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The β-amyloid precursor protein cleavage enzyme (BACE) has been conceived to be an attractive 
therapeutic target to control alzheimer's disease (AD). Validated ligand-based pharmacophore mapping 
was combined with 3D QSAR modeling approaches that include CoMFA, CoMSIA and HQSAR 
techniques to identify structural and physico-chemical requirements for potential BACE inhibitor using a 
database containing 980 structuraly diverse compounds, assembled from different literatures. Structure-10 

based docking technique was also used to validate the features obtained from the ligand-based models 
which were further used to screen the database of compounds designed through de novo approach. 
Contour maps of 3D QSAR models, CoMFA (R2 = 0.880, se = 0.402, Q2 = 0.596, R2pred = 0.713,) and 
CoMSIA (R2 = 0.903, se = 0.362, Q2 = 0.578, R2pred = 0.715), and pharmacophore space model (R2 = 
0.833, rmsd = 1.578, Q2 = 0.845, R2pred = 0. 764) depict the models are robust and provide explanation of 15 

the important features, like steric, electrostatic, hydrophobic, positive ionization, hydrogen bond acceptor 
and donor, which play important role for interaction with the receptor site cavity. The HQSAR study (R2 
= 0.823, se = 0.488, Q2 = 0.823, R2pred = 0.768) and de novo design which generate new fragments, 
illustrating the important molecular fingerprints for inhibition. The docking study elucidates the important 
interactions between the amino acid residues (Gly11, Thr72, Asp228, Gly230, Thr231, Arg235) at the 20 

catalytic site of the receptor and the ligand, indicating the structural requirements of the inhibitors. The de 
novo designed molecules were further screened for ADMET properties, and ligand-receptor interaction of 
top hits was analysed by molecular docking to explore pharmacophore features of BACE inhibitors. 

Introduction 

Alzheimer's disease (AD) is the degeneration of nervous system 25 

in brain, which worsens as it progresses. It affects especially old 
people, causing gradual loss of memory, thinking and other 
mental abilities, often leads to abnormal behavior. It is 
fundamentally caused by progressive neurodegenerative disorder, 
the most common form of dementia that affects about 6% of the 30 

population aged over 65 years1. In the past decade, massive 
research efforts have been directed toward understanding of β-
amyloid precursor protein cleavage enzyme (BACE) as a critical 
target for AD therapy. The β–secretase is identified as the 
membrane–anchored aspartyl protease of BACE and found to be 35 

attractive therapeutic target of patients with sporadic AD. 
Currently there is no specific therapy available for treatment of 
this disease2. The etiology of AD remains unidentified until case-
control studies demonstrated involvement of several risk factors, 
including age, familiar influence, depression, hypertension, 40 

diabetes, high cholesterol levels and atrial fibrillation as well as 
low physical and cognitive activity3. 
Cerebral deposition of amyloid β peptide (AβP) postulates an 
early and vital characteristic of AD1. The insoluble plaques are 
the principal collections of AβPs of 39–43 amino acids, formed 45 

via the sequential cleavage of β-amyloid precursor protein (APP) 

by aspartyl proteases, β- and γ-secretases1. Hence inhibition of 
one of these key proteases, β-secretase (BACE, β-site APP 
cleaving enzyme) may represent a modifying treatment for AD 
by blocking Aβ production4.  50 

In this study, structurally diverse compounds  are considered for 
molecular modeling studies in order to explore the structural and 
physicochemical requirements to exhibit potential BACE 
inhibitors through 3D quantitative structure activity relationships 
(QSARs), hologram QSAR (HQSAR) and pharmacophore 55 

mapping studies. The popular 3D QSAR methods, comparative 
molecular field analysis (CoMFA)5 and similarity analysis 
(CoMSIA)6, 7 involve in the generation of a common 3D lattice 
around a set of molecules and calculate the steric and electrostatic 
interaction energies as well as similarity functions (Gaussian). 60 

The HQSAR study identifies important sub-structural features in 
the molecule that are significant for biological activity8. 
Pharmacophore map is the 3D spatial arrangement of the 
different chemical features of ligand for potential binding to the 
active site of the receptor. It can also be used as a query in 3D 65 

database search to identify new structural classes of potential lead 
compounds9. The de novo drug design, which can produce novel 
molecular entities without structural limitations, is also 
considered for modeling study. It produces highly efficient 
scaffolds with the required pharmacological profiles10. The 70 
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analyses are further correlated with the receptor-ligand interaction 
study at the active site cavity of BACE. 

Materials and Methods 

In order to generate suitable model, a desirable set comprising 
980 structurally diverse compounds (Supp. file, Table S1) of 5 

BACE inhibitors (IC50, 1 nM – 2.8 M) has been considered. The 
compounds were divided into training and multiple test sets by 
the k-means cluster analysis (k-MCA) method11. The k-MCA 
technique separates different descriptors into groups which 
arrange in clusters according to their Euclidian distances in 10 

multidimensional space based on both biological activity and 
descriptors.  The reliability of the splitting method may be 
justified if the test set compounds are well distributed in all 
clusters.  In the present work, k-MCA method divided the dataset 
into four clusters containing different members of training and 15 

test sets. From there, 423 compounds were selected randomly 
from each cluster for designing of the test set, remaining were 
considered in the training set for QSAR model developement. 
The selective BACE inhibitory concentration (IC50), expressed in 
terms of pIC50 (log10106/ IC50) has been used as the dependent 20 

variable for the QSAR studies. Applicability domain has been 
checked, which is a theoretical approach for ensuring the 
predictability of the model property for the entire set of 
chemicals12. It is a theoretical region in a chemical space defined 
by the model descriptor and model response. Predictions for only 25 

those chemicals that fall into that space are considered reliable. 
Various statistical parameters13-15, such as R2pred, r

2
m, ∆r2m and sp 

(standard error of prediction) of test set compounds have been 
used for validating the generated model. Further, all the ligand-
based models are adjudged by docking in protein crystal structure 30 

(PDB code: 3OHH)16 in order to analyze the ligand-receptor 
interactions in 3D space. 
 

Application of 3D QSAR: Generation of CoMFA and 

CoMSIA models 35 

The 3D QSAR, CoMFA model depicts the steric (s) and 
electrostatic (e) features17 of the scaffold for selective inhibition 
of the target, whereas CoMSIA model helps to understand the 
hydrophobic (p), HB acceptor (a) and donor (d) features in 
addition to the ‘s’ and ‘e’ requirement for inhibitory activity. The 40 

contour maps of both models are used to get general insights into 
the 3D topological features of the molecule for imparting 
bioactivity. 
Proper alignment of ligands is a crusial factor for development of 
reliable 3D QSAR model18. For the development and subsequent 45 

validation of CoMFA/CoMSIA models, structurally diverse 
molecules of the training and test sets were aligned by shape 
alignment algorithm19. Initially, the individual molecules of the 
dataset were docked with the crystal structure of BACE (PDB 
code: 3OHH)16, obtained from Protein Data Bank (PDB)20, using 50 

LigandFit protocol of Discovery Studio 2.5 (DS)21. Then the best 
docked conformational posture at the active site of the receptor of 
individual ligands was aligned to each other by shape alignment 
algorithm19. These aligned molecules were further considered for 
development of 3D QSAR models using the Sybyl 7.222.  55 

On a regular space grid of 3 Å, ‘s’ and ‘e’ fields interactions were 
calculated for field analyses. For similarity analyses, a common 
probe atom on regularly placed grid points of pre-aligned 
molecules was employed7. Value of the generated fields has been 
truncated at 30.0 kcal/mol and Gasteiger-Huckle method has been 60 

used to calculate partial atomic charges23. Partial least square 
(PLS)24 method has been used to develop QSAR models with 
field and similarity factors being the independent variables and 
inhibitory activity (pIC50) as the dependent variable, respectively. 
The statistical parameters, such as R2 (correlation coefficient of 65 

PLS analysis without validation), Q2 (crossvalidated correlation 
coefficient by LOO method), se (standard error of estimate), r2m 
matrices and R2

bs (bootstrapped correlation coefficient) have been 
used to judge the model quality. The models were further 
validated with four test sets for robustness. 70 

 

Application of HQSAR: Generation of molecular finger 

prints 

In HQSAR technique, fragment fingerprints or molecular 
holograms are employed to correlate predictive variables of 75 

structurally related data with biological activity25. Linear, 
branched, cyclic and the overlapping features of the molecular 
fragments are included in the extended form of fingerprints, 
known as molecular holograms. In this study, the HQSAR model 
has been derived on the basis of various combinations of 80 

fragment distinction and fragment generation parameters for each 
hologram length using Sybyl 7.222. The selection of the HQSAR 
model has been carried out on the basis of best Q2 and the cross-
validated standard error (secv) value. Bin length, fragment size 
and specific fragment distinction parameters determine the 85 

optimum component number to obtain the best PLS HQSAR 
model. The optimal HQSAR model has been derived by 
screening through the 12 default hologram length values, which 
are a set of 12 prime numbers ranging from 53 to 401 fragment 
length and different fragment types. The developed HQSAR 90 

model is validated through prediction of activity of the four folds 
test compounds.  
 

Pharmacophore mapping 

The ligand-based pharmacophore model has been generated by 95 

hypogen algorithm26 in DS21. The hydrogen bond (HB) acceptor 
(a) and donor (d), hydrophobic (p), positive ionization (i) and 
aromatic ring (r) features were used to optimise the 
pharmacophore mapping. The training set comprising 30 
compounds, selected through k-MCA11, has been used to generate 100 

the model. Maximum number of conformers have been kept as 
250, generation type has been checked as best quality, spacing 
limitation between features has been fixed into 300 and threshold 
energy has been kept as 20 kcal/mol above the calculated global 
minimum. The different control parameters used for hypothesis 105 

generation (Hypogen process)26 include uncertainty, weight 
variation and spacing (minimum inter feature distance for 
hypothesis). For the purpose of hypothesis optimization, the 
difference between total and null costs has been considered to be 
60 bits27. The hyporefine process26, where steric (ev) feature has 110 

been considered for bioactivity, was further used to nullify over-
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prediction of inactive ligands in the generated hypothesis. The 
selected hypothesis has been validated through a cross-validation 
technique using CatScramble, based on Fischer’s randomization 
test28 by randomly reassigning activity value among the training 
set compounds. Four folds test sets were used for external 5 

validation of the model. 
 

De novo design: Generation of new fragments 

The de novo drug design involves searching an immense space of 
feasible drug-like molecules10. The molecule was designed and 10 

generated in LigBuilder 2.029. Based on a “seed” structure 
database, a desired ideal molecule can be built within the binding 
pocket. A genetic algorithm30 is used to grow ligands and to link 
building blocks for ligand generation. The de novo design 
approach has inherent potential to generate novel molecule that 15 

blocks a protein functional site31. Design of ligand involved the 
use of CAVITY, GROW and PROCESS modules step by step. 
The CAVITY module has been used for analyzing binding site 
and generating grid with pharmacophoric features essential to 
build ligand. Information of the grid file was used for the grow 20 

step32. The co-crystal ligand, which bound in the crystal structure 
of BACE enzyme (PDB: 3OHH)16, has been taken as the 
reference structure for building the ligand. The seed ligand has 
been used to generate the pocket29. The genetic algorithm was 
used to control the process of building up the ligand through 25 

growing, linking and exploring29. The growing strategy started 
from a seed structure that has been preplaced into the binding 
pocket. This newly formed structure served as the seed for the 
next growing cycle. Compounds obtained from these seeds were 
subsequently submitted for evaluation of drug-likeness (ADMET) 30 

properties33, such as MW, logPo/w, loghERG (potential hERG 
channel blockage leads to QT syndrome), logBB (the ability to 
cross the BBB), #metab (predicting the number of metabolic 
reactions likely to occur), and human oral absorption. Human 
Ether-a`-go–go-Related Gene (hERG) toxicity of the selected 35 

compounds was predicted using QikProp34.  
 

Docking interaction  

Structure-based flexible molecular docking study has been 
performed to depict the important interactions between the 40 

ligands and the residues at the receptor’s active site. Crystal 
structure of BACE enzyme is defined as the receptor. There are 
numerous (>250) x-ray crystal structures available in PDB20. 
Among them PDB id: 3OHH16 was selected for docking analysis, 
based on resolution of the structure (< 2.5 Å) with bound 45 

potential co-crystal ligand (IC50 = 18 nM), and structural 
validation through self docking analysis (rmsd < 2). The docking 
study has been performed in LigandFit of 'Receptor-Ligand 
interactions' protocol of DS 2.521. Pre-treatment processes before 
molecular docking include ligand preparation and defining active 50 

site of the receptor, i.e. binding site for the prepared ligands. 
Ionization change, tautomer and isomer generation have been 
used as constraint parameters in ligand preparation. The duplicate 
structures have been removed by Lipinski filter and 3D generator. 
The active site has been selected based on the ligand binding 55 

domain of the bound co-crystal ligand. In order to validate the 
docking protocols, self docking was also performed35. The 

docked receptor-ligand complex has been analyzed to investigate 
the type of interactions and to compare the dock score. Moreover, 
related crystal structures (PDB ids: 3K5C36, 3K5D37, 3K5F37, 60 

3K5G37, 3DV538, 3MSJ39, 3MSK39, 3OHF16, 3PI540, 3QBH40) 
with the bound ligand are compared for the interaction study.  
 

Results and Discussion 

The in vivo assay of piperazine sulfonamides as BACE inhibitor 65 

analogous41 justify a relationship between binding affinity and 
IC50 values. The chemometric models for binding affinity to 
BACE have been already reported42. In the present work, 
important bio-phoric features required for BACE inhibitory 
activity have been explored using various ligand-based 70 

chemometric tools, followed by validation through structure-
based docking analysis. The de novo design molecules were 
screened to expedite potential BACE inhibitors. 

3D QSAR studies 

The results of 3D QSAR (CoMFA/ CoMSIA) studies are listed in 75 

Table 1. 
The CoMFA model 

Combination of ‘s’ and ‘e’ developed the best model (Model 1: 
nTr =  557, R2= 0.880, se= 0.402, Q2= 0.596, R2bs = 0.936, r2m = 
0.880, ∆r2m = 0.108) in CoMFA study, whereas individually ‘s’ 80 

and ‘e’ features failed to develop validated contour maps. The 
contour map of Model 1 is depicted in Figure 1 (I). Validation 
has been performed by n-fold external validation technique. The 
predictive ability of the model with four-folds test compounds 
(R2pred = 0.708, 0.716, 0.703 and 0.724 with nTs =  100, 100, 100 85 

and 123, respectively) justify the robustness of the model. The 
contributions of ‘s’ and ‘e’ in Model 1 are found to be 46.70% 
and 53.30%, respectively, which indicate that both ‘s’ and ‘e’ 
fields play essential roles. The predictiveness of the Model 1 is 
depicted in Figure 2 and also listed in Supp. file (Table S1).  90 

In the field analysis, electrostatic fields expressed as blue 
(favorable) and red (unfavorable) contours represent 80% and 
20% level of contributions for BACE inhibition, respectively. 
The highly active compounds (comp 560) fitted in the contour 
map appropriately (Figure 1(I) A), whereas the least active 95 

compound (comp 118) (Figure 1(I) B) does not fit the model at 
all. The region around the blue contour indicates that increased 
positive charges favor the activity, while negative charges near 
the red contours may also be favorable for activity. Presence of 
electron rich chains are favourable; while positive inductive 100 

effect of alkyl chain increases the positive charge, favourable for 
bioactivity as revealed by CoMFA electrostatic contour map. The 
regions of green contour (steric favorable) in Model 1 suggest 
that bulky substituent like macrocyclic ring in that position may 
improve the biological activity due to conformational rigidity, 105 

while the yellow region (steric unfavourable) indicates that an 
increased steric bulk is unfavorable for the activity. 
  
Table 1 
 110 

The CoMSIA model 

In similarity studies, the best model is generated through ‘s’, ‘e’, 
‘d’, ‘a’ and ‘p’ factors (Model 2: nTr =  557, R2= 0.903, se= 0.362, 
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Q2= 0.578, R2bs = 0.947, r2m = 0.903, ∆r2m = 0.088). The test 
compounds were divided into 4 sets and obtained the predictive 
statistics R2pred = 0.643, 0.752, 0.763 and 0.703 with nTs = 116, 
107, 124, 76 respectively, justifies the robustness of the model. 
The contributions of ‘s’, ‘e’, ‘d’, ‘a’ and ‘p’ in Model 2 are found 5 

to be 18.10%, 19.40%, 20.90%, 19.40% and 22.20% respectively, 
which indicate that ‘s’, ‘e’, ‘d’, ‘a’, ‘p’ together play essential 
roles for the inhibition. The prediction of the compounds as per 
Model 2 is portrayed in Figure 2 and also listed in the Supp. file 
(Table S1).  10 

In CoMSIA model, the contour maps show different favourable 
and unfavourable regions in the molecular area. Highly active 
compound (comp 560, Figure 1(II) A) is fitted in the contour map 
very well, however the least active compound (comp 118, Figure 
1(II) B) could not able to map accurately with the contour. The 15 

green contour demonstrates the steric favourable region, whereas 
the yellow contour indicates the unfavorable steric zone. Blue 
contour around aromatic hydrocarbon suggests positive charged 
atmosphere is favorable for bio-activity due to its electron 
donating property. The red contour suggests that electron rich 20 

motifs, like hydroxyl with its highly electronegative oxygen, 
primary amine with its electron donating property and sulfonyl 
group are favourable for electrostatic activity. Heteroatoms along 
with alkyl chain possess positive inductive effect, and cyclic 
alkane for its non-polarity plays important role for hydrophobic 25 

interactions. Magenta contour describes promising HB donor 
favourable region at the nitrogen atom of the primary amines, 
however orange contour confirms the negative impact of the HB 
donating effect of sulfonyl group. The cyan contour suggests that 
heteroatoms are favorable for HB acceptors. The purple contour 30 

recommends the electron deficient atmosphere and alkyl chains 
are unfavorable for HB acceptors.  
 
Figures 1 
Figure 2 35 

 

Hologram QSAR model 

The analysis has been performed on the basis of different 
fragment length and the fragment distinctions, A/B/C/H/Ch/D-
A[A (atom type), B (bond type), C (connectivity) H (hydrogens), 40 

Ch (chirality) and D-A (donor and acceptor)] of the training set 
compounds (nTr = 557) (Table 2). The most suitable fragment size 
was selected based on Q2, low cross-validated standard error 
(secv) and the best combination of the fragment features. The 
fragment size and combination of fragment distinctions have been 45 

optimized for selection of significant hologram length, which was 
based on the PLS analysis that yields the lowest secv and the 
highest Q2. 
The best model is obtained by fragment size = 5 – 10, hologram 
length = 401, and optimum component number = 10 (Model 3: 50 

nTr = 557, R2 = 0.823, se = 0.488, Q2 = 0.823, r2m = 0.822, ∆r2m = 
0.155). The four folds test compounds obtained the R2pred = 0.850, 
0.789, 0.745, and 0.687 with nTs = 100, 103, 103 and 117 
respectively, indicated the good predictive ability of the model. 
The prediction as per Model 3 is depicted in Figure 2 and also 55 

listed in Supp. file (Table S1). 
Contour maps of the HQSAR analysis (Figure 3) show the 
different colors of the atoms or fragments, which determine the 

overall contribution to the activity profiles of the molecules. The 
contributions of the different colors are – (i) red-orange color 60 

indicates a bad contribution ranging from -0.107 to -0.064, (ii) 
the white color indicates an average contribution ranging from 
−0.043 to 0.102, (iii) a yellow color indicates a good contribution 
of 0.102 to 0.153, and (iv) the green color signifies the maximum 
contribution of 0.255 or above. The most important green 65 

contribution is observed in the macrocyclic and phenyl rings 
(Figure 3A). Backbone alkyl chains also depict the average 
contribution as per the most active compound. The 
benzoimidazole scaffold of the least active compound is mapped 
by  red-orange and yellow color (Figure 3B), indicating the most 70 

unfavorable fragment contributing to the activity and has negative 
impact towards the bio-activuty. The HB donor, acceptor and 
chiral atoms signify their contributions for potential BACE 
inhibition. The favorable and unfavorable fragments for BACE 
inhibitory activity are provided in the Supp. file (Figure S1). 75 

 
Figure 3 
Table 2 

Pharmacophore mapping 

In ligand-based pharmacophore mapping, the best hypogen 80 

hypothesis (hypo 5, Table 3) demonstrates 81% correlation for 
inhibition of BACE, but the hyporefine model demonstrates 
better correlation of 83% (hypo 10, Table 3) and prediction on the 
same parameters. The hyporefine model (Model 4) shows good 
null cost of 319.198, ∆cost of 205.715 and rmsd of 1.578. The 85 

HB a and d, p, and i features along with steric influence (ev) 
obtained in Model 4 might function as prime bio-phores for the 
activity. The inter-feature distances of the pharmacophore 
features in 3D space are critical for selective inhibitory activity of 
BACE, represented in Figure 4A. The quality of the generated 90 

hypothesis, adjudged through Fischer’s randomization test28 at 
99% confidence, indicates the superiority of the hypothesis 
considered. For external predictability, the test set compounds 
(nTs = 950) were divided into 4 sets of which R2pred was obtained 
in the range of 0.689–0.849, indicated the robustness of the 95 

model. The observed and predicted inhibitory activity (pIC50) of 
the training and test sets compounds have been represented in 
Figure 2 and also tabulated in supp. file (Table S1). Oxygen atom 
of sulfonyl group behaves as HB acceptor for its lone pair of 
electron and has significant contribution to inhibitory action. 100 

Electronegative atoms, oxygen and nitrogen of the hydroxyl 
group and secondary amines, respectively behave as HB donors 
at the receptor site cavity. Acyclic ring and the alkyl chains play 
important role as hydrophobic fragments for their non-polarity. 
Electron donating hetero groups confirm the importance of 105 

positively ionised feature and favour the bio-activity. The highly 
active compound (comp 560) is mapped thoroughly with all the 
features in the model (Figure 4B), but the least active compound 
(comp 118) is fitted with only three features of the model (Figure 
4C). Presence of excluded volumes in between the pharmaphoric 110 

features suggest that steric contributions in the cavity sites are 
essential for inhibitory activity. The model 4 accounts  10.82 % 
compounds as active in the dataset (n = 980), 77.86 % 
compounds accurately predicted, 4.80 % compounds 
underestimated and 17.35 % compounds over-estimated, justify 115 

the reliability of the model for virtual screening. 
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Figure 4 
Table 3 

De novo design 

The de novo design involves development of those fragments10 5 

which contribute their importance in ligand-based drug design 
and show their interaction at the enzyme’s catalytic site cavity. 
Three seed structures (Figure 5) have been obtained from GROW 
module, depict the importance of 3 specific fragments. These 
fragments were further used to figure new hit molecules. These 10 

hit molecules when used for docking, one of the seeds, benzene 
(S1) and its associated chain, show the interaction with Arg128 
and Asp228 of the receptor. Second seed, piperidine-1-
carbaldehyde (S2) having interaction with the Thr72 at the 
catalytic site. Third seed, 3-(1, 2-Dihydro-pyridin-3-yl)-4,5-15 

dihydro-1H-pyrrolo[3,2-c]pyridine (S3) has an interaction with 
Gly11 at the catalytic site cavity. These molecules (Supp. file, 
Figure S2) also passed the ADMET34 analysis. Screening 
includes properties, such as logPo/w (-2.0-6.5), loghERG (<-5), 
logBBB (-3.0-1.2), #metab (1-8), human oral absorption, and 20 

Jorgensen’s rule of three that includes aqueous solubility >-5, 
Caco-2 cell permeability >22 nm/s, and primary metabolites less 
than 7, justify acceptance of the molecules. The fragments or 
seeds can be successfully used to design new hit molecules with 
oral absorptivity and less toxicity.  25 

 
Figure 5 

Binding interaction 

Docking study has been adjudged through the docking score and 
the binding interactions at the receptor site. Most of the 30 

compounds have shown similar binding orientations and 
interactions. The highly active molecule (comp 560) has good 
affinity toward BACE in terms of docking score (Supp. file, 
Table S1). But the least active compound (comp 118) neither 
participated in docking interactions nor provided any recordable 35 

dock score. In Figure 6A, the comp 560 has been portrayed for 
the analysis at the catalytic cleft of crystal structure of the 
receptor (PDB code: 3OHH)16. The amino acids Ser10, Gln12, 
Asp32, Ser35, Tyr71, Thr72, Lys107, Trp115, Tyr198, Asp228, 
Ser229, Thr231, Thr232, Arg235 (polar amino acids), and Gly11, 40 

Gly13, Leu30, Gly34, Val69, Pro70, Gly73, Gly74, Phe108, 
Ile110, Ile118 and Gly230 (non-polar amino acids) are 
responsible for important interactions at the active site cavity 
(within 4 Ǻ). The interactions are observed in amino group of 
Arg235 and sulfonyl group of propane -1- sulfonic acid methyl-45 

amide chain at a distance of 1.723 Å, carboxyl group of Asp228 
and two different hydrogen of amino group (N27) at a distances of 
2.404 Ǻ and 1.032 Ǻ respectively, keto group of Gly230 and a 
hydroxyl group associated with C25 at a distance of 2.182 Ǻ of 
the compound, confirm the prominent HB interactions. But the 50 

comp 118 does not show any interactions with the amino acids 
(Figure 6B). The Asp228 and Gly230 formed HB interactions 
with the originally bound ligand in the catalytic site. Related X-
ray crystal structures of BACE were also compared for the 
interactions of docked pose of the highly active compounds 55 

(comp 560) of the dataset. The crystal structures 3K5C36, 
3K5D37, 3K5F37, 3K5G37, 3DV538, 3MSJ39, 3MSK39, 3OHF16, 

3PI540, 3QBH40 showed similar kind of interactions with the 
ligands which are already bound with them, compared to the 
highly active compound with 3OHH16. The residues Asp228 and 60 

Gly230 are the most common catalytic amino acids, which 
interact with the bound ligands. The bound ligand of the PDB 
structure 3K5C36 is structurally analog to comp 560, which 
possesses similar kinds of interactions that include hydrogen 
bond interactions of Asp228 and Gly32 with amino group and 65 

hydroxyl groups of the ligands. These interactions justify that the 
docked poses are reliable for understanding crucial interactions in 
the binding site.  
The features of QSARs, pharmacophore space mapping and de 
novo models are adjudged through all these interaction sites. 70 

Importance of the acceptor functionality of heteroatom in Model 
4 is substantiated by HB interaction with Arg235. The 
nucleophilic substituent that imparts electron donating property in 
Model 2 is important through corroborating two HB interactions 
of Thr72 and hydroxyl group. It is also observed that aromatic 75 

ring is important for steric property both in Model 1 and 2. 
Importance of phenyl ring along with alkyl chain in Models 2, 3 
and 4 confirm the significance of hydrophobicity through 
possessing the inductive effects. The HB interactions of amino 
functional group with Asp228 and Thr231 adjudge the 80 

significance of HB donor feature in Models 2 and 4. All these 
models establish that these chemical features and groups are 
prime structural features, and can be effectively utilized to 
formulate the BACE inhibitory hit compound that may 
potentially inhibit the β-secreatase and limit the Aβ precipitation.  85 

 
Figure 6 
  
The de novo molecules also showed good interactions with the 
catalytic amino acids of the receptor cavity, like Arg128, Asp228, 90 

Thr72 and Gly11(Supp. Figure S2). The molecules obtained from 
the fragments also succeeded to pass the ADMET as well as the 
blood brain barrier analyses. It implicates that the explored 
fragments (Figure 5) can be successfully used for designing new 
orally absorb and less toxic hit molecules in the future. 95 

 

Conclusions 

From both ligand– and structure–based studies, it can be 
concluded that aromatic ring and associated alkyl chain, sulfonyl 
alongwith alkyl and  methyl-amide chains, amide backbone and 100 

macrocyclic ring are prime molecular scaffolds for imparting 
BACE inhibitory activity. The significance of the de novo 
designed seeds, benzene, piperidine-1-carbaldehyde and 3-(1, 2-
Dihydro-pyridin-3-yl)-4,5-dihydro-1H-pyrrolo [3,2-c] pyridine 
fragments has been adjudged through the pharmacophore features 105 

obtained from the ligand–based models, and the designed hit 
molecules are showing good interactions pattern at the catalytic 
site of the receptor. The ADMET screening and BBB penetration 
property also proved the drug likeness of the hit molecules. The 
study depicts that HB donor and acceptor, hydrophobic, 110 

electrostatic and steric properties of ligands are essential 
pharmacophores (Figure 7) for BACE inhibitory activity. 
 
Figure 7 
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Figure 1 (I) CoMFA and (II) CoMSIA models mapped with (A) most active (comp 560) and (B) least active (comp 118) compounds. 

Steric: Green favorable, yellow unfavorable; Electrostatic: Blue favorable, red unfavorable. (C) & (D) Acceptor: Cyan favorable, purple unfavorable; 
Donor: Magenta favorable, orange unfavorable; Hydrophobic: pink favorable, white unfavorable. 10 
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Figure 2 Observed versus predicted binding affinity as per QSAR and pharmacophore models of BACE inhibitors 5 
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Figure 3 HQSAR contribution map of (A) comp 560 (most active) and (B) comp 118 (least active) 
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Figure 4 (A) Pharmacophoric features with inter - feature distance (Ǻ) of Model 4, mapped with (B) most active and (C) least active compounds. 

Features are HB acceptor (a), HB donor (d), hydrophobic (p),  positive ionization (i) and excluded volume (ev). 
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Figure 5 Important fragments obtained through de novo design 
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Figure 6 Molecular docking interactions at the binding site with the (A) comp 560 and (B) comp 118 
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Figure 7 Schematic representation of pharmacophore features of potent BACE inhibitors 
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Table 1 Statistical parameters of QSAR and pharmacophore models 

 5 

Study Parameters Models  
1 2 3 

QSAR 

Components 10 10 10 
ntr 557 557 557 
R2 0.880 0.903 0.823 
se 0.402 0.362 0.488 

F (df) 401.914 510.381 - 
Q2 0.596 0.578 0.823 
R2bs 0.936 0.947 - 
sbs 0.298 0.270 - 
r2m 0.880 0.903 0.823 

r2m(rev) 0.772 0.815 0.668 
r2m(avg) 0.826 0.859 0.745 
∆r2m 0.108 0.088 0.155 
nts 423 423 423 
R2pred 0.713 0.715 0.768 
sp 0.597 0.589 0.580 
r2m 0.694 0.723 0.688 

r2m(rev) 0.509 0.499 0.449 
r2m(avg) 0.602 0.611 0.569 
∆r2m 0.184 0.225 0.239 

Contribution (%) 
s 46.70 18.10 - 
e 53.30 19.40 - 
d - 20.90 - 
a - 19.40 - 
p - 22.20 - 

Model 4 

Pharmacophore 

ntr 30 
R2 0.833 
rmsd 1.578 
Q2 0.845 

Cost analysis  
Config. 15.949 

Null 319.198 
∆ 205.715 

Output features a, d, p, i, 2xev 
r2m 0.790 

r2m(rev) 0.785 
r2m(avg) 0.788 
∆r2m 0.005 
nts 950 
R2pred 0.764 
sp 0.509 
r2m 0.707 

r2m(rev) 0.754 
r2m(avg) 0.729 
∆r2m 0.048 
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 5 

Table 2 Results of HQSAR analysis 

 
 

Fragment 
size 

Fragment 
distinction Q2 secv R2 se Component Hologram 

length 

4-7 A/B/C/D&A 0.820 0.492 0.820 0.492 10 401 

1-12 A/B/C/D&A 0.827 0.483 0.827 0.483 10 401 

5-10 A/B/C/D&A 0.823 0.488 0.823 0.488 10 401 

1-8 A/B/C/D&A 0.816 0.497 0.816 0.497 10 353 

3-9 A/B/C/D&A 0.819 0.494 0.819 0.494 10 401 

4-8 A/B/C/D&A 0.814 0.500 0.814 0.500 10 353 
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Table 3Hypothesis parameters observed in successive runs 

Hypothesis 
No. 

 

Uncertainty 
 

Weight 
variance 

 

Spacing 
(pm) 

 

Pharmacophore 
features 

in generated 
hypothesis 

Cost 
R2 

 
rmsd 

 Null 
 

∆cost 
 

1 2.5 0.302 200 a, d, p, i 319.198 147.439 0.814 1.706 
2 1.5 0.302 200 a, d, p, i 1213.600 879.882 0.811 3.803 
3 2.5 1.500 200 a, d, p, i 319.198 158.914 0.794 1.752 
4 2.5 2.000 200 a, d, p, i 319.198 163.465 0.814 1.667 
5 1.5 1.000 250 a, d, p, i 1213.600 887.676 0.795 3.953 

6* 2.5 2.000 200 a, d, p, i, 2ev 319.198 205.715 0.833 1.578 
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