage distances in the dendrogram the more 141 

similar the feature. Metabolites that were most similar across all samples, and samples that were most similar 142 

across all metabolites, form the lowest linkage in the respective dendrograms; thus emergent clusters will have 143 

similar characteristics. Prior to PCA and HCA each metabolite feature was scaled to unit variance (autoscaled), 144 

which allows each metabolite to be compared within the analysis with no bias due to differences in absolute 145 

concentration variance [24,36]. 146 

Finally, the strength and direction of the linear relationship between all identified metabolite features was 147 

determined by calculating pairwise Pearson’s correlation coefficient (r). The results of the resulting correlation 148 

matrix were presented in the form of a spring-embedded correlation plot [26]. Here a network of “nodes” and 149 

“spring-edges” are constructed such that each node represents each of the tested metabolite features and the spring 150 

constant of each edge is proportional to the correlation coefficient between two connected nodes. The size of each 151 

node is proportional to significance of that variable; the larger the node the lower the p-value. Edges were only 152 

included in the network if the correlation coefficient was positive, and significant at a critical p-value of < 0.05. 153 

Once the network is constructed it is allowed to “relax”. That is to say, the connected spring-edges compete against 154 

each other to “pull” the nodes in a given direction based on the spring constant (the higher the correlation, the 155 

stiffer the spring, and hence the more power organizing the clustering of the node). Once relaxed (i.e. the model is 156 

in a low energy configuration) the spring embedded plot can be viewed as a simple multivariate cluster analysis, 157 

where nodes that cluster close to each other can be considered to be highly correlated in a multivariate sense. Node 158 

colour directly maps onto the Pearson’s correlation between metabolite concentration and drug concentration (Red 159 

= positive correlation; Blue = negative correlation); nodes were coloured “grey” in the plot if their corresponding p-160 

value was > 0.05. Networks were constructed using the graph visualization software – Graphviz (www.graphviz 161 

.org) using the ‘neato’ virtual physics model [37].  162 

All of the statistical analyses were performed using the Matlab
® 

scripting language, version R2014a 163 

(http://www.mathworks.com).  164 
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RESULTS  165 

The analysis of dithranol treated HaCaT cells yielded 127 metabolite features from the intra-cellular metabolome 166 

(fingerprint), of which 47 were uniquely identified to level 1 of the MSI (i.e. defined to a standard and on the same 167 

instrument), and 107 metabolite features for the metabolic footprint, of which 40 were uniquely identified. One-168 

way ANOVA was used to determine the changes in each metabolite in both the footprint and fingerprint data 169 

testing the null hypothesis that there are no differences in population means between the dosage groups.  170 

For the footprint data, after correction for multiple comparisons, none of the 40 identified metabolites were 171 

significant (using a critical adjusted p-value of < 0.05 and a false discovery rate of 5%) – data not shown.  172 

For the fingerprint data, after correcting for multiple comparisons, 32 of the 47 identified metabolites were 173 

significant (see Table 1). This suggests that whilst there is a large effect on cellular metabolism, very little signal is 174 

excreted into the culture media and thus perhaps also indicates that cellular integrity has not been compromised.  175 

That is to say, the cells have not died and leaked metabolites into the culture media; this is largely because the 176 

experiment was designed to be below lethal levels of drug (see above). Table 1 also lists the identified metabolites 177 

according to MSI [21]. Additional information is also provided to include the associated human metabolome 178 

database (HMBD) accession number, the chemical formulae and the primary pathways associated with the 179 

identified metabolite. 180 

The results of PCA (Figure 2) illustrates no significant clustering or correlations between drug concentration of the 181 

footprint data (Figure 2a), bootstrap resampling showed that no metabolites significantly contributed to this model 182 

– data not shown. Conversely, the PCA of the fingerprint data (Figure 2b) shows clear clustering, whereby, PC1 183 

describes a linear negative correlation with drug concentration, and PC2 describes clear separation of concentration 184 

group ‘0.3’ from the others. Bootstrap resampling revealed that 22 metabolites were uniquely significant 185 

contributors to PC1, 9 metabolites were uniquely significant contributors to PC2, and 8 metabolites were 186 

significantly contributing in both PC1 and PC2 (see Table 1 and Figure 3). 187 

HCA clarifies the complex inter-relationship between metabolite and drug concentration found in the fingerprint 188 

data (see Figure 4). The “sample” dendrogram (x-axis) reflects exactly the clustering presented in the PCA scores 189 

plot (Figure 2b). However, the “metabolite” dendrogram (y-axis) reveals 3 clear metabolite clusters (labelled A, B 190 

and C). Within clusters A and B there are sub-clusters (A1, A2, A3, B1, and B2). These clusters are labelled in, and 191 

provide the structure for, Table 1. Each of these 6 clusters demonstrates a general concentration trajectory with 192 

respect to drug concentration. For example, the metabolites in cluster C rapidly change from high metabolite 193 

concentration to low metabolite concentration at around 0.2 µg/mL; whereas, Cluster B2 rapidly changes from low 194 

to high at 0.2 µg/mL and then back to low at 0.5 µg/mL. Figure 5 a-f shows representative metabolites from each of 195 

these sub-cluster trajectories. HCA for the footprint data confirmed the PCA results and showed no clear clustering 196 

– data not shown. The spring-embedded correlation plots for the fingerprint data corroborated the HCA results (see 197 

Figure 6). In this instance we have included the unidentified metabolites (labelled KH_x) to illustrate their 198 

compliance with the general structure presented for the identified metabolites in the main text. There is clearly a 199 

large cluster of significant metabolites (red) that match up with cluster C in the HCA. Additionally there is a cluster 200 

of significant metabolites (dark blue) that match up with clusters A3 and B1. Finally there is a cluster (light blue / 201 

green /yellow) which match with cluster B2.  HCA clusters A1 maps to the linkage between the main clusters at the 202 

top of the spring plot, and cluster A2 maps to the linkage between the main clusters at the bottom of the spring plot 203 

but were not univariately significant and are therefore coloured “grey”. These results reflect the univariate statistics 204 

presented in Table 1. As there were no univariately significant metabolites in the footprint data no corresponding 205 

spring-embedded correlation plot was generated. 206 

  207 
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DISCUSSION 208 

A large number of metabolites were not only significantly altered in cells exposed to dithranol but were also 209 

correlated in different ways to the dithranol level i.e. correlation groups A1-3, B1-2 & C1.  It would be unrealistic 210 

to attempt to interpret individual box and whisker plots for each metabolite without the inclusion of additional 211 

biochemical information. It was for this reason that a metabolic map was manually constructed utilising 212 

information gained from within the KEGG database (Figure 7). The relevant pathways highlighted in the study are 213 

summarised in Figure 7. These include glycolysis, TCA cycle, amino acid metabolism and the urea cycle. The 214 

reconstructed biochemical map is further restricted to include only the measured metabolites (shown in black text, 215 

for ease of visualization) and therefore there are ‘gaps’ in this pathway reconstruction. For example, glycolysis only 216 

comprises glucose, glucose-6-phosphate and pyruvate and not all the intermediate steps, as these were not detected 217 

in the samples.  These metabolites do of course exist in our in-house database but are absent because they are found 218 

below the limit of detection. A limited number of metabolites that were not identified in the samples are shown 219 

(depicted in red) to highlight important reference points. The metabolites present in the DMEM culture media are 220 

shown in orange to highlight if any of the observed changes are associated with nutrient depletion. A box and 221 

whisker plot is included to show relative metabolite levels as the drug exposure increases from 0-0.5 µg/mL.  222 

From this metabolite analysis it is possible to begin to understand and interpret the role of these metabolites that 223 

vary and are co-correlated upon drug exposure. It is clearly evident from Figure 2 and 5 that dithranol has a 224 

pronounced affect on the metabolism of HaCaT cells. It is necessary to combine a priori literature-based 225 

information with the current results to develop an understanding of the mode of action of dithranol for psoriasis 226 

treatment.  The most important features are briefly discussed below. 227 

A number of metabolites exhibited a decreasing linear response with increased dithranol concentration. These 228 

included malonate, nicontinamide, glycerol-3-phosphate, myo-inositol and hypotaurine. These downstream 229 

metabolites have varying roles and are likely indicators of decreased cellular metabolism.   230 

Mitochondrial response 231 

The exact mode of action of dithranol therapy for psoriasis is not fully understood.  Possible theories of the mode 232 

of action suggest that the activity of glucose-6-phosphatase is inhibited by dithranol [38] or the most documented 233 

theory is that dithranol accumulates or has inhibitory effects in the mitochondria. Thus inhibiting mitochondrial 234 

oxidative respiration and thereby restricting ATP synthesis [1,38]. 235 

Our findings support the hypothesis that dithranol inhibits the TCA cycle in that we observed a decrease in the two 236 

TCA intermediates that were measured (viz. citrate and malate) belonging to correlation Group C1 (decrease with 237 

respect to increasing dithranol dose). We also observed changes in the metabolite levels of intermediates involved 238 

in glycolysis. At the higher concentrations of dithranol (0.3-0.5 µg/mL) accumulation of glucose, glucose-6-239 

phosphate, pyruvate and lactate was observed. The accumulation of glycolytic intermediates indicates an impaired 240 

flux through the TCA cycle, thereby supporting the proposed mode of action of dithranol in the TCA cycle. Our 241 

findings do not support the theory that glucose-6-phosphatase is inhibited by dithranol as we observe a positive 242 

correlation in the concentration of glucose and glucose-6-phosphate. This is primarily due to dithranol being 243 

applied in our study at a much lower concentration to previous investigations (~44 µM vs. 2.2 µM) [38] and 244 

therefore unlikely to cause cell death or apoptosis (as detailed elsewhere). The response relationship discussed 245 

above for all these metabolites indicates that dithranol has a clear effect on central metabolism of the HaCaT cells. 246 

This indicates that the drug has successfully penetrated the cells, and does indeed seem to be targeting the 247 

mitochondria. 248 

Amino acid response 249 

The re-constructed metabolite map clearly highlights that cellular amino acid concentrations are affected by 250 

dithranol exposure. The degree of the effect differs from amino acid to amino acid. The most linear response to 251 

dithranol concentration is observed for glutamate, aspartate (Group C1) and histidine (Group B1). Glutamate is 252 

shown to decrease almost linearly with increased dithranol treatment, which follows the trend observed by the TCA 253 
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intermediates. Aspartate shows a similar decrease in concentration as the concentration of dithranol increases to 254 

almost depleted levels at 0.4 & 0.5 µg/mL. Conversely, the concentration of histidine increases with the increasing 255 

concentration of dithranol.  256 

The remaining amino acids exhibit variable responses upon dithranol treatment. Glycine (Group A1) is at its 257 

highest level in the control cells and shows minimal correlation to dithranol concentration. Tryptophan (Group A2) 258 

greatly increases in concentration at 0.1 µg/mL before decreasing at 0.2 µg/mL and gradually rising again as the 259 

concentration of dithranol increases. Leucine (Group A3) shows a gradual increase in concentration as the 260 

concentration of dithranol increases and is almost linear in its response at the highest concentrations of drug. The 261 

amino acids serine, tyrosine and valine were classified within correlation group B1. These metabolites exhibit an 262 

almost positive parabolic response to increasing levels of drug, with the largest increase occurring between 0.2 and 263 

0.3 µg/mL. Group B2, contains the amino acids alanine, isoleucine, methionine, phenylalanine & threonine.  These 264 

amino acids increase in concentration from control to a maximum at 0.3 µg/mL exposure before reducing in 265 

concentration again at 0.4 & 0.5 µg/mL dithranol treatment. 266 

The question arises as to why this variable response may be occurring? We know from our own experimental work 267 

and the literature [5,6,4] that HaCaT cells are still viable thus making apoptosis or cell death unlikely in the case of 268 

amino acid depletion. We also acknowledge that to support the growth of the HaCaT cells the DMEM culture 269 

media is rich in the majority of these afore-mentioned amino acids and so the transport of the amino acids into the 270 

cell may be complicating the observed metabolic response. Although the variable response observed in the amino 271 

acid profiles is not fully understood with further targeted investigation of the amino acids is may provide useful 272 

information to elucidate further knowledge of the specific mode of action of dithranol. 273 

CONCLUSION 274 

Many of the metabolites detected by GC-MS analysis were significantly affected by dithranol treatment. HCA 275 

classified these significantly affected metabolites into 6 response groups. These collections of metabolites followed 276 

different trajectories with respect to increasing levels of dithranol and thus may reflect common effects on 277 

metabolism. Of course this is not guaranteed as correlation does not equate to effect [39] thus endorsing the 278 

importance of biochemical interpretations. Biological interpretation of our results has highlighted two areas of 279 

metabolism whose response to dithranol treatment is of interest, namely mitochondrial and amino acid metabolism. 280 

The effect on mitochondrial and NAD(P)H has been previously reported in other HaCaT cellular studies [1] and in 281 

patients undergoing therapy with dithranol which supports our theory that metabolomics is a very powerful 282 

approach to investigate the mode of action of drugs.  By contrast, there has been very little reported on the 283 

reduction of amino acid levels by increasing concentrations of dithranol suggesting that these important protein 284 

synthesis building blocks are required elsewhere in the cell. Our findings indicate that the changes observed in the 285 

amino acid profiles are not related purely to the effect of the drug on cellular metabolism. Thus, it appears that 286 

targeted analysis of the amino acids will shed further light onto the mechanism of action of dithranol therapy. 287 
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FIGURE LEGENDS 404 

 405 

Figure 1: A summary diagram to illustrate the successive stages in the collection of fingerprint and footprint 406 

samples. 407 

 408 

Figure 2: PCA scores plots showing the variance across the concentration range of dithranol treatment for A) 409 

footprint and B) fingerprint samples.  410 

 411 

Figure 3: PCA loadings illustrating the contribution of the metabolites towards PC1 or PC2. 22 metabolites were 412 

uniquely significant contributors to PC1, 9 metabolites were uniquely significant contributors to PC2, and 8 413 

metabolites were significantly contributing in both PC1 and PC2. 414 

 415 

Figure 4: Hierarchical Cluster Analysis (HCA) illustrating the complex inter-relationship between metabolite (y- 416 

axis RHS) and drug concentration (x-axis) found in the fingerprint data. Relative concentrations of metabolites are 417 

shown at high concentrations (Red) and low concentrations (Green). The response of the metabolites is then 418 

grouped according to response (y-axis, LHS). 419 

 420 

Figure 5: Box and whisker plots of dithranol concentration (µg/mL) vs. relative metabolite concentration to 421 

illustrate the general trends observed from the correlation analysis for groups A1 (Glycine), A2 (Tryptophan), A3 422 

(Leucine), and groups B1 (Serine), B2 (Threonine) and C1 (Pyroglutamate). Box and whisker plots provide a 423 

descriptive summary of the spread of replicate results.  424 

 425 

Figure 6: Spring Embedded Correlation plot illustrating the metabolites (circles) and the associated correlations 426 

(lines/springs). The size of the circle is proportional to the significance of the metabolite (i.e. the larger the circle 427 

the more significant the metabolite) and the spring relates to the amount of correlation (the shorter the spring the 428 

more correlated the response of the metabolite to its neighbour). 429 

Figure 7: Constructed metabolite map to illustrate the effect of dithranol treatment on HaCaT cells. The use of 430 

solid arrows indicates a direct linkage of metabolites while a dashed arrow corresponds to a pathway including a 431 

limited number of undetected metabolites. The metabolites in black are those which where successfully identified 432 

and those in red are included as a reference. Metabolites highlighted in orange are metabolites which are actively 433 

present in the DMEM culture media employed in the growth of the HaCaT cells. All box and whisker plots 434 

represent metabolites detected in the internal metabolome. Green features are provided for interest but are not 435 

metabolites. 436 

 437 

Table 1: Identified metabolites from the internal metabolome of dithranol treated HaCaT cells. The table 438 

summarises in column i) the metabolite name, ii) the ANOVA F score, iii) p-value, iv & v) the response in PC 1 or 439 

PC2, vi) the HCA group, vii) HMDB assession number, viii) molecular formula, ix) primary pathway association & 440 

x) the MSI identification level. 441 
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FIGURE 1 443 

 444 

 445 
 446 

 447 

FIGURE 2 448 

 449 

 450 

HaCaT    cells    grown    

to    ~    85-90%    

confluency    in    225ml    

culture    flasks.    

Drug    Exposure:    5    concentra ons    of    drug    applied    for    24h    with    3    biological    replicates            Control    Flasks    (3    replicates)    

    

1.    Footprin ng    media    aspirated    

2.    Aliquot    retained    per    flask    (1mL)    

3.    Syringe    filtered    (0.45µm)    into    centrifuge    tubes    

4.    Snap    frozen    on    liquid    N2    

    5.    Stored    at    -80°C    un l    analysis        
    

    
6.    PBS    (10mL,    Room    Temperature)    added,    swilled    and    removed    X    3    

7.    100%    MeOH    (7mL,    -48°C)    added    to    quench    &    extract    cell    metabolism    

8.    Harvested    by    cell    scraping    

9.    Cellular    biomass    removed    by    pipe e    aspira on    and    collected    into    centrifuge    

tubes            

10.    Metabolite    extrac on    through    3    freeze    thaw    cycles.    Snap    frozen    in    liquid    N2    

and    thawed    on    dry    ice        

11.    Samples    centrifuged    to    pellet    cell    debris    and    supernatant    collected    

12.    Stored    at    -80°C    un l    analysis        

    

0.1    µg/mL                                                0.2    µg/mL                                                0.3    µg/mL                                            0.4    µg/mL                                            0.5    µg/mL    

        

    

B: Fingerprint A: Footprint 

Page 11 of 17 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

FIGURE 3 451 

 452 
  453 
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FIGURE 4 454 

 455 
  456 
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FIGURE 5 457 

 458 

 459 
 460 

  461 

A1 A2 A3 

B1 B2 C1 
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FIGURE 6 462 

 463 

 464 
  465 
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 466 

FIGURE 7 467 

 468 
 469 
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TABLE 1 471 

 472 
 473 

 474 

Page 17 of 17 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


