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Identifying protein-protein interaction (PPI) sites plays an important and challenge role in 
some topics of biology. Although many methods have been proposed, this problem is still far 
away to be solved. Here, a feature selection approach with an 11-sliding window and random 
forest algorithm is proposed, which is called DX-RF. This method has achieved an accuracy of 
88.79%, recall of 82.09%, and precision of 85.76% with top-ranked 34 features on the Hetero 
test dataset and has got 91.6% accuracy, 89.2% precision, 83.54% recall with top-ranked 25 
features set on the Homo test dataset. Compared to other methods, the results indicate DX-RF 
method has a strong ability to select relevance features to get a higher performance. Moreover, 
in order to further understand protein interactions, feature analysis in this study are also 
performed. 
 

1 Introduction 

Protein-protein interactions (PPIs) plays a crucial role in many 
biological processes, including the transduction of signal, 
pathways of metabolic, regulation of enzymes, translation of 
gene, and mediation of cell adhesion [1]. Since the PPIs usually 
form the backbone in these processes, the research about the 
PPIs has becoming significant. Particularly, identifying protein-
protein interaction sites (PPI sites) would bring more insights to 
the understanding of the structures and functions of proteins, 
and simplify the identification of drug targets. However, 
experimental methods of identifying the PPI sites cost high in 
finance, timely and labour. Therefore, many computational 
methods have been proposed. 
  Up to now many methods have been proposed to the 
prediction of protein-protein interaction sites based on features 
of protein with the machine learning methods. A large number 
of properties of protein have been explored in these 
computational methods to the prediction of interaction sites. 
These features can be grouped into two classes: sequence-based 
and structure-based. Ofran et al. analyses that it is possible to 
predict protein-protein interaction sites from sequence alone, 
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because the amino acid composition of these residues is very 
different from the rest [2] residues, the most residues in 
interface are clustered in the consecutive and local sequence 
segment [3], 70% of prediction in their work was correct. Dhole 
et al. [4] propose a sequence-based method to predict PPI sites. 
In their work, they used three attributes of position specific 
scoring matrix (PSSM), predicted relative solvent accessibility 
(PRSA) and averaged cumulative hydropath (ACH) with a 
sliding window. With the help of the L11-logreg classifier, they 
achieved a Matthews’s correlation coefficient (MCC) of 0.175, 
specificity of 60.3%, recall of 63.8% and accuracy of 60.9%. 

What is more, structural information is also one of significant 
features among interface. Many methods with structural 
features have achieved successfully in predicting PPI sites [5, 
6]. La and Kihara et al. [7] presented a computational method 
to the prediction of protein binding sites via extracting the MSA 
of surface patch and computing phylogenetic trees, which 
achieved an average area under roc curve (AUC) value of 0.624 
on training and testing sets. The performance of Wang et al.’s 
method5 to predict interaction sites is 66.3% sensitivity, 49.7% 
specificity, 65.4% accuracy and 0.297 MCC.  

Some methods with three-dimensional structure information 
and sequence information have achieved good result [8-10]. 
Qiu et al. [11] extracted properties based on 3D structure to 
build a patch-based model and a residue-based model. For the 
residue-based model, they achieved a specificity rate of 70% 
and a sensitivity of 0.78; for patch-based model, they achieved 
a success rate of 0.8. In Li et al.’s work [12], the sequence 
information, secondary structural information and 3D structural 
information are extracted to predict protein-protein interaction 
sites. They achieved accuracy of 0.673 and MCC of 0.348. 
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They also analysed the features and confirmed 3D structural 
information which they adopted contributed a lot to the 
prediction. Minhas et al. [13] presented a method to predict 
interaction sites with sequence and structure features. They 
adopted relative accessible surface area, half sphere amino acid 
composition, protrusion index, PSSM and predicted rASA. In 
most cases, machine learning methods with features are 
proposed to predict protein-protein interaction sites. Popular 
algorithms are Support Vector Machine (SVM) [4, 14, 15], 
Random Forest (RF) [11, 16-18], neural network (NN) [19] and 
so on. Chen et al. [14] constructed an integrative profile by 
developing a support vector machine ensemble. Wang et al. [19] 
constructed a model using a radial basis function neural 
network only using evolutionary conservation and spatial 
sequence profile to predict PPI sites. Their approach has a good 
performance of the specificity of 67.6%, the sensitivity of 66.6% 
and accuracy of 68.9%.  

Despite many improvements were achieved in recent years, 
the problem of predicting PPI sites is still far away from being 
overcome. The performance of classifiers based on machine 
learning algorithm largely depends on the features which are 
extracted from protein sequence. So, it is difficult to make a 
good prediction only based on one characteristic, but it does not 
mean it must be better if more features were combined together. 
Therefore, how to select relevance features for predicting 
protein interaction sites is becoming a problem.  

Some researchers also have developed feature selection 
method to extract the relevance feature subset, for example, 
Minimum Redundancy Maximal Relevance (mRMR) [12]. 
However, this feature method need to a large of time to select 
the best feature subset. For this problem, a novel feature 
extraction scheme method for predicting PPI sites based on a 
scoring method (namely DX) is proposed with higher accuracy, 
which can measure the identifying capability of each feature 
and is very easy to be computed. According to top-ranked 
scores, a subset features which are strong identifying capability 
is selected. Based on this subset, a Random Forest (RF) 
classifier is built. The experimental results showed that the RF 
classifier with top-ranked features can get the highest accuracy.  

2. Results and Discussion 

2.1 Optimization of feature space 

In order to evaluate the ability of each feature for predicting PPI sites, 
first each feature’s score is calculated according to Equation (1). 550 
features are ranked by the score of each feature from high to low. A 
feature with a higher DX score implies that it is more important for 
prediction of PPI sites. The follow procedure is applied to decide the 
optimal feature set selection: an empty feature set is constructed, and 
then each feature is added (with score from high to low) into the 
empty feature set. In order to measure each feature’s ability for the 
prediction, one feature is added every time and the 10-CV 
experiment using RF algorithm is carried out with the current feature 
set. In this way, 550 feature sets are constructed and 550 10-CV 
experiments are performed. In order to eliminate random results, 

each experiment is performed five times, and then average results 
are reported. Figure 1 shows the MCC values of 550 10-CV models. 
The model got the highest MCC when top-ranked 34 features on the 
Hetero train dataset and top-ranked 25 features on the Homo train 
dataset, respectively. The cross-validation average performance of 
this model with top-ranked 34 features, are 89.14% accuracy, 82.5% 
recall, 86.39% precision. The performance of this model with top-
ranked 25 features, are 90.53% accuracy, 82.6% recall, 88.24% 
precision. Therefore, top-ranked 34 features and top-ranked 25 
features are chose as the optimized feature space on the Hetero 
dataset and Homo dataset, respectively. 

2.2 Feature analysis 

The 550 features roughly are divided into three types: structure-
based features, sequence-based features and physicochemical and 
biochemical features. In this section, according to the DX score, the 
top-ranked 34 features and top-ranked 25 features are analyzed. 
Figure 2 shows the contribution of each feature in the top-ranked 34 
features. From Figure 2, we can see that features from HSSP profile, 
HQI8 and PSAIA contribute mainly to the prediction of PPI sites. 
Meanwhile some features are not selected in the optimal feature 
space, such as the RASA, DPX etc. In the optimal features space, 
there are 14 structure-based features (making up to 41% to the 
selected), 18 sequence-based features (making up to 53%) and 2 
physicochemical and biochemical features (making up to 6%). 
Figure 3 illustrates that the distribution of the top-ranked 25 features 
on the Homo dataset. The similar conclusion can be got on the 
Homo dataset. Figure 4 and Figure 5 illustrates the distribution of 
features of each residue with the 11-sliding window on the Hetero 
and Homo dataset, respectively. The two figures all show that the 
current residue (denotes 0) is more important for predicting protein-
protein interaction sites than other residues.  

1) Structure-based features analysis 

From Figure 6, we can see that 14 structure-based features are 
selected by the DX with RF algorithm, including 11 features from 
ACC, 1 total ASA, 1 n-polar ASA and 1 from average CX. Such as 
RASA, DPX features have not been selected. It shows the accessible 
surface area is more efficient than other structure-based features on 
the Hetero dataset. The same results are got on the Homo dataset. 

2) Sequence-based features analysis 

The distribution of each sequence-based feature is presented in the 
Figure 7 and Figure 8. From Figure 7, it can be seen that there are 18 
sequence features and 5 sequence features contribute to predict 
protein interaction sites on the Hetero dataset and Homo dataset, 
respectively. From Figure 8, 5 Entropy, 5 RELENT and 5 sequence 
variability (VAR) features from Hetero dataset are selected and it 
contributes more than other sequence-based features. The similar 
conclusion can be obtained on the Homo dataset. It shows features 
from HSSP file especially sequence variability and entropy benefit a 
lot to the prediction but no features from HSSP profile was not 
selected in the optimal feature space. From Figure 7, we can see that 
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the features number of site -1, site 0 and site 1 are more than other 
sites. 

3) Physicochemical and biochemical features analysis 

AAFactors are not selected in the top-ranked 34 features on the 
Hetero dataset, but 2 features from HQI8 are selected in the optimal 
feature set. It reflects that the clustering method of HQI is more 
effective in our prediction method than AAFactors. In this study, the 
two features are hydrophobicity and intrinsic propensities. The 
names of selected indices defined in HQI8 are BIOV880101 and 
MIYS990104. 

2.3 Comparison with the original feature space 

As we introduced above, there are 550 features for a residue before 
carrying out the DX method. In order to evaluate the capability of 
the feature selection method, 10-CV experiment based on RF 
algorithm with the original feature space is performed on the Hetero 
train dataset and Homo train dataset and this process is carried out 
five times. From Table 1, it can be seen that the method with DX 
(89.14% Acc) got higher 12% than the method without DX (76.62% 
Acc) on the Hetero train dataset. The method with DX (90.53% Acc) 
got higher 12% than the method without DX (78.18% Acc) on the 
Homo train dataset. The whole performance exclude recall is 
improved. Compared to the original feature space, it confirms that 
DX-RF method has the ability to select ‘more useful’ features for 
PPI sites prediction. Therefore, it can be concluded that DX feature 
selection is necessary before constructing the model.  

Table 1. The performance of classifiers with/without feature 

selection method 
Dataset Feature space Acc Rec Pre F MCC 

 
Hetero 

Top-ranked 
34 features 

89.14 82.5 86.39 84.4 0.7613 

Original 
(without DX) 

76.62 93.99 75.63 83.81 0.4693 

 
Homo 

Top-ranked 
25 features 

90.53 82.6 88.24 85.33 0.7845 

Original 
(without DX) 

78.18 95.1 77.37 85.32 0.4833 

2.4 Compared to the other methods 

In order to further evaluate the performance of DX-RF classifier, 
four famous machine learning algorithms, Support Vector Machine 
(SVM), Random Forest (RF), Naive Bayes (NB) and Decision Tree 
(DT) are adopted to perform the experiment on the Hetero/Homo test 
dataset. In this study, SVM model is produced with the original 550 
features and the default parameters and then SVM model is applied 
to predict Hetero/Homo test dataset. The other algorithms are the 
same as SVM. Table 2 gives that the detail test results. It can be seen 
that the performance of DX-RF classifier is higher than other 
classifiers both Hetero and Homo test dataset. It higher (average ~14% 
Acc) than other classifiers on the Hetero test dataset. It higher 
(average ~15% Acc) than other classifiers on the Homo test dataset. 
As we know, duo to the effect of different random decision value, 

ROC (Receiver Operating Characteristic) can give a reliable 
performance comparison. Figure 9 shows that the ROC curves 
comparison of five methods on the Hetero test dataset. Figure 10 
shows that the ROC curves comparison of five methods on the 
Homo test dataset. From Figure 9, DX-RF can get a 0.9391 AUC 
area, it higher 0.2338, 0.1191, 0.4391, 0.1211 than NB (0.7053), DT 
(0.82), SVM (0.5), RF (0.818) on the Hetero test dataset, 
respectively. From and Figure 10, DX-RF can get a 0.9568 AUC 
area, it higher 0.2458, 0.1156, 0.4568, 0.1307 than NB (0.711), DT 
(0.8412), SVM (0.5), RF (0.8261) on the Homo test dataset, 
respectively. 

Table 2. The performance comparison of five methods on the 
Hetero/Homo test dataset  

Dataset Classifiers Acc Rec Pre F CC 

Hetero 

NB 67.76 50.27 55.1 52.57 0.283 

DT 86 79.61 80.74 80.17 0.6936 

SVM 64.45 0 / / / 

RF 76.68 44.64 81.35 57.65 0.4711 

DX-RF 88.79 82.09 85.76 83.88 0.7534 

Homo 

NB 68.38 55.76 49.97 52.71 0.2916 

DT 88.12 80.95 81.36 81.15 0.7248 

SVM 68.4 0 / / / 

RF 78.9 43.54 80.86 56.6 0.4798 

DX-RF 91.6 83.54 89.2 86.28 0.8032 

2.5 Compared to the other feature selection method 

Li et al. [12] propose the Minimum Redundancy Maximal Relevance 
(mRMR) method to select relevance features for protein-protein 
interaction sites prediction. They also use IFS method and RF 
algorithm to evaluate the important of each feature. But in their 
study, mRMR feature selection method need to much time. In spired 
by Li et al.’s study, considering time, a novel feature selection 
method (DX) in this study is proposed. In order to compare Li et 
al.’s method with DX, the experiment is performed again on the 
Hetero/Homo train dataset to select the optimal features and then RF 
algorithm is used to construct the model, namely mRMR-RF. After 
cross-validation, mRMR-RF select top-ranked 31 features and top-
ranked 34 features on the Hetero/Homo train dataset, respectively. 
Then, mRMR-RF model is constructed based on the optimal features 
set and is applied to predict Hetero/Homo test dataset. Table 3 shows 
that the performance on the Hetero/Homo test dataset between 
mRMR-RF and DX-RF. The AUC performance of DX-RF (0.9391) 
is higher about 2.85% than mRMR-RF (0.9106) on the Hetero test 
dataset. The AUC performance of DX-RF (0.9568) is higher about 
4.03% than mRMR-RF (0.9165) on the Homo test dataset. ROC 
curves (Figure 11A) and Recall-Precision curves (Figure 11B) are 
also plotted to compare these two methods objectively.  From Figure 
11, DX-RF is higher than mRMR-RF both Hetero and Homo test 
dataset. 

Table 3. The performance comparison between mRMR-RF and DX-
RF 

Dataset Classifier FST (s) Acc AUC 
 

Hetero 
DX-RF 0.641128 88.79 0.9391 

mRMR-RF 126013 86.05 0.9106 
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Homo 

DX-RF 0.712766 91.6 0.9568 

mRMR-RF 142572 87.71 0.9165 
FST: Feature selection times 

2.6 Four experimental examples 

Here we give four examples that are predicted by the SVM, RF, DT, 
NB, mRMR-RF and DX-RF classifiers. The first example (PDB: 
1B4U_A) from Hetero test dataset is the crystal structure of an 
aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-
dioxygenase, under aerobic conditions [20]. DX-RF can predict 46 
residues to be interfaced with 78.85% recall and 80.7% precision 
(Figure 12A). SVM predicts 0 interface residues (Figure 12B). RF 
predicts 24 interface residues with 92.3% recall and 85.71% 
precision (Figure 12C). DT predicts 40 interface residues with 75% 
recall, 75.47% precision (Figure 12D). NB predicts 26 interface 
residues with 73.08% recall, 65% precision (Figure 12E). mRMR-
RF predicts 42 interface residues with 82.69% recall, 82.35% 
precision (Figure 12F) while the actual interface residues are 52 
(Figure 12G). 

The second example (PDB: 2GAC_B) from Hetero test dataset is 
the crystal structures of Flavobacterium glycosylasparaginase. An N-
terminal nucleophile hydrolase activated by intramolecular 
proteolysis [21]. DX-RF can predict 63 residues to be interfaced 
with 86.21% recall and 94.03% precision (Figure 13A). SVM 
predicts 0 interface residues (Figure 13B). RF predicts 42 interface 
residues with 89.66% recall and 93.33% precision (Figure 13C). DT 
predicts 60 interface residues with 82.76% recall, 92.31% precision 
(Figure 13D). NB predicts 46 interface residues with 68.97% recall, 
83.64% precision (Figure 13E). mRMR-RF predicts 62 interface 
residues with 82.76% recall, 92.54% precision (Figure 13F) while 
the actual interface residues are 66 (Figure 13G). 

The third example (PDB: 1QQ5_A) from Homo test dataset is the 
crystal structures of intermediates in the dehalogenation of 
haloalkanoates by L-2-haloacid dehalogenase [22]. DX-RF can 
predict 39 residues to be interfaced with 92.86% recall and 84.78% 
precision (Figure 14A) and SVM, RF, DT, NB, mRMR-RF predicts 
0, 22, 41, 20, 37 interface residues (Figure 14B, Figure 14C, Figure 
14D, Figure 14E, Figure 14E, Figure 14F), respectively. The actual 
interface residues are 45 (Figure 14G). 

The fourth example (PDB: 2ONE_A) from Homo test dataset is 
the crystal structure of asymmetric dimer enolase-2-phospho-D-
glycerate/enolase-phosphoenolpyruvate [23]. DX-RF can predict 33 
residues to be interfaced with 97.6% recall and 89.2% precision 
(Figure 15A) and SVM, RF, DT, NB, mRMR-RF predicts 0, 16, 34, 
18, 33 interface residues (Figure 15B, Figure 15C, Figure 15D, 
Figure 15E, Figure 15E, Figure 15F), respectively. The actual 
interface residues are 41 (Figure 15G). 

3.  Materials and Methods 

3.1 Datasets 

This study is divided into 3 phases: the feature extraction phase, 
training phase, and testing phase. We select two sets (hetero complex 
proteins and homo complex proteins) of non-redundant chains are 

derived by Koike Asako et al. [24]. For these datasets, first, all 
sequence pairs were removed by BLAST with 25% similarity cut-off 
and length of sequence > 100 amino acid residue. Thus, 324 protein 
sequences of hetero complexes and 674 protein sequences of homo 
complexes were obtained. Second, according to the definition of 
Koike Asako et al., hetero complexes were deleted with lower than 
20 interfacial residues (IR) and homo complexes were deleted with 
lower than 30 interfacial residues. Third, hetero complexes and 
homo complexes were deleted with no HSSP profile. Therefore, 270 
hetero complexes and 289 homo complexes were comprised of our 
dataset. We randomly select 202 chains of all chains as Homo train 
dataset and 87 chains as Homo test dataset from Homo dataset. We 
randomly also select 189 chains of all chains as Hetero train dataset 
and 81 chains as Hetero test dataset from Hetero dataset. Supplement 
Materials S1 gives the all datasets.  

3.2 Definition of protein interaction sites 

In order to construct the dataset, the surface residue and interface 
residue need to be defined. There are some different definitions and 
here we used the Fariselli’s method [25]. The ASA (Accessible 
Surface Area) of each residue can be computed by the DSSP 
program. If a residue’s RASA (Relative Accessible Surface Area) is 
at least of its (Maximal Accessible Surface Area), it is defined to be 
a surface site. If a surface site’s ASA-CASA (complex accessible 
surface area) > 1 Å2, it is defined to be interface residues, otherwise 
it is defined to be a non-interface residues.  

3.3 Features extraction 

1) Structure-based features  

a) Accessible Surface Area: The accessible surface area (ASA) is 
the atomic surface area exposed to a solvent. The ASA value (ACC) 
of each residue was got from HSSP [26] in our work. In addition, 
Protein Structure and Interaction Analyzer (PSAIA) [27] also is 
adopted to calculate the ASA value for each residue, including 
backbone ASA, side-chain ASA, polar ASA and non-polar ASA.  

b) Relative Accessible Surface Area: Relative accessible surface 
area (RASA) was calculated by PSAIA [27]. The following residue 
attributes are calculated by PSAIA: total RASA, backbone RASA, 
side-chain RASA, polar RASA and non-polar RASA. 

c) Depth index: The residue depth is defined as the minimum 
distance of a residue from any solvent accessible residue and it has 
been computed by PSAIA. For residue depth, there are six features 
were calculated by PSAIA. In this paper, average depth index (DPX) 
is chose. 

d) Protrusion index: The protrusion of a non-hydrogen residue is 
the ration of the volume of a sphere with a radius of 10.0 A cantered 
at that atom that is not filled with atoms. Same with the DPX, 
PSAIA calculates six features for the protrusion and average 
protrusion index (CX) as a feature for predicting protein-protein 
interaction sites. 
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2) Sequence-based features 

The sequence profile in HSSP file for each protein chain is 
composed of L rows and 20 columns. ‘L’ stands for the number of 
amino acids in a chain and 20 kinds of amino acids index columns. 
Pi,j means the probability of j-th amino acid take the place of i-th 
residue. We also extracted the other four properties of protein from 
HSSP [26] file: Entropy, Relative Entropy (RELENT), Conservation 
Weight (WEIGHT) and Sequence Variability (VAR). Entropy 
measures the conservation of a residue in the location. Relative 
Entropy is defined as the standardized entropy which normalized to 
the scale of 0 to 100. Conservation Weight measures the sequence 
conservation of a position. Sequence variability contains 
evolutionary information, on a scale of 0-100 as exported from 
NAGLIN alignments. 

3) Physicochemical and biochemical features 

a) High-quality-indices: Since Saha et al. [28] have made a 
conclusion that physic-chemical features of amino acids play a 
significant role in identifying the PPI sites, thus properties of amino 
acids are taken into count as important characteristics in 
discriminating between interacting sites and non-interacting sites. 
Recently, 544 physicochemical and biochemical properties of amino 
acids are released in AAIndex1 database. Based on the statistical 
analyses, 544 characteristics are divided into eight classes, namely 
high-quality-indices (HQIs). In this work, HQI8 is used as features, 
including eight clusters which are composed of electric properties, 
hydrophobicity, alpha and turn propensities, physicochemical 
properties, residue propensity, composition, beta propensity and 
intrinsic propensities. Each cluster is composed of one value and 
there are 8 values for each amino acid.  

b) Amino acid factors (AAFactors): Based on AAindex1, Atchley 
et al. [29] made statistical analyses on these 544 properties, as well. 
Different form HQI, they summarized these properties into five 
patterns, which reflect polarity, secondary structure, molecular 
volume, codon diversity and electrostatic charge.  

Finally, for each residue, 50 features are extracted including 25 
features from sequence information (20 from HSSP profile, 1 
entropy, 1 relative entropy, 1 conservation weight, 1 sequence 
variability and 1 ACC), 12 features from structure information (5 
features from ASA, 5 features from RASA, 1 feature from DPX, 1 
feature from CX), 13 features from Physicochemical and 
biochemical information (8 features from HQI8 and 5 features from 
Amino acid factors) and 4 features from HSSP file (entropy, relative 
entropy, conservation weight and sequence variability). In addition, 
an 11-size sliding window is chose for each residue. Therefore, 550 
features are extracted for each residue. 

3.4 Feature selection (DX-score) 

It is hard to decide what features we should choose as inputs for 
learning models because combing more multiple features is not 
always effective. Some features are not effective for discriminating 
interface residues from non-interface residues. The purpose of 

feature selection is to get rid of these lower-capability features, 
which usually are redundant and irrelevant, and improve the 
capability of learning models. In our work, we used the DX score to 
select features. By giving each feature a score, it ranks the 
importance of the features. The definition of DX is shown below: 

2
1 0
2 2

1 0

(m m )
                              (1)DX

d d

−
=

+

 

m1 and m2 stand for the mean value of the feature in positive training 
dataset and negative training dataset, respectively. d1 and d2 stand for 
the standard deviation value of the feature in positive training dataset 
and negative training dataset, respectively. Higher score a feature 
scored means the feature has the potential capacity to distinguish the 
PPI sites. 

3.5 Classification using random forest with 10-CV 

method 

Random Forest (RF) [30] is an ensemble machine learning method 
which is typically made up of several individual classification trees. 
A small random subset of features is selected as inputs for each 
classification tree. The final prediction of forest is decided by the 
votes of the predictions of all classification trees. In this work, we 
use the Random Forest algorithm in Waikato Environment for 
Knowledge Analysis (WEKA) [31]. In this work, machine learning 
models were evaluated by a statistical technique using 10-CV 
methods in following ways: the dataset is partitioned into 10 subsets 
with equal samples. Each subset is composed of equal number of 
positive and negative samples. When constructing models, 9 subsets 
are combined for training a model. The remaining subset is tested on 
the model. In the 10-CV method, this procedure is repeated 10 times 
to make sure each subset play the role of the test. 

3.6 Measuring methods. 

The accuracy (ACC), Recall (Rec), Precision (Pre), F-Measure (F) 
and Matthews’s correlation coefficient (MCC) are used to evaluate 
the prediction capability of models   

( ) (TP TN FP FN)Acc TP TN= + + + +  (2) 

( )Rec TN TN FP= +  (3) 

Pr ( )e TP TP FP= +  (4) 

(2* * ) ( )F rec pre rec pre= +  (5) 

* *
( )( )( )( )

TP TN FP FN
MCC

TP FN TP FP TN FP TN FN

−
=

+ + + +

 
(6) 

where TP stands for the true positive residues; TN stands for true 
negative residues; FP stands for false positive residues; FN stands 
for false negative residues. 

4. Conclusions 

In this study, a novel method (DX-RF) is presented to predict PPI 
sites. Based on the DX feature selection method, an optimized set of 
features was selected from the original feature set. 10-CV method 
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combined with random forest was employed to construct the top-
ranked classifier, which achieved the best performance on the two 
datasets. In order to look which features are considered as the 
significant ones, a feature analysis is performed according to their 
type. In order to confirm the DX algorithm’s ability to select the 
significant features, several methods are used to compare the 
performance with DX-RF. The results confirmed the DX method 
have the high ability to select the significant features. Finally, four 
predicted examples are used to further illustrate the result. 
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Figures legend 

Figure 1 shows that the correlation coefficient of 550 classifiers on the Hetero train dataset and 

Homo train dataset. Each point is stand for the correlation coefficient (MCC) of each classifier. 

For example, the point at the (100, 0.679) means when top-ranked 100 features are selected to 

construct the classifier, the MCC is 0.679. 

 

Figure 2 shows that the distribution of each feature in the top-ranked 34 features on the Hetero 

dataset. 

 

Figure 3 shows that the distribution of each feature in the top-ranked 25 features on the Homo 

dataset. 

 

Figure 4 shows the distribution of feature of each residue in the 11-sliding window on the Hetero 

dataset. For example, -5 denotes the left fifth residue of current residue (denotes 0). 

 

Figure 5 shows that the distribution of feature of each residue in the 11-sliding window on the 

Homo dataset. For example, -5 denotes the left fifth residue of current residue (denotes 0). 

 

Figure 6 shows that the distribution of structure-based feature with top-ranked 25 features on the 

Hetero dataset. 

 

Figure 7 shows that the distribution of sequence-based features in the 11-sliding window with 

top-ranked features. 

 

Figure 8 shows that the number of sequence-based features in the optimal feature space. 

 

Figure 9 shows that the ROC curves comparison of different methods on the Hetero test dataset 

(AUC LibSVM:0.5;DT:0.82;NB:0.7053;RF:0.818;DXRF:0.9391) 

 

Figure 10 shows that the ROC curves comparison of different methods on the Homo test dataset 

(AUC LibSVM:0.5;DT:0.8412;NB:0.711;RF:0.8261;DXRF:0.9568) 

 

Figure 11 shows that the ROC curves comparison between DX-RF and mRMR-RF. 

 

Figure 12 shows that predicted the interaction sites on protein (PDB:1B4U_A) identified by (A) 

DX-RF, (B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. Red 

denotes true positive residues, pink denotes false negative residues, gold denotes false positive 

residues, and blue denotes true negative residues. 

 

Figure 13 shows that predicted the interaction sites on protein (PDB:2GAC_B) identified by (A) 

DX-RF, (B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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Figure 14 shows that predicted the interaction sites on protein (PDB:1QQ5_A) identified by (A) 

DX-RF, (B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 

 

Figure 15 shows that predicted the interaction sites on protein (PDB:2ONE_A) identified by (A) 

DX-RF, (B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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Figure 1. The correlation coefficient of 550 classifiers.  

Red indicates the MCC performance on the Hetero train dataset; Blue indicates the MCC 

performance on the Homo train dataset 
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Figure 2. The number of each feature in the top-ranked 34 features on the Hetero dataset. 
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Figure 3. The number of each feature in the top-ranked 25 features on the Homo dataset. 
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Figure 4. The distribution of feature of each residue in the 11-sliding window on the 

Hetero dataset. 
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Figure 5. The distribution of feature of each residue in the 11-sliding window on the 

Homo dataset. 
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Figure 6. The distribution of structure-based feature with top-ranked 25 features on the 

Hetero dataset 
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Figure 7. The distribution of sequence-based features in the 11-sliding window with 

top-ranked features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15 of 23 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

Figure 8. The number of sequence-based features in the optimal feature space. 
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Figure 9. The ROC curves comparison of different methods on the Hetero test dataset 

(AUC LibSVM:0.5;DT:0.82;NB:0.7053;RF:0.818;DXRF:0.9391) 
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Figure 10. The ROC curves comparison of different methods on the Homo test dataset 

(AUC LibSVM:0.5;DT:0.8412;NB:0.711;RF:0.8261;DXRF:0.9568) 
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Figure 11. The ROC curves comparison between DX-RF and mRMR-RF. 
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A B C 

  
 

D E F 

 

G 

Figure 12. Predicted the interaction sites on protein (PDB:1B4U_A) identified by (A) DX-RF, 

(B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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A B C 

  
 

D E F 

 

G 

Figure 13. Predicted the interaction sites on protein (PDB:2GAC_B) identified by (A) DX-RF, 

(B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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A B C 

  

 

D E F 

 

G 

Figure 14. Predicted the interaction sites on protein (PDB:1QQ5_A) identified by (A) DX-RF, 

(B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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A B C 

 

D E F 

 

G 

Figure 15. Predicted the interaction sites on protein (PDB:2ONE_A) identified by (A) DX-RF, 

(B) NB, (C) RF, (D) SVM, (E) DT, (F) mRMR-RF and (G) is the actual interface residues. 

Red denotes true positive residues, pink denotes false negative residues, gold denotes false 

positive residues, and blue denotes true negative residues. 
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