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The Library of Integrated Network-based Cellular Signatures (LINCS) L1000 big data 

provide gene expression profiles induced by over 10,000 compounds, shRNAs, and kinase 

inhibitors using the L1000 platform. We developed csNMF, a systematic compound 

signature discovery pipeline covering from raw L1000 data processing to drug screening and 

mechanism generation. The csNMF pipeline demonstrated better performance than the 

original L1000 pipeline. The discovered compound signatures of breast cancer were 

consistent with the LINCS KINOMEscan data and were clinically relevant. The csNMF 

pipeline provided a novel and complete tool to expedite signature-based drug discovery 

leveraging the LINCS L1000 resources.  

 

 

1 Introduction  
Compound profiling, defined as the large-scale screening of 

candidate compounds for their potential drug-like qualities and 

toxicity using high-throughput technologies, is the fundamental step 

of drug discovery [1]. Traditional compound profiling approaches 

evaluate the pharmacological potential of compounds by measuring 

their affinities to target enzymes or proteins, inhibitory effects on 

enzyme activities, or suppressive effects on cancer cell growth [2, 3]. 

However, compounds that show strong affinity and inhibitory effects 

on expected targets often also affect the activities or functions of 

other proteins in a cell-specific way. Lacking the systematic and 

unbiased profiling of the compound effects at molecular level, 

candidate drugs suggested by such compound profiling strategies 

often suffer from a high failure rate in clinical trials [4]. On one 

hand, such drug targets besides the expected or designed ones are 

often responsible for the high toxicity to vital organs, a leading cause 

of clinical trial failures [5]. On the other hand, the unrecognized drug 

targets sometimes significantly contribute to the success of drugs. 

For example, compounds that show similar effectiveness against 

their designed targets in vitro at molecular levels often show 

dramatically different efficacy at the cellular or patient levels [6]. 

However, the roles of such “lurking” drug targets of successful drugs 

under the cellular or in vivo contexts are rarely well known or used 

for compound profiling. Furthermore, the cell-specific efficacy of 

different compounds underscores the importance of cell-specific 

regulatory networks in drug responses, that is, the roles and 

importance of the unknown drug targets are highly disease-and-cell-

type-specific and thus require specific analysis strategies. Thus, there 

is a critical need in compound profiling and drug discovery to 

thoroughly examine the impacts of drugs or compounds on cellular 

functions using a wide panel of essential proteins.  

To address the challenges of drug screening coverage, the Library 

of Integrated Network-Based Cellular Signatures (LINCS) program 

(http://www.lincsproject.org/) has initiated an effort to generate 

biomedical big data. LINCS has been systematically exploring the 

pharmacological roles of more than 3,700 potential drug targets on 

15 cancer cell lines at the individual-gene level. Using single-gene 

knockdown or over-expression of each relevant gene then allows 

measurement of changes of gene expression patterns. LINCS also 

contains data on more than 5,000 chemicals at the cellular level, 

including known drugs and candidate compounds, documented 

treatment-induced alterations of gene expression on these cell lines. 

The LINCS program has also performed auxiliary high-throughput 

assays such as the kinome-wide screening of drug kinase inhibition 

effects using KINOMEscan® or KiNativTM scan. This is the first 

time that the targeted proteins by drugs and compounds have been 

systematically analyzed in the contexts of different cancer cell types 

in such scope. With LINCS as a reference library, compound 

profiling can be performed on the panel of more than 3,000 potential 

drug targets.  

Compound profiling using LINCS big data as the reference library 

is made possible by the first large-scale application of the L1000 

platform [7]. As a novel genome-wide gene expression assay 

platform, the L1000 is highly cost-efficient and robotically 

automated. It allows the generation of 946,944 profiles of gene 

expression data testing 5,178 drugs and compounds and 

perturbations of 3,712 genes across 15 different cancer cell types 

(http://lincscloud.org/). The LINCS L1000 big data is growing 

quickly in examined drugs, compounds, genes, dosing, time points, 

combinations of treatment conditions, and cell lines.  

Accompanying such a great opportunity are the new challenges of 

processing and analyzing data generated from the L1000 platform. 

The economical usage of the same type of Luminex FLEXMAP 

3D® beads [8] by two types of mRNA probes requires a reliable 

deconvolution approach. Furthermore, biases introduced by batch 

effects need subtle normalization and quality control methods.  

In this work, we present a “compound signature” based 

approach to profiling the pharmacological potential of 

compounds by associating these candidates with known drugs 

in terms of the similarity of their possible targets, using the 
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latest LINCS L1000 data for breast cancer (MCF-7) cell lines. 

We defined a “compound signature” as a group of small 

molecule compounds sharing similar target genes. As a 

member of the LINCS project, we developed a parallel data 

processing pipeline, the fuzzy c-means guided Gaussian 

mixture model (GMM), to address the L1000 data processing 

challenges with superior accuracy and efficiency. We then 

developed two compound signature discovery approaches 

using data produced by the GMM pipeline. The first one was 

the Enrichment of Gene Effects to a Molecule (EGEM) score, 

which associated a compound with its potential targets. The 

second approach was the constrained sparse non-negative 

matrix factorization (csNMF) approach, which used the EGEM 

scores of drugs, compounds, and genes to reliably detect the 

compound signatures and associate candidate compounds with 

known drugs by the shared compound signatures. The LINCS 

kinomics data for kinome-wide drug inhibitory effects were 

used to validate discovered signatures. Functional analysis and 

known mechanisms of the detected signatures further 

supported the results of compound signature detection. The 

third approach was quadruple model training, which correlated 

a drug with its targets, the affected downstream transcription 

factors, and the transcriptional alterations. 

 

2 Material and Methods  
2.1 Datasets 

In this paper, we combined the small-molecule compound and 

shRNA data released from the Broad Institute LINCS Data 

Generation Center (http://api.lincscloud.org/). Two compound-

induced L1000 gene expression datasets were adopted, which 

included data for treatment effects of 728 and 51 compounds 

on the MCF-7 breast cancer cell line, respectively. The 

KINOMEscan® data measured the interactions of compounds 

and more than 450 kinase assays and disease-relevant mutant 

variants. Expression patterns after the single-gene knockdown 

of 3,341 biologically important genes by shRNA treatments 

were measured on the same cell line. Compounds in the latter 

dataset were all kinase inhibitors. Thus, we included the 

auxiliary KINOMEscan® data of these 51 kinase inhibitors 

released from the Harvard Medical School LINCS Data 

Generation Center (http://lincs.hms.harvard.edu/db/). This 

dataset was used to validate the discoveries of compound 

signatures.  

 

2.2 Work flow 

The overall framework of the compound signature discovery 

pipeline (Figure 1) is composed of three phases:  

    Phase I: Raw L1000 data processing using the GMM 

pipeline. At this phase, the L1000 raw data were processed, 

normalized, cleaned for quality control, and annotated. The 

GMM pipeline demonstrated better accuracy and efficiency 

compared to another tool using the k-means method 

(http://lincscloud.org/exploring-the-data/code-api/, date: 

2012/06/27).  

    Phase II: Compound signature detection using the EGEM-

based csNMF model. In this phase, the EGEM method was 

used to measure the EGEM score for each of the 3,341 

perturbed genes, which described the potential of the gene of 

interest to be the “target” of a small-molecule compound. The 

targeting potentials of such compound-gene pairs were 

represented by an EGEM matrix (Figure 1). Then the novel 

constrained sparse non-negative matrix factorization (csNMF) 

algorithm was developed and performed on the EGEM matrix 

to identify compounds of similar targets. Each such compound 

subgroup is defined as a compound csNMF signature, shares 

similar targets, and may show similar pharmaceutical potential.  

Phase III: csNMF signature analysis and annotation using 

the Quadruple Model. Since the L1000 gene expression patterns 

reflect drug effects at the mRNA level, while most drugs 

directly or indirectly affect protein activities and functions, 

there is a gap between the actual drug targets at the protein 

level and the measured drug-induced alterations of gene 

expressions. We developed the Quadruple Model to reveal how 

compounds in each csNMF signature, through perturbing the 

functions of the identified drug targets, altered the downstream 

transcription factors and caused the differential changes of the 

apparent gene expression patterns. Quadruple models, 

composed of the compound – target – transcription factor – 

gene expression components, provided a novel means to reveal 

the underlying biological mechanisms shared by similar 

compounds in each csNMF signature and therefore to 

systematically annotate csNMF signatures at multiple 

regulatory levels.  

 

2.3 Phase I. Raw data pre-processing pipeline.  
The goal in Phase I was to reliably process, normalize, clean, 

and annotate the L1000 raw data. The major challenges in this 

phase were reliable peak calling, normalization and quality 

control, and the computational burdens for processing big raw 

data. The GMM pipeline (Figure 2) was developed to address 

these challenges. The Level 1 raw data in Luminex bead array 

(LXB) format (untreated controls, the compound, and single-

gene knocked down samples) were input into the GMM 

pipeline following the FCS v3.0 standard [9]. The raw data for 

each sample were deconvolved and the fluorescent intensity 

peak corresponding to each mRNA probe was identified using 

the GMM model, annotated with gene symbol, probe ID, gene 

description, and the analyte and L1000 probe set information. 

Fig. 1. Overview of the compound signature discovery framework. This 

method requires raw L1000 data after various compounds and gene 

knockdown treatments. The raw data after the two types of treatments are 

preprocessed to yield gene expression data in Phase I. In Phase II, the 

EGEM matrix is constructed based on these gene expression data to 

measure relationships among compounds and knock-down genes. This 

matrix is then decomposed to a weight matrix and a coefficient matrix by 

the csNMF method. Protein-protein interaction data are added in 

consideration of biological connections. Signatures are identified based on 

strongly associated genes (i.e., those with larger values in the coefficient 

matrix). 
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This information was then outputted in the GCT format, 

defined as the Level 2 raw gene expression data. After 

normalization and quality control, each set of perturbation-

induced data was compared with its negative control. 

Differential gene expression (DEG) patterns, in the form of log 

fold changes (LFCs), were outputted as the Level 3 

perturbagen-induced gene expression pattern data in the GCT 

format.  

A GMM peak calling approach was developed for reliable 

peak calling from raw L1000 data [Level 1 to Level 2]. The 

L1000 approach took advantage of the state-of-art Luminex-

bead based flow cytometry multiplex detection technology [10]. 

Briefly, DNA probes targeting a specific mRNA were 

immobilized on a distinct type of analyte (Luminex beads filled 

with a distinct dye). Each type of analyte was composed of a 

Luminex bead filled with dye of a unique color, and probes for 

a specific mRNA were immobilized on the surface of the bead. 

The probes specifically hybridized with the fluorophore-labeled 

cDNAs derived from the specific mRNAs in cell lysate. The 

gene expression level was then determined by flow cytometry 

analysis: the type of an analyte (a bead) was distinguished by 

the color of the filled dye, and thus the corresponding probe 

types could be identified according to the designed mapping 

table of analytes and gene probes. The expression level of the 

corresponding gene was measured by the sum of intensity from 

the fluorophore on all beads of the same type. Hundreds of 

types of analytes were used simultaneously to measure 

corresponding gene expression in high throughput.  

    The LINCS project further boosted the throughput of the classical 

Luminex multiplex technology. About 1,000 “landmark” genes were 

needed to capture more than 80% of information for expression 

patterns of about 22,000 genes [7]. However, the current standard 

LXB platform could only reliably detected about 500 distinct analyte 

colors. To fill the gap between the number of distinguishable analyte 

dyes and the number of genes to be measured, the LINCS program 

utilized a convolution strategy. Totally 1,000 types of analytes were 

constructed, each immobilized with the mRNA probes of a specific 

landmark gene. Thus, each distinct dye color i was shared by two 

types of analytes, namely GeneH(i) and GeneL(i). To distinguish the 

two types of analytes that shared the same color, analytes GeneH(i) 

and GeneL(i) were added at a 1.25:0.75 ratio. Thus, the gene 

expression of the two targeted mRNA types were detected as two 

peaks on the fluorophore intensity histogram of the same bead color 

(Figure 2B) with the intensity levels (x-axis) representing the mRNA 

expression levels and peak sizes corresponding to the amount of 

analytes. The mRNA types were determined by the sizes of the 

peaks. Reliable deconvolution of the peaks of the two types of 

analytes that shared the same color, a process called “peak calling” 

(Figure 2B), became the critical step for processing raw L1000 data.  

    To deconvolute such overlapped peaks, we assumed that the 

fluorophore intensities of each analyte type (corresponding to a 

specific mRNA type) had a Gaussian distribution. The distribution of 

the mixture of analytes GeneH(i) and GeneL(i) corresponding to the 

expression levels of GeneH and GeneL, respectively, should be 

subject to a bimodal Gaussian distribution, with the proportion of 

1.25 to 0.75. We initialized the estimations of the two Gaussian 

distributions using buzzy c-means clustering [11] and estimated the 

GMM parameters using the Nelder-Mead method [12]. Thus, the 

overlapped peaks were deconvoluted as the two estimated Gaussian 

peaks and the expression levels of the two genes sharing the same 

analyte were extracted. Mathematical details are included in the 

Supplementary Methods (the GMM model). 

   As a test of our peak calling method, we introduced another 

method proposed by Broad Institute based on a k-means algorithm 

(http://lincscloud.org/exploring-the-data/code-api/, date: 

2012/06/27). In this algorithm, the candidate numbers of bead 

clusters were set as 2, 3, and 4 in the peak calling. This peak calling 

method chose the numbers of clusters to yielded a ratio of peak areas 

closest to the expected support proportion, which was 0.65 to 0.35 

by default. If more than two clusters were detected, the largest two 

clusters were defined as corresponding to GeneH(i) and GeneL(i).  

    Data generation and quality control were realized in the data 

transforming (normalization and quality control) step [Level 2 to 

Level 3]. The LINCS L1000 data were generated across several 

years, and batches of assays were often different in terms of 

Luminex beads, cells, operators, and environments. Therefore, 

normalization to remove batch effects and quality control to exclude 

poor experiments were crucial during data processing. The 

perturbagen-induced gene expression assays were performed on 384-

well plates, each well corresponding to a sample. The controls of 

perturbagen treatments were on the same plate, and the replicated 

plates were used for repeated assays. Original gene expression data 

generated by the GMM-algorithm were quantile-normalized across 

all assays, and the log fold change (LFC) data were determined by 

comparing data from treated samples with those from the control 

samples on the same plate (Figure 2B). Data quality control was 

performed at multiple levels. At the single-well level, the confidence 

of the gene expression data were examined by corresponding 

detectable beads, and those that were supported by less than 20 

beads were discarded. At the inter-plate level, data repeatability was 

examined by Pearson’s correlations among replicates, and plates of 

poor correlations were discarded (Figure 2B).  

Data Availability. L1000 data of all three levels, source codes, 

tutorial, user guide, and the latest updates are available from our 

 

Fig. 2. Overview of the data pre-processing framework. The raw Luminex 

data are transformed to gene expression data by the GMM peak calling 

method. Quantile normalization is then performed to reduce the batch 

effects, and quality control is executed to filter out poor-quality data. 
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website (http://ctsb.is.wfubmc.edu/itNETZ/DPPCSD.html). 

Processed (Level 2) and transformed (Level 3) data are also 

available from pLINDAW (the pan-LINCS Data Warehouse. SQL 

access: metacity.is.wfubmc.edu:3306. Please refer to 

http://ctsb.is.wfubmc.edu/itNETZ/pLINDAW for more information. 

Raw L1000 data (Level 1) can also be directly downloaded from the 

LINCS cloud storage (http://lincscloud.org/) hosted by the Broad 

Institute.  

 

2.4 Phase II. Compound signature discovery 

EGEM score and EGEM matrix. A new metric called the 

Enrichment of Gene Effect to a Molecule (EGEM) was developed to 

identify proteins closely related to cellular responses to a small 

molecule compound, using the LINCS L1000 landmark gene 

expression data. A small molecule compound affected a cell by 

directly or indirectly changing the activities and functions of its 

target proteins, drove downstream biological events, and finally 

altered cellular gene expression patterns. We hypothesized that the 

knockdown of a gene that is closely related to the target proteins of a 

small molecule compounds induces similar gene expression pattern 

changes. Thus, identification of such genes could reveal the 

mechanisms of cellular responses to these compounds and predict 

their pharmaceutical potentials. We defined the “target genes” of a 

compound in the general meaning: the corresponding proteins of 

such genes could be either the real drug targets or those at 

downstream or upstream and were closely related to the real targets. 

The data for 3,000 single-gene knockdown experiments were used as 

the target gene reference library, and the data for compound 

treatments were profiled against this reference library to identify 

possible target genes of corresponding small molecule compounds.  

    We defined the EGEM score to describe the similarity between 

the treatments of a compound and a shRNA targeting a gene using 

the mutual enrichment of their resultant differential expressed 

landmark genes. The EGEM metric was derived from the rank-based 

gene set enrichment analysis (GSEA) [13] and the connectivity 

analysis [14]. Compound treatments could be taken as “phenotypes” 

and the differentially expressed genes (DEGs) of a single gene 

knocking down treatment as a “signature gene set” in the GSEA 

terminology. The EGEM metric enabled gene set enrichment 

analysis against the LINCS target gene reference library. The 

construction of the EGEM score is shown in Figure S1 and details 

are provided in the Supplementary Data.  

    We constructed an EGEM matrix  � ∈ ��×�  involving n driver 

genes and m compounds by pairwise calculation of EGEM scores 

between each compound and each knockdown. Thus, the impacts of 

these compounds were delineated using the 3000-target-gene 

reference library.  

Compound signature discovery by csNMF. As previously 

mentioned, a “compound signature” was defined as a group of small 

molecule compounds sharing similar target genes. We developed a 

novel method, the constrained sparse non-negative matrix 

factorization (csNMF), an NMF approach regularized by both the 

protein-protein-interaction constraint and the sparseness constraint, 

to effectively detect biomedically meaningful compound signatures 

from the large EGEM matrix. Non-negative matrix factorization 

(NMF) [15] is a matrix decomposition method widely used in pattern 

recognition [16] and has demonstrated its ability in solving various 

biclustering problems in bioinformatics, including gene pattern 

recognition, disease module detection, and phenotype classification 

[17]. Canonically, a non-negative EGEM matrix � ∈ ��×�  would 

be decomposed into two non-negative matrices W and V, so that 

� ≈ �	, where � ∈ ��×
  was the weight matrix of target genes,  

	 ∈ �
×�  was the clustering matrix of compounds, and 
 ≪

�
�	(�,�)  was the number of co-clusters. Both weight matrices 

would be later used to identify the k co-clusters.  

   We extended the canonical NMF approach to detect 

biomedically meaningful co-modules of both compounds and 

target genes, in which drugs showed similar associations with 

target genes according to the compound-target EGEM scores. 

The overall objective function used to solve the csNMF was:  

and the components were interpreted as described below. The 

csNMF was optimized using the multiplicative algorithm [15, 17].  

    Simultaneous clustering of positive and negative EGEM scores. A 

co-module consisted of both positive and negative EGEM scores as 

long as they were significant and consistent across compounds in the 

same module, but canonical NMF approaches could only accept non-

negative values. To simultaneously handle both positive and 

negative EGEM scores, from the original EGEM matrix A we 

extracted the positive EGEM scores into the similar EGEM Matrix 

�� and the absolute values of the negative EGEM scores into the 

reverse EGEM Matrix ��, both of the same dimensions as A . Both 

the two EGEM matrices were presented in the overall objective 

function (Equation 3) and were simultaneously optimized during 

iterative NMF model training. The corresponding weight matrices of 

positively and negatively associated target genes, ��  and �� , 

respectively, were achieved at each iteration step, and were merged 

after optimization.  

    Sparseness constraint. We introduced a sparseness constraint 

according to the sparse NMF (sNMF) method proposed by [18]. In 

sNMF, the L1 norm constraint is added to V, and ||�||�  was added 

to balance the accuracy of the optimization and the sparseness of V. 

The rationale was that the elements clustered into the co-modules 

should be a small portion of the matrix. The sparseness constraint 

was necessary when biclustering a very large EGEM matrix.  

    PPI constraint. We introduced protein-protein interaction (PPI) 

constraints according the PPI database [19] to emphasize clusters 

that were biologically meaningful and thereby control false 

discovery. The rationale was that in the cellular regulatory network, 

perturbations of some up- and down-stream proteins (“peers”) of a 

protein targeted by the compound often also showed similar changes 

of gene expression patterns. In the PPI constraint component in 

Equation 3, P was the PPI prior matrix and D was a diagonal matrix, 

with each row as the sum of the corresponding row of P. The PPI 

constraint significantly improved both the specificity and the 

sensitivity of the NMF approach in compound signature discovery. 

On one hand, false-positive signature genes were often sporadically 

distributed in the PPI network, and thus their weights downgraded 

and more likely to be excluded. On the other hand, if in the PPI 

network a group of “neighbor” genes showed consistent but only 

moderate EGEM scores with a compound, because of their favorably 

adjusted weights, they were more likely to be clustered as signature 

genes of this compound. Introducing prior knowledge of PPI 

network to the NMF approach thus contributed to more reliable 

discovery of compound signatures.  

Mathematical details (the NMF algorithm) and the pseudo code 

(Table S1) are provided in the Supplementary Data.  

 

2.5 Phase III. Compound signature analysis  

We further examined the biomedical relevance and the 

pharmaceutical potentials of the detected compound signatures by 

compound signature analysis using experimental and clinical data.  

( )
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    Biomedical relevance. We proposed quadruple models to reveal 

the molecular events associated with compound signatures and 

cross-validated the quadruple models using the KINOMEscan 

experiments. A compound impacts the functions of its target proteins 

directly or indirectly, triggers regulatory networks, alters the 

activities of downstream transcription factors, and thus changes the 

gene expression patterns. To reveal such underlying mechanism of 

signatures, we proposed a quadruple model (Figure 4A), which 

included the compound, its direct and indirect targets, downstream 

transcription factors, and affected genes. Transcription factors for 

each signature were identified by enrichment analysis according to 

signature-associated affected genes using ChIP enrichment analysis, 

setting a p-value of less than 0.05and ratios of the interacting genes 

to all genes that exceeded 0.1 [20]. The quadruples of compound 

signatures were thus constructed. The biomedical relevance of a 

typical signature (Signature 2) was validated by comparing the 

predicted transcription factors from signature target genes with the 

enriched transcription factors derived from the direct measurement 

of kinase targets of four kinase inhibitors (ALW-II-38-3, ALW-II-

49-7, QL-XI-92, and CP724714) in this signature.  

Pharmaceutical potential. The compound signatures were 

composed of compounds and their associated target genes. 

Compounds in a given signature shared similar target genes and thus 

perturbed the cell functions in similar ways for the corresponding 

cancer cell line. If some had already demonstrated effectiveness for 

this type of cancer, other compounds in this signature were more 

likely to be promising drug candidates. We used FDA-approved 

chemotherapy drugs for breast cancers to identify breast cancer-

specific compound signatures and examined the drug potentials of 

corresponding drugs. Functions of the signature also could be 

revealed by enrichment of functions among these target genes. 

Signatures that demonstrated anti-oncological functions [21] such as 

reduced cell proliferation, increased cell death, and induced 

apoptosis, were more likely to be seen in  potential drugs. We 

utilized the DAVID gene functional annotation tool [22] to annotate 

functions of compound signatures and identify anti-tumor signatures. 

 

3 Results and Discussions  
3.1 GMM peak calling pipeline performance  

We comprehensively assessed the performance of the GMM 

peak calling pipeline in accuracy, speed, and scalability for 

parallel computation using the k-means peak calling approach 

as the benchmark. The results are summarized in Figure 3.  

    Accuracy. We randomly chose 5 raw data sets, 100 

analytes each, as the test data set. The accuracy of peak calling 

was determined by comparing to manually distinguished peaks 

of GeneH and GeneL based on the bead intensity distributions. 

During manual peak calling, experts were not able to identify 

1.4% of cases; therefore, the maximum accuracy in this 

assessment would be less than 98.6%. As demonstrated in 

Figure 3, the GMM approach correctly identified 94.6% of 

cases, which significantly outperformed the k-means approach 

(76.4%). Only 4.0% of cases that could be identified by experts 

were misjudged by the GMM method, compared to the 22.2% 

false classification rate achieved by the k-means method. Most 

of the mis-classified cases in the k-means approach were due to 

the “three-cluster” problem. Figure 3 demonstrates an over-

clustering example. When 3 clusters were detected by the k-

means peak calling method, only the largest two clusters were 

retained. If the largest peak (GeneH) was mis-clustered into two 

small peaks and both were smaller than the small peak (GeneL), 

the k-means method mistakenly picked the small peak for 

GeneH. The GMM out-performed the k-means pipeline largely 

due to avoiding the “three-cluster” problem.  

    Speed. The R-based GMM approach was about 3.3 times faster 

than the MATLAB-based k-means approach on Windows-based 

desktops and Linux clusters, as demonstrated by Figure 3. 

Vectorization-based code optimization was responsible for the 

higher calculation efficiency of the GMM approach compared to the 

KM pipeline. 

Scalability. The GMM approach intrinsically encouraged parallel 

computation on Linux clusters, while the k-means method was 

basically single-threaded. The GMM method demonstrated good 

scalability, measured by its efficiency in going from 1 to as many as 

32 parallel threads (Figure 3). Parallel processing is critical for 

L1000 peak calling and raw data processing due to the large sample 

size. Powered by automatic sample preparation and the high-

throughput data acquisition, a typical L1000 profiling experiment 

involves hundreds of 384-well plates, with 500 analytes in each well. 

Thus, in regular L1000 raw data processing, millions to tens of 

millions of peak calling tasks will be accomplished. The ability to 

conduct parallel data processing on large Linux clusters and good 

scalability of our approach meets the needs of the high-throughput 

data processing.  

Fig. 3. Performance of the GMM peak calling pipeline comparing with the 

original LINCS pipeline.  

Fig. 4. Quadruple models and Signature 2 in a kinome inhibitor study. A 

quadruple model simultaneously includes a compound, its targets, related 

transcription factors, and the resulting gene expression pattern. This 

compound signature discovery method (red) can detect similar quadruples 

(blue). The similar quadruples include four compounds with similar target 

sets. 90 in 109 related TFs of the quadruples are covered using the enriched 

TFs of signature genes. 
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In summary, as a parallel, cross-platform, and high-performance R 

package, the GMM pipeline is especially suitable for processing 

large data sets. This pipeline is publically available from our CTSB 

website (http://www.wakehealth.edu/CTSB/), and will be available 

from BioConductor (http://www.bioconductor.org/).  

 

3.2 Signatures and quadruples for kinase inhibitors 

We used the kinase inhibitor dataset to validate the concept of the 

compound signatures discovered by the EGEM-based csNMF 

approach. We chose this dataset because some kinase inhibitors had 

been experimentally profiled to identify their direct kinase targets, 

and thus could be used to validate the predictions of the csNMF 

modeling. The 51 kinase inhibitors were analyzed against the 3,341-

target gene reference library. In all, 6 compound signatures were 

detected (see Supplementary Data File 1).  

    Validation of predicted target genes using GO similarity. Target 

genes in the same compound signature should be strongly correlated. 

We utilized the gene ontology (GO) similarities among the predicted 

targets within the same signature (95% interaction rate, GOSemSim 

[23]) to examine whether target genes were biologically associated. 

Signatures 2, 4, and 5 demonstrated strong GO connectivity (Table 

S2 in the Supplementary Data). Although Signature 1 did not pass 

the significance test, three inhibitors in Signature 1 shared the 

primary target of EGFR and the other two inhibitors shared FGFR3 

and p38-alpha. Signatures 3 and 6 demonstrated very high 

correlations of gene expression patterns among compounds in the 

signatures (Signature 3: 0.947±0.059, Signature 6: 0.763±0.127).  

     Validation of predicted target genes using direct kinase targets. 

We focused on Signature 2 for further analysis because four kinase 

inhibitors in this signature (ALW-II-38-3, ALW-II-49-7, QL-XI-92, 

and CP724714), were also experimentally profiled by 

KINOMEscan® for their direct kinase targets. We first examined 

whether these kinase inhibitors if they shared kinase targets, as 

predicted. Three of them (LW-II-38-3, ALW-II-49-7, and QL-XI-

92), directly shared the same nominal target, DDR1. We then 

examined if their kinase targets demonstrated stronger similarity 

than average by calculating the correlations of interactions of these 

targets to all 450 kinases in the KINOMEscan® dataset. These three 

kinase inhibitors were highly related compared to the randomly 

selected compounds (correlation coefficients around 0.7~0.8 

compared to 0.10 for random controls) (Table S3, Supplementary 

Data). Kinase inhibitor similarity according to EGEM scores also 

was consistent with the direct kinase target similarity assayed by 

KINOMEscan® experiments (Figure S2, Supplementary Data). Our 

results were consistent with previous reports. For example, ALW-II-

38-3 and ALW-II-49-7 are known to demonstrate very similar 

characteristics [24]. CP724714 did not show similar kinase targets to 

the other three inhibitors, and was further analyzed using quadruple 

models.  

Validation of predicted target genes using the quadruple model. 

Compounds that triggered similar molecular cascades might instead 

share indirect targets, some of which might not be kinases. 

CP724714, whose major target was HER2, did not show similar 

kinase targets to the other 3 kinases, but it induced a similar change 

in gene expression pattern according to the EGEM matrix. Previous 

literatures suggests a strong co-occurrence between DDR1 and 

HER2 [25] in breast cancer. We thus examined whether the four 

kinase inhibitors in Signature 2 instead shared similar downstream 

signaling pathways and affected activities of transcription factors in 

the same way. The quadruple models of these four inhibitors were 

constructed according to predicted target genes (Figure 4B, red) and 

were compared to those constructed according to direct kinase 

targets from the KINOMEscan® results (Figure 4B, blue). Among 

the 108 transcription factors enriched from predicted targets and the 

109 from experimental targets, 90 overlapped. Thus, the predicted 

similarity between CP724714 and the other three compounds could 

be explained in the quadruple models, reflecting shared patterns of 

downstream transcription factor activity.  

 

3.3 Functional annotation to determine signature drug potential 

for breast cancer 

Since the csNMF approach was validated for 51 kinase inhibitors, 

we implemented this approach to screen drug candidates for breast 

cancer. We studied 728 compounds against the 3,341 target gene 

reference library screened for the MCF-7 breast cancer cell line and 

detected eight signatures. As shown in Figure 5A, compounds 

(columns) belonging to the same signatures were grouped together; 

red regions denote similar gene expression patterns between the 

compounds and the target genes (rows), and the green regions denote 

the reverse effects. In all, 8 compound signatures were identified 

(Supplementary Data File 2).  

    To find the signatures of related compounds that might be 

beneficial for breast cancer, we focused on functions such as 

induction of apoptosis and suppression of proliferation. The 

enrichment of different biological processes of signatures were 

investigated by DAVID [22] according to the gene ontology (GO) 

terms of signature target genes. Only terms with a p-value less than 

0.05 were considered. To define similar compound-gene effects, we 

considered the terms with positive regulation of cell death and 

apoptosis; as to the reverse ones, we considered the negative 

regulations (cancer treatment-related GO terms). Signatures 7 and 8 

were enriched for apoptosis (Figure 5B).  

 

Fig. 5. Breast cancer compound signatures. (A) Eight signatures were detected (yellow rectangles). For each signature, compounds (columns) and genes 

(rows) corresponding to a red region showed similar gene expression effects, whereas those corresponding to a green region exhibited reverse effects. (B) 

Degree of yellow represents relative enrichment for related gene ontology (GO) terms. (C) Associations of Signature 4 with drug responses and survival in 

data from 2,116 breast cancer patients collected from Belgium, England, and Singapore (GEO:GSE45255). 
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    Compounds in Signature 7 demonstrated potential benefit as 

cancer treatments. Among them, letrozole and megestrol acetate 

were FDA-approved chemotherapy drugs for breast cancers [26]. 

Oleoylethanolamide was reported to suppress cell proliferation and 

was used to treat breast cancer [27]. Calcipotriol exhibited 

antiproliferative activity in the MCF-7 cell line [28], and leinoleic 

acid was reported to inhibit cell growth in the same cell line [29]. 

Dibenzoylmethane and CITCO inhibited cell growth in prostate 

cancer and brain tumor stem cells [30, 31].  

Compounds in Signature 8 were related to antihypertensive and 

antipsychotic drugs, such as piretanide [32] and benperidol [33], 

Interestingly, other researchers reported that antipsychotic drugs 

inhibited the functions of proteins related to breast cancer drug 

resistance [34]. However, some compounds, such as gabazine [35] 

and mesulergine [30], demonstrated high toxicity and might not be 

suitable as drugs.  

 

3.4 Clinical relevance of compound signatures  

We examined the associations of the discovered compound 

signatures with patient survival and other clinical traits. Clinical 

features and gene expression profiles of 2,116 breast cancer patients 

collected from Belgium, England, and Singapore (GEO:GSE45255) 

were examined by the gene set enrichment of the 8 discovered breast 

cancer related compound signatures. For example, in terms of distant 

metastasis-free survival, patients the Signature 4Low category 

responded poorly to chemotherapy compared with those in the 

Signature 4High category (Figure 5C). Signature 4 was selectively 

associated with chemotherapy but not hormone therapy (tamoxifen).  

We performed a univariable and multivariable survival analysis 

using discovered compound signatures as well as conventional 

clinical features including patient age, tumor size, PAM50 as well as 

molecular subtypes, lymph node involvement, the ER status, and the 

pathological grades (Tables S4, S5 and Data File S3). The results 

suggested that the compound signatures 4 and 5 are strongly 

associated with poor prognosis for patients with chemotherapies but 

not for those with Tamoxifen treatment. The analysis results were 

consistent with the drug response survival results showed in 

Figure 5.  

Signatures also demonstrated associations with breast cancer 

subtypes (Signature 2) and receptor status (Signatures 3 and 6 with 

estrogen receptor status), as shown in Figure S3 in the 

Supplementary Data section.  

Such association results demonstrate the clinical potential of the 

compound signatures discovered in the MCF-7 breast cancer cell 

line model. Follow-up investigations could include testing the 

underlying mechanisms for the poor prognosis of patients in the 

Signature 4Low category, by further studies of the predicted target 

genes using the established Signature 4 quadruple model.  

CONCLUSIONS 
We have developed the csNMF approach, a comprehensive and 

complete pipeline, for network-based compound signature discovery 

and drug screening under the target gene reference library. The 

GMM approach, the L1000 raw data pre-processing module, has 

demonstrated high accuracy, high efficiency, and high scalability 

compared with the standard KM pipeline. The EGEM-based csNMF 

signature discovery module benefited from biological (PPI) and 

sparseness constraints and simultaneous co-clustering of both 

positive and negative values. The quadruple model, which 

incorporates four consequential components along the drug-induced 

molecular cascade (the drug, drug targets, downstream transcription 

factors, and affected gene expression), can reveal underlying 

regulatory mechanisms of similar drugs. The predicted similarity of 

drug-target genes were validated with experimental profiling. The 

extracted breast cancer compound signatures also demonstrated 

strong clinical relevance. Together, as a key module of the itNETZ 

platform, the csNMF pipeline bridges the gap between the rich 

resource of the LINCS signature library and biomedical and clinical 

research needs, and provides biomedical researchers with a 

systematic drug screening and mechanism discovery framework.  
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