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The classification models for predicting selective LXRβ agonists were firstly 

established using multiple machine learning methods. The top models can predict 

selective LXRβ agonists with chemical structure diversity.  
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Abstract 

Liver X receptor (LXR) α and β are cholesterol sensors; they respond to excess 

cholesterol and stimulate reverse cholesterol transport. Activating LXRs represents a 

promising therapeutic option for dyslipidemia. However, activating LXRα may cause 

unwanted lipogenicity. A better anti-dyslipidemia strategy would be to develop selective 

LXRβ agonists that do not activate LXRα. In this paper, a data set of 234 selective and 

non-selective LXRβ agonists was collected from the literatures. For the first time, we 

derived the classification models from the data set to predict selective LXRβ agonists 

using multiple machine learning methods (naïve Bayesian (NB), Recursive Partitioning 

(RP), Support Vector Machine (SVM), and k-Nearest Neighbors (kNN) methods) with 

optimized property descriptors and structural fingerprints. The models were optimized 

from 324 multiple machine learning models, and most of the models showed high 

predictive abilities (overall predictive accuracies > 80%) for both training and test sets. 

The top 15 models were evaluated using an external test set of 76 compounds (all 

containing new scaffolds), and 10 of them displayed overall predictive accuracies 

exceeding 90%. The top models can be used for the virtual screening selective LXRβ 

agonists. The NB models can identify privileged and unprivileged fragments for selective 

LXRβ agonists, and the fragments can be used to guide the design of new selective LXRβ 

agonists. 

1 Introduction 

Cardiovascular diseases are the leading causes of death worldwide, and one major risk 

factor associated with these diseases is hyperlipidemia.
1, 2

 Hyperlipidemia is 

characterized by increased plasma cholesterol, triglycerides (TG) and decreased high-

density lipoprotein (HDL) level. Lipid-lowering drugs represent the primary treatment 

strategy for hyperlipidemia. However, the current drugs used to treat dyslipidemia (e.g., 
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HMG-CoA reductase inhibitors (stains), fibrates, and bile acid-sequestering resins) 

simultaneously cause liver steatosis or hypertriglyceridemia.
3, 4

 Thus, discovering new 

anti-lipemic agents without side effects is urgently needed. LXRs are cholesterol sensors 

that protect cells from cholesterol overload.
5, 6

 Activating LXRs can stimulate reverse 

cholesterol transport and inhibit its absorption, synthesis, uptake, and promote HDL 

formation.
6 

Increasing reports suggest that LXRs are promising therapeutic targets for 

dyslipidemia.
3,

 
6, 7

 

The LXR nuclear receptor family consists of two subtypes, LXRα (NR1H3) and 

LXRβ (NR1H2).
7
 LXRα is expressed predominately in some tissues, including the liver, 

kidney, macrophages, and adipose tissue; however, LXRβ is ubiquitously expressed.
8
 

Activating LXRα (mainly expressed in liver) results in high triglyceride production
3
, and 

growing evidence suggests that selective LXRβ agonists can reduce this side effect.
9, 10

 

The sequences of LXRα and LXRβ share approximately 78% identity, with little 

differences in their ligand binding domains (LBD).
11

 Therefore, it can be more 

challenging to design selective LXRβ agonists using structure-based approach.
12

 

To date, selective LXRβ agonists are assessed experimentally in vitro and vivo (e.g., 

scintillation proximity assay or transactivation assays against both LXRα and LXRβ).
13-19

 

However, these experimental assays are time-consuming, expensive and laborious. For 

example, the SPA assay involves handling radioisotopes, which are costly and low 

throughput.
20

 Therefore, the development of computational methods that provide a rapid 

and efficient screening platform to predict selective LXRβ agonists is vital for the early 

stages of lead discovery or optimization. 

Several computational pharmacophore and QSAR models predicting LXRβ agonists 

have been reported.
21-23

 For examples, Zhao and co-workers described three-dimensional 

pharmacophore models to predict LXRβ agonists.
21

 Salum and coworkers predicted 

selective LXRβ agonists using a fragment-based QSAR method.
22

 Most recently, Temml 

and coworkers discovered LXRβ agonists using a pharmacophore modeling approach.
24

 

However, these models were unable to distinguish selective LXRβ agonists from non-

selective agonists. Salum’s models predicted selective LXRβ agonists for a specific 
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scaffold. Thus, there is a need for models based on various known LXRβ agonist 

scaffolds to predict selective LXRβ agonists with broader chemical structure diversity.  

To develop models to predict selective LXRβ agonists with new chemical scaffolds, 

a data set of 234 structurally diverse, selective and non-selective LXRβ agonists was 

collected from literatures. Then, we employed multiple machine learning methods (naïve 

Bayesian (NB), Recursive Partitioning (RP), Support Vector Machine (SVM), and k-

Nearest Neighbors (KNN)) to build classification models for predicting selective LXRβ 

agonists based on the data set. Finally, we selected the top models to discriminate 

selective LXRβ agonists from non-selective agonists. The flowchart of the process is 

depicted in Fig. 1.  

 

Fig. 1 The flowchart for generating models to predict selective LXRβ agonists using 

multiple machine learning methods. 

 

2 Materials and methods 

2.1 Data preparation 
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LXRs agonists were collected from the literatures
12-19, 25-38

 based on following criteria: 

(1) the compound should be tested in the LXRs scintillation proximity assay (SPA); (2) 

the compound should have SPA IC50 values for both LXRα and LXRβ subtypes; and (3) 

duplicate data were removed. The whole LXR data set consisted of 391 structurally 

diverse compounds. A selective ratio (SR) was calculated using the following equation: 

     SR = ����(	
��)
����(	
��)

          (1) 

A compound was considered to be a selective LXRβ agonist if its SR was equal or greater 

than 10 (≥10). Compounds with IC50 values exceeding 10 µM for both LXR subtypes 

were removed. Some compounds were also removed due to large IC50 variation resulting 

from different measurement conditions or labs. A compound was considered to be non-

selective if its SR was less than 4 (≤3). Ultimately, the data set for building the predictive 

models for selective LXRβ agonists contained 234 compounds.  

Chemical structures of the data set were processed in two steps: (1) removing the 

counter ions, solvent moieties, and salts in the structures; and (2) optimizing the 2D 

conformations of the structures through energy minimizations with the MMFF94 force 

field (MOE version 2013.08, Chemical Computing Group Inc., Canada). 

The structural diversity of the data set was analyzed using the S-cluster algorithm.
39

 

In the data set, selective LXRβ agonists were marked as “1”, and non-selective agonists 

were marked as “0”. The data set was divided into a training set (176 compounds) and 

test set (58 compounds) using randomized algorithm in DS 3.5 (Discovery Studio version 

3.5, Accelrys Inc., USA). The ratio of the number of compounds in the training set and 

the number of compounds in the testing set was 3:1.
40

 The data set is available in the 

Electronic Supplementary Information. 

2.2 Molecular descriptor calculation 

Molecular descriptors were calculated using MOE and PaDEL-Descriptor software.
41

 A 

total of 192 two-dimensional molecular descriptors were generated from MOE, and 770 

one- and two-dimensional descriptors were calculated using the PaDEL-Descriptor 

program.  
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2.3 Molecular descriptor selection 

Pearson correlation analysis was employed to exclude redundant descriptors and 

descriptors unrelated to activity.
42-44

 In the present work, descriptors whose Pearson 

correlation coefficients with the SR were less than 0.1, or descriptors whose correlation 

coefficients with other descriptors were higher than 0.9 were removed. Finally, 12 

(derived with MOE) and 14 property descriptors (derived from PaDEL-Descriptors 

program) were used for the modeling studies (Table 1). 

Table 1 Molecular descriptors selected for the modeling studies 

Program 
No. of 

descriptors 
Descriptor list 

MOE 12 

BCUT_PEOE_0, BCUT_PEOE_1, BCUT_SLOGP_0, BCUT_SLOGP_1, 

BCUT_SMR_1, GCUT_PEOE_2, GCUT_SMR_0, GCUT_SMR_1, 

GCUT_SMR_2, logP(o/w), PEOE_VSA+0, Q_VSA_FNEG 

PaDEL 14 
VC-4, VC-6, SPC-4, SwHBa, SHCsats, SHother, SssCH2, ETA_Shape_Y, 

ETA_dBetaP, nAtomP, MDEC-24, MDEC-33, MDEC-34, MLFER_A 

 

2.4 Structural fingerprint calculation 

Four types of structural fingerprints
45

 (EState, MACCS, Substructure, and Substructure 

Fingerprint Count) were calculated using the PaDEL-Descriptor program. These 

structural fingerprints were successfully used to predict toxicity and biodegradability.
46, 47

 

The ECFC_4 fingerprints were calculated using DS 3.5.  

2.5 Modeling methods 

The following machine learning methods
48-50

 were employed for modeling: naïve 

Bayesian (NB), Recursive Partitioning (RP), Support Vector Machine (SVM) and k-

Nearest Neighbors (kNN) methods. 

2.5.1 Naïve Bayesian 
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A NB model is generated using prior evidence that an object belongs to a certain class; 

for example, an active class or inactive class from a training data set. In present work, we 

used DS 3.5 to build NB models. Topological descriptors and fingerprints were used to 

describe the properties of chemical structures. A Bayesian model classifies compounds 

by confirming the frequency at which an attribute appears.
51-53

 The following equation 

represents the Bayesian law: 

 P(B|A) =
P(B)P(A|B)

P(A)
	 (2)

where A represents an attribute; B represents a compound’s class; P(BA) refers to the 

posterior probability of a compound that belongs to a certain class; P(AB) is the 

probability that the compound belonging to a certain class (in our case, selective or non-

selective) has certain attributes; P(B) is the prior probability resulting from the training 

set; and P(A) is the marginal probability that the attribute appears in the training set. The 

three probabilities on the right side of formula (2) can be derived from the training set.
54, 

55
  

2.5.2 Recursive Partitioning 

The RP method recursively splits a data set into smaller subsets, and it generates a 

hierarchical tree called a decision tree, which represents relationships among data points 

and independent properties (in our case, molecular descriptors and fingerprints).
56, 57

 Our 

RP models were built using an RP module from DS 3.5. Tree depths ranged from 2 to 10 

to acquire the best predictive performance. 

2.5.3 Support Vector Machine 

The SVM method employs the structural risk minimization principle to reduce 

generalization error on the training data and avoid over-fitting effects.
58, 59

 Non-linear 

SVM simplifies the classification problem by transforming a data space into a higher 

dimensional feature space.
58, 60

 To determine a hyper-plane to divide a data set into two 

classes, SVM models were constructed using the LIBSVM 3.18 package developed by 

Chang and Lin.
61

 The SVM models were built using a radial basis function (RBF) kernel. 
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An auto-searching program, “grid.py”, was used to select the parameters of the SVM (c, 

g), and every SVM model was validated using the 5-fold cross-validation. 

2.5.4 k-Nearest Neighbor  

The kNN models were built using Orange 2.7 (http://www.ailab.si/orange/).  The kNN is 

a non-parametric instance-based learning that classifies objects based on the closest 

training samples in a feature space. An object is classified by assigning the most frequent 

class among the k training samples nearest to that object.
62, 63

 The performance of kNN 

models largely depends on the original data set. In this study, the parameter k was 

changed from 1 to 10 to determinate the nearest neighbors. 

2.6 Model performance validation 

To validate the accuracy and robustness of the models, we employed a 5-fold cross-

validation scheme. True positives (TP), true negatives (TN), false positives (FP), false 

negatives (FN), sensitivity (SE), specificity (SP), overall predictive accuracy (Q) and the 

Matthews correlation coefficient (MCC) were calculated using the following equations: 

 SE =
TP

TP + FN
	 (3)

 SP =
TN

TN + FP
	 (4)

 Q =
TP + TN

TP + TN + FP + FN
	 (5)

 MCC =
TP × TN − FP × FN

�(TP + FN)(TP + FP)(TN + FN)(TN + FP)
	 (6)

TP and TN represent the numbers of selective LXRβ agonists and non-selective 

LXRβ agonists that are correctly predicted, respectively; FP represents the number of 

non-selective agonists that are mistaken for selective LXRβ agonists; FN stands for the 

number of selective LXRβ agonists that are predicted to be non-selective LXRβ agonists; 

SE represents the predictive accuracy for selective LXRβ agonists; and SP represents the 
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predictive accuracy for non-selective LXRβ agonists. The MCC is the foremost indicator 

for evaluating models.
64

 

3 Results and discussion 

3.1 Selecting property descriptors 

192 descriptors were computed for all the compounds in the LXR agonists’ data set using 

MOE. Based on Pearson correlation analyses, we removed redundant descriptors, leaving 

12 descriptors that were correlated with the LXRβ selectivity measurements (SR values). 

Using the same protocol, 14 property descriptors were selected from 770 descriptors in 

PaDEL. Detailed results are available in the Electronic Supplementary Information.   

3.2 Correlations between property descriptors and LXR agonist binding affinities 

The correlation coefficients of R1(LXRα), and R2(LXRβ) between the 12 selected 

descriptors and binding affinities of LXRs agonists (convert to pIC50) were computed as 

listed in Table 2. The statistical significances (p-values) between average values of 

selective and non-selective LXRβ agonists for the descriptors were computed via 

Student’s t-tests (Table 2). The p-values indicate that most descriptors (except logP(o/w)) 

are significantly different between selective and non-selective LXRβ agonists. This result 

is consistent with the correlation analysis results for both LXRα and LXRβ assay 

activities. For instance, the BCUT_PEOE_0 averages of non-selective LXRβ agonists 

and selective LXRβ agonists are -2.636 and -2.465, respectively. The p-value for 

BCUT_PEOE_0 is 5.190×10
-15

, which means statistically significant difference. This 

result is consistent with the correlation analysis results for both LXRα and LXRβ assay 

activities (Table 2). As shown in Table 2, BCUT_PEOE_0 has a better correlation with 

LXRβ assay activity (R2 = 0.344), whereas it exhibits a lower correlation with LXRα 

assay activity (R1 = 0.067).  

The p-value for logP(o/w) is 0.022 (Table 2), indicating that the difference of 

average logP(o/w) values between selective and non-selective LXRβ agonists is not 

significant. However, logP(o/w), an indicator of a compound’s  hydrophobicity, is highly 

correlated with both LXRα and LXRβ assay activities (R1 = 0.195, R2 = 0.284, see Table 

2). The logP(o/w) averages for LXRα agonists and LXRβ agonists are 6.305 and 6.357, 
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suggesting that  logP(o/w) is almost equally important to both LXRα and LXRβ agonists. 

The larger average logP(o/w) values for both LXRα and LXRβ agonists indicate the 

LXRs agonists should be hydrophobic molecules so as to form stronger hydrophobic 

interactions with the LXRα/β binding pockets. Our analysis results are consistent with the 

computational and experimental results.
21, 23, 65-67

. Therefore, we cannot build a predictive 

model for selective LXRβ agonist without logP(o/w).  

The capacities to discriminate selective LXRβ agonists from non-selective LXRβ 

agonists for the 12 descriptors are depicted in Fig. 2. No descriptor could perfectly 

discriminate the two classes of agonists; thus, all of the selected descriptors must be taken 

into account for the modeling, and multiple modeling approaches must be used to identify 

the best combination of descriptors to achieve maximal performance.  

Table 2 Correlation coefficients and p-values for the binding affinities of LXR agonists 

and descriptors derived from the LXR agonist data set. 

Descriptor R1(LXRα)* R2(LXRβ)** p-value*** 

BCUT_PEOE_0 

 

0.067 

 

0.344 

 

5.190×10
-15

 

BCUT_PEOE_1 0.068 

 

-0.202 

 

5.375×10
-9

 

BCUT_SLOGP_0 0.067 

 

0.323 

 

1.896×10
-11

 

BCUT_SLOGP_1 0.080 

 

-0.122 

 

1.844×10
-6

 

BCUT_SMR_1 0.105 

 

0.147 

 

6.075×10
-9

 

GCUT_PEOE_2 -0.120 

 

0.114 

 

2.479×10
-9

 

GCUT_SMR_0 -0.056 

 

0.285 

 

3.749×10
-13

 

GCUT_SMR_1 0.128 

 

-0.061 

 

4.161×10
-4
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GCUT_SMR_2 -0.058 

 

0.242 

 

9.485×10
-12

 

logP(o/w) 0.195 

 

0.284 

 

0.022 

PEOE_VSA+0 0.057 

 

-0.255 

 

9.00×10
-12

 

Q_VSA_FNEG -0.067 

 

0.301 

 

2.058×10
-10

 

* R1(LXRα) represents the correlation coefficient between a descriptor and IC50(LXRα). 

** R2(LXRβ) represents the correlation coefficient between a descriptor and IC50(LXRβ). 

*** p-value represents the statistical significance between average values of selective and 

non-selective LXRβ agonists for a descriptor. 
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Fig. 2 Bar charts indicate the capacities to discriminate selective LXRβ agonists from 

non-selective LXRβ  for the 12 descriptors. 

3.3 Determining the SR threshold to identify selective LXRβ agonists 

To determine the best SR threshold to distinguish selective LXRβ agonist from other 

compounds, a number of SR thresholds (5, 10, 15, and 20) were trailed with a SVM 
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model based on MOE descriptors (Fig. 3). The best SR was 10, and it was selected based 

on the maximal MCC value for the test set. 

 

Fig. 3 MCC changes when different SR thresholds were applied to select selective LXRβ 

agonists. 

3.4 Determining the SR threshold to identify non-selective LXRβ agonists 

The smaller SR values (i.e., 1~9) associated with some compounds were due to different 

measuring conditions or system errors from different labs; thus, these results were 

considered to be suspicious and were removed. One way to remove these data is to 

identify a SR threshold using a predictive model or directly defining the SR threshold, as 

reported previously.
68-70

 The best SR threshold for defining non-selective LXRβ agonists 

was determined based on the performance of SVM model using MOE descriptors with a 

set of SR thresholds (1~9). The results indicated that 3 was the best SR threshold for 

removing suspicious LXR agonists, and this threshold resulted in maximal predictive 

performance for test set (Fig. 4).  
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Fig. 4 The SVM model performance changes when different SR thresholds were used to 

remove non-selective LXR agonists. 

3.5 Performance of property descriptor-based models 

Four machine learning methods (SVM, NB, RP, and kNN) were employed to build 

models based on optimized property descriptors (12 descriptors from MOE and 14 

descriptors from PaDEL), producing 42 models. 8 models were selected based upon 5-

fold cross-validation results (Table 3).  

Table 3 Cross-validation results of 8 models derived from property descriptors 

Model Name 
Training set  Test set 

TP TN FP FN SE SP Q MCC  TP TN FP FN SE SP Q MCC 

kNN_MOE 59 97 10 10 0.855 0.907 0.886 0.762  18 28 8 4 0.818 0.778 0.793 0.581 

kNN_PaDEL 60 98 9 9 0.870 0.916 0.898 0.785  19 30 6 3 0.864 0.833 0.845 0.683 

NB_MOE 57 98 9 12 0.826 0.916 0.881 0.748  19 34 2 3 0.864 0.944 0.914 0.816 

NB_PaDEL 65 91 16 4 0.942 0.850 0.886 0.776  17 35 1 5 0.772 0.972 0.897 0.781 

RP_MOE 60 95 12 9 0.870 0.888 0.881 0.752  19 33 3 3 0.864 0.917 0.897 0.780 

RP_PaDEL 55 102 5 14 0.797 0.953 0.892 0.773  17 36 0 5 0.773 1.000 0.914 0.824 

SVM_MOE 69 105 2 0 1.000 0.981 0.989 0.977  20 35 1 2 0.909 0.972 0.948 0.890 

SVM_PaDEL 68 104 3 1 0.986 0.972 0.977 0.953  20 34 2 2 0.909 0.944 0.931 0.854 

NB: naïve Bayesian; RP: Recursive Partitioning; SVM: Support Vector Machine; kNN: 

k-Nearest Neighbors; MOE represents 12 descriptors from MOE software and PaDEL 

represents 14 descriptors calculated using PaDEL-Descriptors software. 

As shown in Table 3, all models (except kNN_MOE) display overall predictive 

accuracies (Q) above 80% for both the training and test sets. For the test set, NB_MOE, 

RP_PaDEL, SVM_MOE, and SVM_PaDEL achieve overall predictive accuracies of 

0.914, 0.914, 0.948 and 0.931, respectively, and their MCC values exceed 0.8. The 

SVM_MOE model, which displays the best MCC (0.890), Q (0.948), sensitivity (90.9%), 

and specificity (97.2%) for test set, is considered to be the best model. The SVM_MOE 

model show similar results for the training set (Table 3). SVM_PaDEL is the second best 
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model. Therefore, the SVM method appears to be a better classifier for our data set. 

Similar results were reported in other studies.
46, 47, 49

 

3.6 Performance of structural fingerprint-based models 

Four machine learning methods (SVM, NB, RP, and kNN) were employed to build the 

models based on four types of structural fingerprints (ES: EState Fingerprint; MA: 

MACCS Fingerprint; S: Substructure Fingerprint; SC: Substructure Fingerprint Count) 

generated using the PaDEL program. This approach yielded 84 models, 16 of which were 

selected based on 5-fold cross-validation results (ESI, Table S1). 

The SVM and RP models are the best classifiers in this case. Both SVM_MA and 

RP_S achieve the best performance (Q=0.931, ESI, Table S1). Similar to the property 

descriptor-based models, four structural fingerprint-based SVM models result in better 

performance than other classifiers, suggesting that SVM is a better method of building a 

predictive model for selective LXRβ agonists. 

Overall, the models derived from the structural fingerprints and property descriptors 

show consistent performance (Q are greater than 0.8), demonstrating that both descriptors 

and fingerprints are properly selected and the classification models are successfully 

constructed.  

 

3.7 Performance of models based on the combinations of property descriptors and 

structural fingerprints 

Previous reports indicated that models derived from the combinations of property 

descriptors and structural fingerprints showed enhanced performance.
40, 49, 54

 In this work, 

32 models were selected from 168 models derived from the combinations of property 

descriptors (computed in MOE and PaDEL) and structural fingerprints (ES, MA, S, and 

SC computed in PaDEL) using 5-fold cross-validation. 

The performance of these 32 combinatorial models is depicted in Fig. 5.  
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Fig. 5 The performance of 32 combinatorial models based on the combinations of two 

groups of property descriptors and four groups of structural fingerprints validated with 

the test set.  

All 32 combinatorial models achieve overall predictive accuracies above 80% for 

both training set and test set. Overall, these models are worse classifiers than those non-

combinatorial models (Fig. 5). Again, all combinatorial SVM models exhibit better 

performance than other combinatorial models, although the SVM models (except 

PaDEL_ES) exhibit worse performance than models derived from pure property 

descriptors or structural fingerprints.  

For RP models, the performance of PaDEL_S model is slightly improved than non-

combinatorial RP models and the combinatorial models (MOE_ES, PaDEL_ES, 

PaDEL_MA) exhibit better performance than corresponding fingerprint-based RP models. 

For NB models, the performance of combinatorial models (PaDEL_ES and PaDEL_S) is 

better than pure descriptor-based models. Most combinatorial NB models (except 

MOE_ES) exhibit better performance than fingerprint-based models. The performance of 
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other combinatorial models is not improved than pure property descriptor- or structural 

fingerprint-based models.  

Simply combining property descriptors and structural fingerprints may make the 

combined descriptors overemphasize particular factors, depressing the model 

performance. For example, ECFC_4 fingerprints are systemically derived from 

compounds, whereas empirical fingerprints, such as, MACCS, are biased due to pre-

defined structural fragments. When these fingerprints are combined, some structural 

features are overemphasized or omitted. 

As shown in Table 4, there is no significant deference between a combinatorial 

model (for example, NB_MOE_ECFC_4) and non-combinatorial model (for example, 

NB_ECFC_4). 

 

Table 4 Performance of RP and NB models based on ECFC_4* and property descriptors. 

Models 

Training set  Test set 

TP TN FP FN SE SP Q MCC  TP TN FP FN SE SP Q MCC 

NB_ECFC_4 65 97 10 4 0.942 0.907 0.920 0.838  19 34 2 3 0.864 0.944 0.914 0.816 

NB_MOE_ECFC_4 65 97 10 4 0.942 0.907 0.920 0.838  19 34 2 3 0.864 0.944 0.914 0.816 

NB_PaDEL_ECFC_4 65 97 10 4 0.942 0.907 0.920 0.838  19 34 2 3 0.864 0.944 0.914 0.816 

RP_ECFC_4 61 97 10 8 0.884 0.907 0.898 0.787  19 34 2 3 0.864 0.944 0.914 0.816 

RP_MOE_ECFC_4 58 104 3 11 0.841 0.972 0.920 0.834  15 35 1 7 0.682 0.972 0.862 0.710 

RP_PaDEL_ECFC_4 59 102 5 10 0.855 0.953 0.915 0.820  19 33 3 3 0.864 0.917 0.897 0.780 

* ECFC_4 represents ECFC_4 fingerprints calculated using DS 3.5.  

3.8 Privileged and unprivileged fragments for selective LXRβ agonists  

The NB models allow us to determine the privileged fragments responsible for selective 

LXRβ agonist activity. A set of privileged fragments for selective LXRβ agonists was 

derived from NB model (ESI, Fig. S1: PS1~20) using ECFC_4 fingerprints. The 

Bayesian scores of the top-20 privileged fragments are greater than 0.720, suggesting that 

these fragments significantly improve LXRβ agonist selectivity. The common features of 

these fragments are N-hetero aromatic rings or conjugated amines. 
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Unprivileged fragments for selective LXRβ agonists were also extracted from the 

NB model (ESI, Fig. S1: NS1~20) using the DS 3.5 program. Unprivileged fragments are 

mainly bulky groups without N-hetero aromatic groups. 

The characteristics of typical privileged fragments and unprivileged fragments are 

listed in Fig. S1. Most privileged fragments are frequently displayed in selective 

LXRβ molecules, whereas most unprivileged fragments are frequently displayed in non-

selective LXRβ molecules. The privileged fragment PS9 appears in the data set with a 

frequency of 22 among selective agonists versus a frequency of 1 among non-selective 

agonists (ESI, Table S2). The privileged fragments PS4 and PS7 are only encoded in the 

selective LXRβ agonists using the substructure search method. As shown in Fig. S1, 20 

unprivileged fragments contain saturated carbon chains, and ten of contain rings. The 

unprivileged fragments NS3 and NS9 are only encoded in non-selective agonists. These 

privileged and unprivileged fragments can guide in designing new selective LXRβ 

agonists.   

 

3.9 Validating the models with external test data 

External test data (3 non-selective and 64 selective LXRβ agonists) was collected from 

Wyeth’s patents
71-74

. The compounds in the external test data set contain quinazoline, 

pyrazolo [1,5-a] pyrimidine, and imidazo [1,2-b] pyridazine scaffolds, which are different 

from the scaffolds contained in the training and test sets. 

Top-15 models were tested using external test data. 10 out of the 15 models have 

overall predictive accuracies (Q) exceeding 90%. In addition, these models exhibit 

consistent predictive results for the training, test, and the external test sets (even if it 

contained different scaffolds), suggesting that these models can be used to identify new 

selective LXRβ  scaffolds (Table 5).  

Table 5 Top-15 models validated with external test data, test data, and training data. 

Models 
External test set  Test set  Training set 

NCP* Q1  Q2  Q3 

SVM_MOE 53 69.74  94.82  98.86 
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SVM_PaDEL 72 94.74  93.10  97.72 

NB_MOE 48 63.16  91.38  88.07 

RP_PaDEL 68 89.47  91.38  89.21 

SVM_MA 69 90.79  93.10  97.16 

SVM_S 73 96.05  91.38  92.05 

SVM_SC 73 96.05  91.38  92.61 

RP_S 73 96.05  93.10  90.34 

NB_ECFC_4 74 97.37  91.38  92.05 

NB_MOE_ECFC_4 74 97.37  91.38  92.05 

NB_PaDEL_ECFC_4 74 97.37  91.38  92.05 

SVM_MOE_S 73 96.05  91.38  91.48 

SVM_MOE_SC 73 96.05  91.38  92.61 

SVM_PaDEL_ES 66 86.84  94.83  96.02 

RP_PaDEL_S 68 89.47  93.10  91.48 

* NCP: Number of correct predictions; Q1~3: overall predictive accuracies. 

3.10   Comparisons of these classifiers 

Our studies demonstrated that SVM approach could produce the best multi-descriptors 

based models. However, the kernel functions were difficult to select, and the parameters 

were hard to be optimized. A NB model was a simple probabilistic classifier based on the 

Bayesian theorem, scalable, and interpretable. Comparing with SVM classifier, the NB 

classifier was non-parametric, and resulted in confidence intervals. By means of recursive 

partitioning process, RP approach divided a set of objects into subsets with pre-defined 

parameter thresholds, and organized the subsets hierarchically. Our studies indicated that 

RP models and SVM models were comparable. KNN classifies were built by grouping 

objects (nearest neighbors) with a given similarity threshold. The similarity was 

calculated based upon descriptor metrics. It could have high computing complexity for a 

big data set. To conclude, if very significant discriminators were not found in a feature 

space, one may combine a set of descriptors to improve the predictivity, although each 
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descriptor was not very significant discriminator. SVM is a proper approach for this 

situation. 

 

4 Conclusions 

Here, we employed multiple machine learning methods with property descriptors and 

structural fingerprints to develop predictive models for selective LXRβ agonists. 

Although some descriptors are highly correlated with selectivity, no single descriptor is 

capable of discriminating selective and non-selective LXRβ agonists. A predictive model 

must be derived from combined descriptors or fingerprints. However, combining property 

descriptors and structural fingerprints cannot significantly improve the performance of 

models for predicting selective LXRβ agonists. 

SVM is the best method for generating models for predicting selective LXRβ 

agonists, although other methods can also produce predictive models with similar 

performance. 

While generating predictive models, the NB method can also produce structure 

fragments that contribute to the selectivity or non-selectivity of LXRβ agonists. These 

results may guide the design of new, selective LXRβ scaffolds. 

The top-10 models demonstrated the capacity of hopping new scaffolds for selective 

LXRβ agonists. These models can be used as in silico tools for virtual screening or 

predicting new selective LXRβ agonists. 
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