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Regulon prediction tools are trendy in System Biology but software developers, concerned for 

providing reliable outputs, often impose rigid screening parameters. We discuss and illustrate why 

biologists should utilize tools that allow lowering threshold scores set by default in order to discover 

unexpected but essential cis-trans relationships. 
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On the Necessity and Biological Significance of 
Threshold-free Regulon Prediction Outputs 

Sébastien Rigaliac, Renaud Nivelleab, and Pierre Tocquinb 

The in silico prediction of cis-acting elements in a genome is an efficient way to quickly obtain 
an overview of the biological processes controlled by a trans-acting factor, and connections 
between regulatory networks. Several regulon prediction web tools are available, designed to 
identify DNA motifs predicted to be bound by transcription factors using position weight 
matrix-based algorithms. In this paper we expose and discuss the conflicting objectives of 
software creators (bioinformaticians) and software users (biologists), who aim for reliable and 
exhaustive prediction outputs, respectively. Software makers, concerned with providing tools 
that minimise the number of false positive hits, often impose a stringent threshold score for a 
sequence to be included in the list of the putative cis-acting sites. This rigidity eventually 
results in the identification of strongly reliable but largely straightforward sites, i.e. those 
associated with genes already anticipated to be targeted by the studied transcription factor. 
Importantly, this biased identification of strongly bound sequences contrasts with the 
biological reality where, in many circumstances, a weak DNA-protein interaction is required 
for the appropriate gene’s expression. We show here a series of transcriptionally controlled 
systems involving weakly bound cis-acting elements that could never have been discovered 
because of the policy of preventing software users from modifying the screening parameters. 
Proposing only trustworthy prediction outputs thus prevents biologists from fully utilising their 
knowledge background and deciding to analyse statistically irrelevant hits that could 
nonetheless be potentially involved in subtle, unexpected, though essential cis-trans 
relationships. 
 

Regulon prediction web tools and threshold score 
apprehension

The physical interaction between regulatory DNA-
binding proteins and their cognate DNA sequences directs the 
spatio-temporal and the elicitor-dependent expression of genes 
whose product is only required either at a certain moment or 
under specific environmental conditions. Bioinformatic programs 
designed to identify the cis-acting elements bound by a 
transcription factor (TF) have been demonstrated to be efficient 
tools in System Biology, able to quickly unveil genes whose 
expression is associated with specific or interconnected 
biological processes. As we have now undeniably entered an era 
of low-cost DNA-sequencing in which  novel and fully annotated 
genomes are deposited in specialised databases on a daily basis, 
the in silico prediction of a TF regulon has become an 
examination ‘reflex’ preliminary to expensive in vivo and in vitro 
genome-wide investigations. The growing popularity of such 
computational work can be inferred from the number of software 
products used for predicting regulons, as well as by the regular 
updates of the latter since they first became publicly accessible. 

Typically, in a supervised motif finding approach1, the software 
user begins the regulon prediction process by creating a position 
weight matrix (PWM) that attempts to best represent the tolerated 
variability of a series of DNA sequences known to be bound by a 
TF2. With minor modifications depending on the algorithm used, 
PWMs are obtained by attributing a score to any nucleotide i at 
position j of an L length sequence, based on its frequency of 
appearance in the TF-binding sites that fed the algorithm. The 
score of an L length sequence is the sum of individual scores of 
each nucleotide composing the sequence. The PWM will then 
serve to scan the full or partial genome sequence in order to 
identify genes neighbouring identical or similar L length DNA 
sequences presumed to fall under the expression control of the 
studied TF. The number of sequences in the regulon prediction 
output list, and thus the ratio between false positive hits and truly 
bound sequences in vivo, will depend on the threshold or cut-off 
score fixed by the software user, where this is allowed by the 
software developer. 
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Software creators aim for reliable prediction outputs 
 

From the standpoint of the software creator (for whom 
the output is the final result, with no further development), the 
legitimacy of a regulon prediction program depends on its ability 
to provide primarily positive hits. The guaranteed robustness and 
accuracy of the predictions is even cited as an argument to tout 
the merits of DNA motif finding software. Software developers’ 
reluctance to endorse any tool not meeting the (purely statistical 
and thus theoretical) reliability criteria results in programs that 
have built-in high threshold scores or P-values, limiting the 
output to the very best matches. However, the score obtained by a 
sequence does not accurately reflect the affinity of a TF for its 
predicted cis sites, but in fact only highlights the similarity of this 
sequence with the training set. Preventing users from defining the 
threshold is a way to prevent the ‘misuse’ of the prediction 
software, and for statisticians misuse means producing an output 
list full of false positive hits. The problem is that this arbitrary 
constraint is only based on probabilistic standards depending 
only on the training set of sequences that have been used to 
generate the PWM instead of being supported by biochemical 
values (see below the paragraph on the ‘historical background’).  
 
Software users aim for exhaustive prediction outputs 
 

In contrast, simply predicting the straightforward, basic 
and expectable binding sites of a TF is not generally the ambition 
of software users, often biologists, who instead aim for an 
exhaustive regulon prediction output, i.e. an output that 
additionally provides non-obvious positive hits. For the biologist, 
a predicted DNA-binding site of a TF (highly reliable or not) 
simply represents a statistical information requiring further 
experimental validation through classical (one gene at a time) or 
high-throughput experimental techniques. Weakly-bound sites of 
a TF most often fall into this ‘non-obvious and unreliable’ 
category although they are just as important as strong binding 
sites in the route of unveiling the molecular mechanisms 
controlling the triggering of a biological process. For instance, in 
many inducible systems key genes are expressed at a basal level 
that allows the organism to possess a sufficient amount of 
proteins to sense the activating signal once it is present in the 
environment. This basal expression level necessary for sensing 
the regulon elicitor is only possible if the targeted DNA sequence 
of a transcriptional repressor has undergone a series of mutations, 
weakening the DNA-TF interaction and thus possibly escaping 
the threshold score fixed by the prediction software. In addition, 
when the expression of a gene is controlled by many different 
TFs, each TF must include its own binding site within a gene’s 
upstream region, which is limited in size. The multiplicity of TFs 
controlling a single gene often signifies that the expression of the 
target gene is elicited by many different environmental signals. 
When several TFs bind neighbouring or overlapping sequences 
this necessarily implies the evolution of non-discriminatory 
mutations, allowing the different binding sites to coexist. 
  

Besides the restrictions imposed by software creators, 
biological and technical causes are also responsible for favouring 
the discovery of the strongest binding sites of a TF. Indeed, 
independently of the algorithm used by the DNA motif search 
software, the prediction output almost entirely depends on the 
training set of sequences used to generate the PWM. This set of 
sequences is in turn dependent on the ‘historical background’ of 
the selected TF (i.e. the earlier investigations that identified the 
cis-acting elements already discovered). In general, DNA 

sequences most strongly bound by the regulatory protein (those 
that best match with the preferred sequence of the TF), are the 
sequences that tend to be identified first. This is in part due to the 
fact that the strongest interactions are technically easier to detect 
than weaker ones, and that the principal target genes of a TF 
(those that requires strict expression control) are often located in 
the neighbouring region of the TF and are also conserved 
between species, which further facilitates their discovery. This 
natural inclination for the cis-acting elements most strongly 
bound by a TF to be discovered first has a strong impact on the 
efficiency of regulon predictions, as the earliest PWMs are biased 
towards the discovery of highly reliable sequences. 
 
Overall, the software user has numerous reasons to not accept the 
threshold or cut-off scores fixed by software developers, 
legitimately concerned with providing outputs with a limited 
number of false positive hits.  
 
Examples of weakly-bound sites not detected by 
web tools that fix restrictive threshold scores 
 

To illustrate that favouring reliable instead of 
exhaustive outputs has little biological meaning we decided to 
demonstrate that a series of weakly bound cis-acting elements of 
a well-studied TF could never have been discovered using the 
threshold scores imposed by some of the most popular regulon 
prediction web tools. The examples chosen originate from our 
investigations into the regulon of the N-acetylglucosamine 
(GlcNAc) utilisation regulator DasR in Streptomyces coelicolor3. 
Chronologically, all first target genes experimentally 
demonstrated to be controlled by DasR were genes that revolve 
around the catabolism of GlcNAc and its polymer chitin3-6 
(Figure 1). As often happens for global or pleiotropic regulators, 
the first sequences that we discovered to be bound by DasR 
(referred to as “dre” for DasR responsive element), were the best 
ones, i.e. those best matching the dre palindromic sequence 
ACTGGTCTAGACCAGT. Indeed, as presented in Table 1, the 
consensus sequences deduced from dres upstream of genes 
involved in chitin and GlcNAc utilisation both exhibited very 
high scores, with respectively one and two mismatches compared 
with the perfect 16-bp palindromic dre. 

Table 1.  
Sequences and scores of DasR responsive elements 

Gene(s) dre Score SD 
Palindromic dre ACTGGTCTAGACCAGT 16.90 na 
GlcNAc genes AgTGGTCTAGACCAcT 13.70* 1.31 
chi genes ACTGGTCTAGACCAaT 12.02* 1.86 
dmdR1 tgcGGTCTgGACCAGT 9.73 na 
redZ AgTGGTtTccACCtca 5.95 na 
actII-4 tgTtGacTAGgCCtGT 2.85 na 
* The presented score is the mean of the scores of the best dres identified 
upstream of chi, and GlcNAc associated genes. na = not applicable. SD = 
standard deviation. Lower case letters indicate nucleotides that differ 
from palindromic dre. 
 

In order to identify genes controlled by DasR beyond 
the predictable GlcNAc and chitin utilisation systems, we created 
in 2007 our own DNA motif screening tool named PREDetector 
(Prokaryotic Regulatory Elements Detector7), motivated (and 
frustrated) by the unavailability of threshold-free regulon 
prediction software products. The threshold score that is most 
often recommended by regulon prediction web tools is the 
weakest score of the sequences used to generate the PWM 
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many biologically relevant hits are hidden below the arbitrary 
fixed threshold scores and that spending time analysing a long 
output list is often rewarded. For large eukaryotic genomes, the 
length of this list and the total number of potential hits may be 
quite large and hence more difficult to go over them in detail to 
prioritise them. However, biologists should not be scared of 
‘making mistakes’, which in this case would be to decide to start 
investigations on a false positive hit. Finding unexpected 
regulatory connections implies taking risks and is time 
consuming. In any case, the study of an in silico predicted cis site 
that is eventually experimentally demonstrated not to occur in 
vivo is not necessarily considered a loss of time as such an 
investigation constitutes a negative control that strengthens the 
credibility of the positive interactions previously identified. We 
thus encourage software users to privilege the utilization of web 
tools that leave them the opportunity to lower the prediction cut-
off score set by default, which will obviously result in a longer 
list of putative cis-acting sites, full of false positive hits. 
Apparently, many software users are already conscious of the 
necessity to freely play with screening parameters as, at the time 
of writing this opinion article, FIMO is by far the most cited 
online web tool dedicated to the prediction of regulons.   

 
The challenge for bioinformaticians is to provide tools 

that would minimize risks and therefore the main improvements 
of next generation regulon prediction web-tools should aim at 
helping the user in finding which hits are potentially worth to 
investigate in the infinite list of putative candidates. 
Nevertheless, whatever how improved will be the updated 
versions of regulon predicting tools, the decision to start 
investigations on a possible TF-binding site that escapes the 
statistical criteria of reliability must only be the biologist’s own 
decision, based on his/her knowledge, enthusiasm, and curiosity.  
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