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Abstract: Long noncoding RNAs (lncRNAs) are emerging as a novel class of noncoding RNAs and 
potent gene regulators, which play an important and varied role in cellular function. lncRNAs are closely 
related with the occurrence and development of some diseases. High-throughput RNA-sequencing 10 

techniques combined with de novo assembly have identified a large number of novel transcripts. 
Discovery of large and ‘hidden’ transcriptome urgently needs to develop the effective computational 
methods that can rapidly distinguish between coding and long noncoding RNAs. In this study, we 
developed a powerful predictor (named as lncRNA-MFDL) to identify lncRNAs by fusing multiple 
features of the open reading frame, k-mer, secondary structure and most-like coding domain sequence and 15 

using deep learning classification algorithm. Using the same human training dataset and 10 fold cross 
validation test, lncRNA-MFDL can achieve 97.1% prediction accuracy which is 5.7, 3.7, 3.4% higher 
than that of CPC, CNCI and lncRNA-FMFSVM predictors, respectively. Compared with CPC and CNCI 
predictors on other species (e.g., anole lizard, zebrafish, chicken, gorilla, macaque, mouse, lamprey, 
orangutan, xenopus and C. elegans) testing datasets, the new lncRNA-MFDL predictor is also much more 20 

effective and robust. These results show that lncRNA-MFDL is a powerful tool for identifying lncRNAs. 
The software package of lncRNA-MFDL can be freely available at 
http://compgenomics.utsa.edu/lncRNA_MDFL/  for academic users. 

Introduction 
A mass of evidence reveals that ~98% of the genome can be 25 

transcribed, of which only ~2% encodes protein genes 1, 2, and a 
majority of unexpected noncoding transcription has also been 
identified 3. Therefore the vast majority of this unexpected 
transcription, sometimes referred to as “dark matter” 4, 5, has 
drawn a great deal of attention. In the mammalian noncoding 30 

transcriptome, long noncoding transcripts (>200nt) appear to 
comprise the largest portion, and show critical roles in diverse 
regulatory levels, such as transcriptional regulation and post-
transcriptional regulation 6, 7. 
 With the development of high-throughput next-generation 35 

sequencing techniques, more and more novel transcripts are 
generated. It is highly desired to develop computational methods 
for efficiently and effectively identifying noncoding RNA, which 
leads to the development of theoretical and computational 
methods in recent few years. These approaches such as CONC 40 

(Coding Or Non-Coding) 8, CPC(Coding Potential Calculator) 9, 
PORTRAIT 10, PhyloCSF 11 and CPAT 12 typically identify 
noncoding genes that have short open reading frames (ORFs) and 
are less homologous with protein-coding genes 13. However, they 
are not suitable for identifying long noncoding RNAs (lncRNAs), 45 

because lncRNAs may contain long putative ORFs or short 
protein-like sub-sequences 14, 15.  Recently, several approaches 
and tools 8, 16-18, were developed to identify lncRNAs. CNCI 8 
extracted five features (i.e. the length and S-score of MLCDS, 
length-percentage, score-distance and codon-bias) by profiling 50 

adjoining nucleotide triples and used support vector machine 
(SVM) to distinguish protein-coding and long noncoding RNA 
sequences, but it did not consider the RNA structural information. 
Lv et al. 16 used the LASSO regularized logistic regression to 
select the chromatin and genomic features to identify lncRNAs 55 

over mouse brain development, however, relatively 
comprehensive chromatin data were only available for a handful 
of tissues/cells and species, and this method is not suitable for 
large-scale prediction of lncRNAs. iSeeRNA 17 used SVM model 
to identify the long intergenic noncoding RNAs (lincRNAs) by 60 

integrating multiple features (e.g. conservation, ORF, seven di- 
and tri-nucleotide sequence frequencies ). Wang et al. 18 used 
GA-SVM algorithm to extract the optimized feature subset to 
identify the human lincRNAs. Although the existing lncRNAs 
predictors or methods can effectively identify lncRNAs, most of 65 

them used the support vector machine (SVM) to model the 
classifier based on the sequence and structural features of 
lncRNAs. SVM is a shallow learning model that consists of only 
one layer responsible for transforming the raw input features into 
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a problem-specific feature space, which has been shown effective 
in solving many simple or well-constrained problems, but its 
limited modelling and representational power can cause 
difficulties when dealing with more complicated real-world 
applications 19. 5 

 For further enhancing the prediction accuracy of lncRNAs, in 
this study, we developed a new powerful predictor (named as 
lncRNA-MFDL) by employing the deep learning classification 
algorithm and fusing multiple features of the open reading frame 
(ORF), k-mer, secondary structure and most-like coding domain. 10 

Deep Learning is a new area of machine learning research, which 
attempt to model high-level abstractions in data by using model 
architectures composed of multiple non-linear transformations19-

21. Now, some deep learning architectures such as convolutional 
deep neural networks (CNNs), deep belief networks (DBNs), 15 

deep neural networks (DNNs) and deep stacking networks 
(DSNs) have been applied to computer vision, automatic speech 
recognition, natural language processing, and music/audio signal 
recognition, etc, where they have been shown to produce state-of-
the-art results 19, 21-23. In comparing with the existing tools, 20 

lncRNA-MFDL showed better performance on human and other 
ten species in 10-fold cross validation (10CV) and independent 
dataset tests. 

Material and methods 
Datasets 25 

The lncRNAs and protein-coding genes (mRNAs) of human were 
downloaded from Gencode (v19) 24 and RefSeq database 
respectively. After removing the transcripts whose length is less 
than 200nt, we obtained 23,529 human lncRNAs and 35,607 
mRNAs, from which the 10,000 lncRNAs and 10,000 mRNAs 30 

were selected to form the training dataset. The remaining 
lncRNAs and mRNAs were used to form the testing dataset. To 
validate the generalization performance of lncRNA-MFDL, we 
also created other species (e.g., anole lizard, zebrafish, chicken, 
gorilla, macaque, mouse, lamprey, orangutan, xenopus and C. 35 

elegans) testing datasets which were collected from Ensembl 
(v76). All training and testing datasets were summarized in 
Supplementary Table S1, and the accession numbers in these 
datasets were given in the Supplementary file A. 

In general, establishing a highly useful biological molecular 40 

attribute predictor involves the following five steps 25, 26: (1) 
constructing a valid benchmark dataset to train and test the 
predictor; (2) using effective mathematical expression to convert 
the nucleotide (or protein) alphabetic sequences into feature 
vectors that truly reflect their intrinsic correlation with the 45 

attribute to be predicted; (3) developing a powerful algorithm (or 
engine) to operate the prediction; (4) properly selecting the cross-
validation tests to objectively evaluate the performance of the 
predictor; and (5) establishing a software tool. The lncRNA-
MFDL predictor is divided into three stages: feature extraction, 50 

feature fusion and pattern classification. For feature extraction 
which is one of the most critical steps to build a classifier, the 
query nucleotide sequences are converted into a series of vectors 
with ORF (Open Reading Frame), k-mer, SS(secondary structure) 
and MLCDS(most-like coding domain sequence) descriptors. For 55 

feature fusion, the four kinds of features of ORF, k-mer, SS and 

MLCDS are integrated to represent the transcript sequence. For 
pattern classification, the vectors are classified by one deep 
learning architecture, deep stacking networks. 

ORF Descriptor 60 

Previous studies show that a lncRNA transcript is more likely to 
have low-quality ORF (e.g. either short ORF or small ORF 
proportion) than mRNAs 8. Here, the txCdsPredict program from 
UCSC genome browser (https://genome.ucsc.edu/) was firstly 
employed to calculate the ORF for each transcript. Then we can 65 

use the following feature vector ORFX  to represent transcript 
sequences by serializing ORF length and ORF proportion.  

[ , ]ORFX l l L=                                                                               (1) 

where l is the ORF length, and L is the length of a transcript 
sequence. 70 

k-mer Descriptor 

Because lncRNAs exhibit poor protein-coding potential, the 
frequency of k neighboring (k-mer) bases may contain the 
statistical information for distinguishing between lncRNAs and 
mRNAs. Here, we used the following feature vectors  ORF

k merX −  and   75 

TS
k merX −  to represent transcript sequences by serializing the k-mer 

(k=1, 2, 3) frequency in ORF and transcript sequence, 
respectively.  

1 4 1 16 1 64=[ , , , , , , , , , , , , , ]ORF
k merX t t t t t t t t tα β γ− ′ ′ ′ ′′ ′′ ′′… … … … … …                          (2)  

1 4 1 16 1 64=[ , , , , , , , , , , , , , ]TS
k merX f f f f f f f f fα β γ− ′ ′ ′ ′′ ′′ ′′… … … … … …                   (3) 80 

where tα  ( 1, 2, , 4α = … ) is the frequency of a single base (A, C, G 
and T) in ORF; tβ′  ( 1, 2, ,16β = … ) is the frequency of two 

neighboring bases (e.g., AC, AG, AT, CG) in ORF; tγ′′  
( 1, 2, ,64γ = … ) is the frequency of three neighboring bases (e.g., 
ACG, AGT, CGT) in ORF. fα  ( 1, 2, , 4α = … ) is the frequency of 85 

a single base (A, C, G and T) in transcript sequence; 'fβ  
( 1, 2, ,16β = … ) is the frequency of two neighboring bases (e.g., 
AC, AG, AT, CG) in transcript sequence; "fγ  ( 1, 2, ,64γ = … ) is 
the frequency of three neighboring bases (e.g., ACG, AGT, CGT) 
in transcript sequence. 90 

SS Descriptor 

Secondary structures play a key role in the functions of lncRNAs 
and are more highly conserved than the primary sequences. In 
addition, the minimum free energy (MFE) is an index that 
evaluates the stability of the secondary structure of RNAs. 95 

Accordingly, we used a number of secondary structure-based 
features, in terms of the minimum free energy (MFE), paired 
bases and unpaired bases to form a feature vector SSX  to 
represent the transcript sequences. These feature values were 
given by the RNAfold program 27, 28.  100 

[ , , , ]SS MFE MFE p upX v v L n n=                                                           (4) 
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where, MFEv is the minimum free energy; L is the length of a 
transcript sequence; pn  is the number of paired base; upn is the 
number of unpaired base. 

MLCDS Descriptor 

Because the coding domain sequence (CDS) regions have been 5 

under a variety of competing selection pressures, especially the 
transcript optimization force that is associated with the 
juxtaposition of tRNAs but not required for non-coding regions 29, 
the features of the most-like CDS (MLCDS) were extracted to 
distinguish protein-coding sequences from the non-coding 10 

sequences 8. The identification of the best MLCDS can be 
described as: 1) Firstly calculating the usage frequency of 
adjoining nucleotide triplets (ANT) with coding and non-coding 
transcript sequences, and using the log-ratio of the usage 
frequency of all kinds of ANT to constitute a 64*64 ANT score 15 

matrix; 2) Using a sliding window (e.g., 150nt) to scan each 
transcript sequence six times to generate six reading frames, 
meanwhile, calculating the sequence-score (S-score) of each 
window based on ANT score matrix; 3) Applying a dynamic 
programming of Maximum Interval Sum 30 to identify the 20 

MLCDS of each reading frame; 4) Defining one of the six 
candidate MLCDS regions with the maximum S-sore as the best 
MLCDS. Then, we used the following feature vector MLCDSX to 
represent the transcript sequences by serializing the length and S-
score of the best MLCDS, the length percentage and the score 25 

distance of MLCDS. 

X [ , , , ]MLCDS BMLCDS BMLCDS MLCDS MLCDSL S P D=                                       (5) 

where BMLCDSL , BMLCDSS are respectively the length and S-score of 
the best MLCDS; MLCDSP  and MLCDSD  respectively represent the 
length-percentage and the score distance of MLCDS, which are 30 

calculated by the following two formulas.  

1

,     1, 2, ,6
( )

BMLCDS
MLCDS n

ii

LP i
L

=

= =
∑

                                                    (6) 

1

1 ( ) 1,2, ,5
5

n
MLCDS BMLCDS jj

D S S j
=

= − =∑ ，                                 (7) 

where iL  represents the length of the i-th MLCDS; jS  represents 
the S-score of the j-th non-best MLCDS. 35 

Feature Fusion 

Feature fusion can derive the most discriminatory information 
from original multi-feature sets and eliminate the redundant 
information from the correlation between distinct feature sets, 
which benefits the final decision. Here, four kinds of feature set 40 

of ORF, k-mer, SS and MLCDS are concatenated into one set of 
feature vectors to represent the transcript sequences, which can be 
formulized as following: 

=[ , , , , ]ORF TS
ORF k mer k mer SS MLCDSX X X X X X− −                                               (8) 

Deep Learning Algorithm 45 

Deep learning is a learning method with the deep architecture and 
the good learning ability, which can perform the intellectual 
learning like learning the features. The deep architecture refers to 

the multilayer network where each two adjacent layers are 
connected to each other in some way. Depending on the learning 50 

nature of layered module, the existing deep learning algorithms 
can be classified into generative (e.g. deep auto-encoder, deep 
Boltzmann machine and deep Belief networks), discriminate (e.g. 
convolutional neural networks and deep stacking networks) and 
hybrid architecture (e.g. deep neural networks) 31, which have 55 

been successfully applied to computer vision, speech recognition 
and signal processing 19, 21-23, 32. The well-known DNNs require 
stochastic gradient descent which renders parallelization of 
network parameter learning virtually impossible. For overcoming 
the problem of parallelizing learning in DNN modules, the deep 60 

stacking networks (DSNs) were introduced 32, 33. The basic DSN 
architecture consists of many stacking modules, each of which 
takes a simplified form of shallow multilayer perception using 
convex optimization for learning perceptron weights34. “Stacking” 
is accomplished by concatenating all previous modules’ output 65 

predictions with the original input vector to form the new “input” 
vector in the new module 33. The DSN weight parameters W 
(input weight matrices) and U (output network weight matrices) 
in each module are learned efficiently from the training data by 
using basic learning algorithm and fine tuning algorithm 32, 33. 70 

Basic learning algorithm: Suppose 1[ , , , , ]i N=X x x x  , 

1[ , , , , ]i N=T t t t  respectively denote the training vectors and 
target vectors, where N  is the total number of training samples. 
The output of a DSN module is T

i i=y U h , where ( )T
i iσ=h W x is 

the hidden layer output, and ( )σ ⋅  is the sigmoid function. The 75 

loss function of means square error is used to learn parameter U
assuming W is given, that is, by minimizing the average of the 
total square error 2 [( )( ) ]TE Tr= − = − −Y T Y T Y T to learn 
parameter. If the lower layer weight matrix W is fixed, the 
hidden layer values H  are also determined. Consequently, the 80 

upper-layer weight matrix U in each module can be determined 

by setting the gradient 2 ( )T TE∂
= −

∂
H U H T

U
 to zero, then leading to 

the closed-form solution  

1( )T T−=U HH HT                                                                          (9) 

Note that the weight matrices W across all DNS modules 85 

need be set empirically. In general, there are two ways to set W . 
First, using various distributions generate the random numbers to 
set W . Second, applying contrastive divergence to separately 
train the restricted Boltzmann machines (RBM), and used the 
trained RBM weights to set W . In this study, we used the trained 90 

RBM weights to set W for the bottom module. 
Module-bound fine tuning: The weight matrices W of DSN in 

each module can be further learned using the batch-mode gradient 
descent. That is,  

† † †2 [ (1 ) [ ( )( ) ( )]T T T TE∂
= − −

∂
X H H H HT TH T TH

W
                     (10) 95 

( )
( 1) ( )

( )

j
j j

j
Eη+ ∂

= + ×
∂

W W
W

                                                             (11) 
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where † 1( )T T −=H H HH , the symbol   represents the element-wise 
matrix multiplication, and η  is the learning rate of updating the 
weight matrices W .  

Then the batch-mode fine tuning algorithm updates W  
using Eq.10 and Eq.11, and U is subsequently updated using Eq.9 5 

in a closed form with no iteration. 

Assessment of Prediction System 

The performance measures of overall accuracy (ACC), sensitivity 
(Sn), specificity (Sp) and the Matthew’s correlation coefficient 
(MCC) were used to assess the prediction system, and they are 10 

defined as follows: 

n
TPS

TP FN
=

+
                                                                             (12) 

p
TNS

TN FP
=

+
                                                                             (13) 

TP TNACC
TN FP TP FN

+
=

+ + +
                                                         (14) 

( )( ) )( )
TP TN FP FNMCC

TP FP TN FN TP FN TN FP
× − ×

=
+ + + +（

                     (15) 15 

where TP and TN are the number of correctly predicted lncRNAs 
and mRNAs, respectively, and FP and FN are the number of 
incorrectly predicted lncRNAs and mRNAs, respectively. 

Results and Discussions 
Performance of lncRNA-MFDL 20 

In statistical prediction, the following three cross-validation 
methods are often used to examine a predictor for its 
effectiveness in practical application: independent dataset test, K-
fold (e.g. 5-fold, 10-fold) crossover or subsampling test, and 
jackknife test. However, of the three test methods, the jackknife 25 

test is deemed the least arbitrary that can always yield a unique 
result for a given benchmark dataset 25. Accordingly, the 
jackknife test has been increasingly and widely used by 
investigators to examine the quality of various predictors 26, 35-38. 
However, for large scale database, the jackknife test needs to 30 

spend lots of time to generate the prediction results. To reduce the 
computational time and evaluate the generalization performance 
of a predictor, we adopted the 10-fold cross-validation (10 CV) 
test and independent dataset test as done by many investigators.  

To demonstrate the superiority of lncRNA-MFDL, we 35 

compared it with other three state-of-the-art predictors, CPC, 
CNCI and lncRNA-MFSVM. CPC used six biologically 
meaningful sequence features and SVM to discriminate coding 
from noncoding transcripts, which works well with known 
protein coding gene transcripts (PCTs) but may tend to classify 40 

novel PCTs into ncRNA if they have not recorded in the protein 
database used by CPC 9, 17. CNCI used the profile information of 
adjoining nucleotide triples and SVM to effectively distinguish 
protein-coding and non-coding transcripts 8. In order to show the 
outstanding performance of deep learning algorithm, we also 45 

design an lncRNA-MFSVM predictor by using SVM and the 
same features as lncRNA-MFDL predictor. The results of four 
predictors on the same human training dataset in 10CV test are 

shown on Table 1. It can be seen that the overall accuracy of 
lncRNA-MFDL is 97.1%, which is 5.7, 3.7 and 3.4 % higher than 50 

that of CPC, CNCI and lncRNA-MFSVM, respectively, and the 
deviation is also lower than CPC, CNCI and lncRNA-MFSVM; 
MCC of lncRNA-MFDL is 0.942, which is 0.109, 0.074 and 0.08 
higher than that of CPC, CNCI and lncRNA-MFSVM, 
respectively; Sn of lncRNA-MFDL is 97.7%, which is 0.9, 6.5 and 55 

4.4% higher than that of CPC, CNCI and lncRNA-MFSVM, 
respectively. These results show that the lncRNA-MFDL 
predictor has the powerful performance for distinguishing 
lncRNAs and mRNAs.  

Comparing Sn, Sp of CPC, CNCI and lncRNA-MFDL, we 60 

found that Sn of CPC is 10% higher than its Sp, meaning that CPC 
tends to classify the new lncRNA into mRNA; Sn of CNCI is 4.3% 
lower than its Sp, meaning that CNCI tends to classify the new 
mRNA to lncRNA; while Sn and Sp of lncRNA-MFDL are 
approximately equal, meaning that the lncRNA-MFDL predictor 65 

is more robust than CPC and CNCI predictors. 
The comparing results of lncRNA-MFSVM and lncRNA-

MFDL indicate that the classifying performance of deep learning 
is superior to SVM. Comparing the results of CNCI and lncRNA-
MFSVM which of them use the same SVM and different feature 70 

sets, we found that the distinguished power of our feature fusion 
method and CNCI feature extraction method is also same, but our 
feature fusion method can effectively predict lncRNAs.  

Table 1. The performance of CPC, CNCI, lncRNA-MFSVM and 
lncRNA-MFDL on same human training dataset in 10CV test 75 

 Sn (%) Sp (%) ACC (%) MCC 
CPC 96.8±1.7 86.0±1.7 91.4±0.9 0.833±0.018 
CNCI 91.2±1.5 95.5±2.0 93.4±1.5 0.868±0.030 

lncRNA-MFSVM 93.3±2.1 92.8±1.3 93.7±1.0 0.862±0.021 
lncRNA-MFDL 97.7±1.3 96.5±1.0 97.1±0.8 0.942±0.016 

In order to further evaluate the generalized performance of 
lncRNA-MFDL predictor, we also implemented lncRNA-MFDL 
predictor on human testing dataset and other species (e.g., anole 
lizard, zebrafish, chicken, gorilla, macaque, mouse, lamprey, 
orangutan, xenopus and C. elegans) testing datasets. The results 80 

of lncRNA-MFDL, CNCI and CPC on the 11 testing datasets are 
shown in Table 2. It can be seen that the overall accuracy of 
lncRNA-MFDL predictor is higher than that of CPC and CNCI 
predictors, suggesting that the lncRNA-MFDL predictor has 
better generalized performance. 85 

Table 2. The overall accuracy (%) of CPC, CNCI and lncRNA-MFDL on 
11 testing datasets. 

 CPC CNCI LncRNA-MFDL 
Human 92.6 95.8 96.0 

Anole lizard 87.0 93.5 95.5 
Zebrafish 85.8 90.3 90.5 
Chicken 91.4 95.7 95.7 
Gorilla 83.5 86.2 92.8 

Macaque 89.0 94.1 96.2 
Mouse 58.7 71.4 86.6 

Lamprey 82.7 75.0 88.5 
Orangutan 79.2 85.8 90.0 
Xenopus 78.9 92.8 96.9 

C. elegans 79.6 85.5 90.1 

Comparison with individual feature classifier 
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To further verify the effectiveness of LncRNA-MFDL predictor, 
we compared it with five other individual feature deep learning 
classifiers based on the ORF, k-merORF, k-merTS, SS and MLCDS 
feature descriptors, respectively. The results on human training 
dataset in 10CV test are shown in Table 3, from which we can see 5 

that the overall accuracy of LncRNA-MFDL is 3, 10.6, 18.2, 13.4, 
5.1% higher than that of ORF-DL, k-merORF-DL, k-merTS-DL, 
SS-DL and MLCDS-DL classifiers, respectively, suggesting our 
feature fusion method is effective for distinguishing the lncRNAs 
and mRNAs. The ORF and MLCDS feature descriptors are more 10 

powerful than the other three feature descriptors, meaning that 
ORF and MLCDS features contribute the most to the overall 
performance of LncRNA-MFDL predictor. Comparing with the 
individual feature DL classifier, these results show that LncRNA-
MFDL predictors are effective and robust for predicting lncRNAs. 15 

Table 3. Results of LncRNA-MFDL and five other individual feature 
deep learning classifiers on human training dataset in 10CV test 

 Sn (%) Sp (%) ACC (%) MCC 
ORF-DL 95.1±1.2 93.1±1.6 94.1±0.8 0.883±0.016 

k-merORF-DL 87.6±4.6 85.5±5.7 86.5±4.2 0.732±0.084 
k-merTS-DL 76.1±3.7 81.8±10.8 78.9±5.5 0.583±0.109 

SS-DL 79.3±3.0 88.1±9.0 83.7±5.0 0.679±0.105 
MLCDS-DL 95.7±2.2 88.3±1.2 92.0±1.3 0.842±0.026 

LncRNA-MFDL 97.7±1.3 96.5±1.0 97.1±0.8 0.942±0.016 

Conclusions 
Large-scale of transcriptome sequencing technology have 
identified a great amount of transcripts, that attract the attention 20 

on the study of lncRNAs. However, for most species, it remains a 
challenge to identify lncRNAs from protein coding genes, 
because of the lack of necessary information such as whole-
genome sequence, known protein regions and comprehensive 
chromatin data. Therefore, it is important to develop a method to 25 

distinguish lncRNAs and protein-coding genes based on the RNA 
sequences. In this study, based on the RNA sequences, we 
introduced five kinds of feature descriptors (e.g. ORF, k-merORF, 
k-merTS, SS and MLCDS) and fused them forming a vector to 
represent the RNA sequence. Instead of the shallow learning 30 

models (e.g. SVM, HMM, CRF), we used DSN deep learning 
architecture model to design the lncRNA-MFDL predictor for 
discriminating lncRNAs and mRNAs. Comparing with the 
existing CPC, CNCI predictors of lncRNA on the human training 
dataset and other 10 species testing datasets, lncRNA-MFDL 35 

predictor show strong robust and powerful ability for 
distinguishing lncRNAs and mRNAs, and it represents an 
intriguing and promising avenue for predicting lncRNAs. 
lncRNA-MFDL software package is available at 
http://compgenomics.utsa.edu/lncRNA_MDFL/. 40 
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