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Abstract 

To date, there is no effective marker to predict chemoresistance in cancers. In 

this study, we aimed to find a signature that can detect chemoresistance to 

taxane-based therapies in breast cancer. By studying the gene-expression profiling in 

discovery cohorts with 92 taxane-resistant and 68 sensitive patients, a 20-gene 

taxane-based chemotherapy signature (TAXSig) and a TAXSig equation were 

developed. The TAXSig and its equation were later validated in five further 

independent datasets with a total of 659 patients. In general, the TAXSig equation 

easily and effectively discriminated chemoresistant from sensitive individuals. The 

TAXSig-discriminated groups showed significant differences in clinical outcomes 

both in estrogen-receptor-positive and -negative (ER
-
) breast cancer patients, while 

TAXSig was especially powerful in discriminating ER
-
 patients who had a good 

prognosis and were chemosensitive. In conclusion, TAXSig is a reliable, effective, 

and reproducible means of classifying chemoresistance to taxane-based therapies in 

breast cancer. 

Key words: chemoresistance; taxane-based chemotherapy signature; clinical 

outcomes  

 

1. Introduction  

Chemoresistance is one of the primary causes of failure in the chemotherapeutic 

treatment of most human tumors, and diagnosing the sensitivity of a tumor before 

chemotherapy may greatly improve the efficiency of therapies and the quality of life 
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of patients. 

Although chemoresistance can be divided into acquired or intrinsic based on the 

initial response to the first therapy, common mechanisms have been identified that 

giving tumor cells resistance to a variety of structurally and functionally distinct 

agents [1, 2]. Therefore, recognizing the common mechanisms in different 

chemoresistant tumor cells may help to predict the response of a patient to a specific 

chemotherapy. For example, P-glycoprotein plays an important role in the 

chemoresistance of tumor cells by pumping various chemotherapeutic drugs out of the 

cell before they exert their cytotoxic effects [3]. Also, glutathione-S-transferase is 

another factor that mediates chemoresistance by increasing the anti-oxidant and 

anti-apoptotic capacity of tumor cells [4]. To date, although increasing numbers of 

key factors are being identified in chemoresistant tumor cells, many of these studies 

have focused only on the mechanism of a single factor in certain tumor cell lines or in 

small numbers of clinical samples. Therefore, the results of these studies may not be 

supported in the clinic due to the difference between in vitro studies of tumor cell 

lines and a real tumor mass, as well as the heterogeneity of human tumors. Therefore, 

in order to more effectively diagnosis chemoresistance, it may be a good strategy to 

identify one common mechanism that involves many factors and is shared by large 

number of clinical tumors. 

Gene-expression profiling of clinical tumor samples provide a new means to 

generate ‘signatures’ for detecting certain features of cancer, such as metastasis and 

chemoresistance. These signatures contain genes whose expression commonly 
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changes in the indicated types of cancers [5-8]. The most famous example is the 

development of MammaPrint [8], which is a 70-gene breast cancer gene signature that 

has been cleared by the U.S. Food and Drug Administration to assess the probability 

of metastasis in breast cancer.  

In this study, by using previously-published gene-expression profiles from breast 

cancer patients who were resistant to taxane-based chemotherapy, we identified 20 

genes that are differentially expressed in chemoresistant and chemosensitive breast 

cancers. A taxane-based chemotherapy signature (TAXSig) was then generated. 

TAXSig predicts the chemoresponse to taxane-based chemotherapy and the outcomes 

of breast cancer patients. 

 

2. Materials and Methods  

2.1 Preparation of expression data 

We collected publicly-available datasets of breast cancers in the Gene 

Expression Omnibus (GEO) with enough information about either the response to 

taxane-based chemotherapy or the outcome of each patient. The datasets were 

produced by whole-genome microarrays and with a medium to large sample size 

(Table 1). The raw data with hybridization probes were consolidated with the Entrez 

GeneID and the gene names were Gene Ontology (GO)-annotated with the Perl 

programming language. The gene expression level was normalized and 

log2-transformed, and the Wilcoxon rank sum test was used to calculate the difference 

in the gene expression value between chemoresistant and chemosensitive patients. 
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Table 1. Publicly-available gene expression data analyzed in this study 

GEO Data 

source 

Chemo 

-therapy 

No. of 

arrays 

Institution Reference Platform 

No. of 

Gene IDs 

GSE349&350 Docetaxel 24 

Baylor College of 

Medicine 

(USA) 

Chang et al. 

[9] 

GPL8300 12085 

GSE25055 Taxane 

anthracycline 

310 Nuvera Biosciences 

(USA) 

Hatzis et 

al.[10] 

GPL96 20967 

GSE25065 198 

GSE22220 N/A 216 

University of Oxford 

(UK) 

Buffa et 

al.[11] 

GPL6098 13344 

GSE22049 N/A 

16 out 

of 60 

University of North 

Carolina at Chapel Hill 

(USA) 

Bockhorn et 

al.[12] 

GPL1390, 

887, 885 

22575 
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2.2 Hierarchical clustering 

Hierarchical clustering was performed with Cluster 3.0 software. The raw 

expression data were log2-transformed and mean-centered by subtracting the means of 

each gene between different patients so that the mean or median value of each row 

was 0. Complete hierarchical clustering was then performed and the results were 

visualized in TreeView software.  

2.3 Discriminative model 

Twenty genes were selected as a signature to discriminate chemoresistant from 

chemosensitive patients (taxane-based chemotherapy signature, TAXSig). The 

Bayesian discriminative method using leave-one-out cross-validation in SPSS was 

used to assess the validity and robustness of TAXSig in distinguishing the two 

phenotypic states. With this method, the mRNA levels of these genes were used to 

classify patients and we generated a discriminative equation to give each patient a 

TAXSig score. The mean value of the scores was used as a threshold for 

chemosensitive or resistant individuals [13-15]. The performance of the TAXSig was 

evaluated by the area under the receiver operating characteristic curve (AUC, 

Matlab). 

2.4 Survival analysis 

Distant relapse-free survival (DRFS) and relapse-free survival (RFS) were 

considered as events for all survival analysis. Survival curves were analyzed by the 

Kaplan-Meier method and compared with the  Log-rank method (SPSS). Hazard 

ratios (HR) between the chemoresistant and chemosensitive groups were calculated 
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using COX regression (backward stepwise selection procedure (Wald), SPSS). Odds 

ratios (ORs) throughout all of the datasets were calculated using Review Manager 

software to yield forest plots. 

 

3 Results 

3.1 Generating the 20-gene TAXSig and discriminative equation in the discovery 

cohort 

    GSE349 and GSE350 (including chemoresistant and chemosensitive patients 

respectively, termed GSE349&350 in the following), as well as GSE25055 were used 

together as discovery cohorts to generate the TAXSig for predicting chemoresistance 

to taxane-based chemotherapy. GSE349&350 contains 24 patients who were either 

resistant or sensitive to docetaxel treatment. GSE25055 contains 310 patients with 

different degrees of response to taxane-anthracycline chemotherapy. In GSE25055, 

we defined patients with a pathologically complete response (pCR) after 

chemotherapy as chemosensitive, while patients with an extensive residual cancer 

burden (RCB-III) were considered to be chemoresistant. As a result, 79 of 310 

patients in GSE25055 were chemoresistant, while 57 were chemosensitive.  

Then the p-value (Wilcoxon rank sum test, p <0.05) for each gene between 

resistant and sensitive patients was calculated separately in the two data sets. The 

significantly-changed genes were then compared between the two data sets to find 

overlaps, and the process generated 124 genes (supplemental table 1).  

The overlapped genes were ranked according to their p-values. Because it would 
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be ideal to find a signature with few genes but good predictive power, we chose the 

top 50 genes with the smallest p-values in either GSE349&350 or GSE25055 as the 

basis of the signature in the first-round selection.  

These 50 genes were applied to GSE349&350 and GSE25055 using a 

preliminary Bayesian discriminative method. The genes showed only ~65% success 

in discriminating the chemoresponse in these datasets (data not shown). So we then 

selected or eliminated the genes one by one using the following method: each gene 

was left out of the 50-gene set one at a time, the discriminative model was refitted 

using the remaining genes, and the chemoresistance was predicted and the success 

rate was calculated. If one gene caused a greater successful rate when omitted from 

the 50-gene set, it was eliminated; and vice-versa. Finally, a 20-gene TAXsig was 

generated, showing the best success rate. 

The genes were hierarchically-clustered and GO-annotated (figure 1 and 

supplemental table 2). The implications of these genes for cancer progression and 

drug resistance were also analyzed by searching for previously-published studies 

(supplemental table 2), and the results showed that these genes regulate different 

biological processes.  

We performed leave-one-out validation with the Bayesian discriminative method 

to predict the chemoresistant status of the patients [8, 11] in GSE349&350 and 25055 

using TAXSig. With this method, two discriminative equations were generated based 

on the mRNA levels of the 20 genes in TAXSig. Then a score was calculated from the 

equation for each patient. Finally, a threshold value was generated as the mean of the 
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scores of all patients. TAXSig discriminated the GSE349&350 patients with a success 

rate of 100%, while correctly discriminating 89.9% of the chemoresistant patients and 

86.0% of the chemosensitive patients in GSE25055 (Figure 2 A and B). The ability of 

TAXSig to predict the chemoresponse in GSE25055 was further tested by the AUC, 

which was 0.876 ± 0.06 (Figure 2 C), indicating that TAXSig performs well in 

predicting the chemoresponse in GSE25055. 

Because of the differences of microarray platforms and groups of patients 

between GSE349&350 and GSE25055, TAXSig generated completely different 

discriminative equations for the two datasets. As a result, the chemoresistant patients 

were given positive scores with the GSE349&350 equation, but the scores were 

negative with the GSE25055 equation.  

However, although the equation from GSE349&350 showed a greater success 

rate, GSE25055 involved more patients, so the discriminative equation from 

GSE25055 was theoretically more reliable and precise than that from GSE349&350. 

Indeed, when we used the equation from GSE25055 to calculate the scores for 

patients in GSE349&350, it also showed a good ability to discriminate (Figure 2 D), 

but the equation from GSE349&350 performed worse for GSE25055 (data not 

shown). Therefore, we defined the equation form GSE25055 as the TAXSig equation 

as follows:  

Yk = DBIk + ATG9Ak + TNFRSF10Ck +……+ LSM6k - 33.449 

Where the TAXSig score Yk is calculated for the k
th
 patient with its mRNA level 

for the 20 genes in the TAXSig. The coefficients for each gene are omitted for clarity 
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in this equation but are shown in table 2. For each patient, if their TAXSig score is 

less than the threshold value, they are defined as chemoresistant, and vice versa. The 

scores calculated by TAXSig for the patients in GSE349&350 and 25055 are shown 

in supplemental table 3.  

To exclude the possibility that the TAXSig is dependent on the specific 

algorithm derived from discovery cohorts in predicting the chemoresistance, we 

applied a distinct classification method, i.e. logistic regression [7, 16], to determine 

the ability of the TAXSig in discrimination. As the result, the TAXSig still 

discriminated the chemoresistant patients from the chemosensitive ones in 

GSE349&350 and 25055, and both success rate (Figure 2 D) and incorrectly 

discriminated individuals (supplemental table 2) were very similar with results from 

TAXSig equation.  
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Table2. The coefficients of the TAXSig discriminative equation 

 gene coefficient  gene coefficient 

1 DBI 0.22 11 GOLGA2 0.087 

2 ATG9A 0.751 12 GNAI3 -0.115 

3 TNFRSF10C -0.123 13 DTNA -0.128 

4 FGFR1 -0.107 14 TUBGCP3 0.207 

5 PRKCI 0.856 15 PDXK 0.068 

6 ATF3 0.253 16 BTN3A3 0.202 

7 TNPO2 0.401 17 CDKN2C 0.436 

8 UBE3B 0.132 18 DCTN1 -0.43 

9 TOR1A 0.969 19 NDUFA6 -0.296 

10 SATB2 -0.207 20 LSM6 0.276 
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3.2 Predicting clinical outcomes with TAXSig  

We later applied TAXsig to the 174 patients in GSE25055 other than the 79 

chemoresistant and 57 chemosensitive patients in this dataset and found that the 

chemoresponse of these patients was indeterminate. The chemoresponse of these 

patients were predicted according to their TAXSig scores (supplemental table 3).  

Later, we divided all 310 patients in GSE25055 into chemoresistant and 

chemosensitive groups, and Kaplan-Meier curves were then used to calculatd the 

differences in DRFS between the two groups. This showed that the DRFS rate in 

chemoresistant patients was significantly lower than that of chemosensitive patients 

(Figure 3 A).  

Furthermore, using the multivariate Cox proportional hazards model, TAXSig 

was tested for its association with DFSR together with other clinical indicators (Table 

3). We found that TAXSig, estrogen receptor (ER) status, lymph-node metastatic 

status, and tumor T-grade were covariates with independent prognostic value for 

distant relapse/death. The HR of TAXSig for DRFS was 7.303, indicating that the 

signature is strongly associated with distant relapse/death. Similarly, the HRs of 

T-stage and nodes were 1.39 and 1.46, indicating that they are significantly associated 

with distant relapse/ death. On the other hand, ER status showed an HR of 0.212, 

indicating that ER-positive status is negatively associated with distant relapse/death. 

    Based on the COX analysis that ER status interferes with the DRFS, we then 

grouped TAXSig-separated patients according to their ER status, and the DRFS 

difference was calculated again by Kaplan-Meier curves. As figure 3 B and C showed, 
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This showed that chemoresistant patients had a lower DRFS rate in both the 

ER-positive (ER
+
) and ER-negative (ER

-
) groups than chemosensitive individuals. In 

addition, the DRFS decreased more dramatically in ER
-
 chemoresistant patients than 

those who were ER
+
. 
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Table 3. Multivariate Cox regression analysis of the TAXSig for predicting distance relapse 

in breast cancer patients (n=310) 

Variable Categories Sig. HR 

95.0% CI for 

HR 

95.0% CI for 

HR 

Lower Upper 

TAXSig Resistant vs Sensitive 0.000 7.303 3.165 14.765 

ER Positive vs negative 0.000 0.212 0.122 0.366 

PR Positive vs negative 0.747 0.882 0.412 1.890 

Her2 Positive vs negative 0.324 2.060 0.489 8.671 

age 26~75 0.950 1.001 0.976 1.026 

T Stage 

T1,T2, 

T3,T4 

0.026 1.390 1.039 1.858 

Nodes 

N0,N1, 

N2,N3 

0.03 1.460 1.136 1.877 

    Grade 

1,2, 

3,4  

0.573 1.139 0.725 1.788 

Method = Backward Stepwise (Wald); HR: Hazard ratio. ER= Estrogen receptor; PR= 

Progesterone receptor; Her2= human epidermal growth factor receptor 2; nodes= lymph nodes 

metastasis.  
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 3.3 Analysis of TAXSig in validation cohort 

TAXsig was then validated in GSE25065, which included 198 patients with 

information about their chemoresponse to taxane-anthracycline chemotherapy and 

clinical outcomes. Twenty-three patients were defined as chemosensitive when they 

were pCR and 31 as resistant when they were RCB-III after chemotherapy. The 

TAXSig equation was then applied, and 73.9% of the chemosensitive and 83.9% of 

the chemoresistant patients were correctly discriminated (Figure 4 A). 

We then defined the chemoresponse of all 198 patients, and the DRFS was 

compared between those who were chemoresistant and those who were sensitive. 

Consistent with the discovery cohort, the DRFS in chemoresistant patients decreased 

significantly (Figure 4 B), which was also found in both ER
+
 and ER

-
 patients. Also, 

the chemoresistant ER
-
 patients showed the worst outcomes.   

Furthermore, TAXSig was validated in GSE41998 [17], which included 127 

patients receiving sequential neoadjuvant therapy starting with AC treatment 

(doxorubicin and cyclophosphamide) for 3 weeks, followed by paclitaxel for 12 

weeks. Thirty-four patients were defined as chemosensitive when they were pCR and 

93 as resistant when they were not after paclitaxel treatment. After TAXSig 

calculation of, 79.4% of the chemosensitive and 80.6% of the chemoresistant patients 

were correctly discriminated (Figure 4 E).  

Finally, TAXSig was also tested in chemotherapeutic regimes without taxel 

agents (GSE4779 [5]) but receiving 5-fluorouracil, epirubicin, and cyclophosphamide 

treatment. Patients were defined as chemosensitive when they were pCR and resistant 

when they were not after treatment. As a result, 61.3% patients of were successfully 
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classified as chemosensitive and 63.4% as resistant (Figure 4 F). 

In order to test the effect of TAXSig equation to discriminate chemoresponse, 

logistic regression was applied in GSE25065 and 41998 with TAXSig. It was found 

the result from logistic regression was still similar with that from TAXSig equation, 

as they did in discovery cohorts (Figure 4 G and H).  

3.4 Meta-analysis of clinical outcomes by TAXSig     

To further test the ability of TAXSig to predict clinical outcomes, meta-analysis 

was performed to combine the results from TAXSig analysis in different datasets. To 

obtain the meta-analysis, two more data sets with information about RFS were 

analyzed by TAXSig (GSE22220 [11] and GSE22049 [12]). Because these datasets 

do not contain chemoresponse information, patients were ranked according to their 

TAXSig scores, and individuals with the top 50% scores were considered to be 

chemosensitive. As a result, the patients grouped as chemosensitive showed greater 

RFS rates (Figure 5 A and C), and the difference between chemoresistant and 

sensitive patients were more significant in the ER
-
 groups (Figure 5 B).  

Finally, the meta-analysis of relapse/death events were analyzed by combining 

the results from GSE25055, 25065, 22220 and 22059 with a total of 739 breast cancer 

cases. After TAXSig divided the patients into chemoresistant and chemosensitive 

groups, the relapse/death numbers in each group were summarized and the ORs were 

calculated. All of the ORs for relapse/death were <1 in the sensitive groups (Figure 5 

D), which means that TAXSig-predicted chemoresistant patients had an overall 

negative correlation with the bad outcomes of relapse/death.  
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4 Discussion  

Taxanes are a group of chemotherapeutic agents widely used in the treatment of 

metastatic and early breast cancer. However, currently there are no valid biomarkers 

to predict resistance to these agents [18]. Sensitivity and resistance to taxane are 

highly complex due to the clinical heterogeneity of breast cancers, and using single 

gene biomarkers to assess taxane response seldom produces conclusive results.    

Therefore, we did not design this study to discover specific genes for resistance 

to taxane-based chemotherapies, but set out to identify patterns of several genes that 

could be used as a predictive signature in breast cancer patients with taxane resistance. 

We found a taxane-resistance signature by analyzing the gene expression profiling of 

92 taxane-resistant and 68 taxane-sensitive patients in a discovery cohort. We 

constructed a 20-gene TAXSig, which contained genes that were commonly changed 

in taxane-resistant breast cancer samples. According to the GO category of the 

included genes, they regulate various biological processes of cancer cells that favor 

the development of chemoresistance. We then searched previously-published studies 

to find the signaling pathways of these genes implicated in chemoresistance, and 

found that, among the significantly-changed genes in chemoresistant breast cancers, (i) 

decreased apoptosis and increased cell proliferation were most frequently involved to 

directly decrease the sensitivity of tumor cells to cytotoxic chemotherapeutic drugs; 

these genes included ATG9A [19] [20], TNFRSF10C [21], ATF3 [22], GNAI3 [23], 

and CDKN2C [24]; (ii) cell motility may be increased to help tumor cells to escape 

from the chemotherapeutic drug and enable metastasis via regulation of SATB2 [25], 
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GOLGA2 [26], DTNA [27], and TUBGCP3 [28]; (iii) FGFR1 [29, 30] and PDXK 

[31] have been shown to modulate the malignancy transition of tumor cells, which is 

essential for the development of chemoresistance; and (iv) the epithelial mesenchymal 

pathway was also included in TAXSig as PRKCI [32, 33] and DCTN1 [34], to 

generate drug resistance [35]. Therefore, TAXSig contains several pathways essential 

to the development of chemoresistance, which guarantees its sensitivity in predicting 

chemoresistance. Furthermore, genes such as DBI, TNPO2, UBE3B, TOR1A, 

BTN3A3, NDUFA6, and LSM6 were found not to be directly related to cancer 

progression and chemoresistance, so TAXSig may also open new areas to study the 

mechanism of chemoresistance. 

TAXSig showed a good ability to predict the chemoresponse in four separate 

cohorts with taxane-based chemotherapy for breast cancer regardless of the subtype 

and grade of the cancer, suggesting that TAXSig might be useful to predict the taxane 

response in most breast cancer patients. Furthermore, one of the cohorts used a single 

drug throughout chemotherapy and another three used taxane-based multi-drug 

chemotherapy, and TAXSig was able to predict the chemoresistant to both of regimes, 

suggesting that it is applicable to routine regimes of taxane chemotherapy in breast 

cancer. We did not assess TAXSig in regimes with more than three drugs because 

they are seldom used clinically and the gene-expression profiling is not available.  

In order to enhance the utility of TAXSig, we then developed a discriminative 

equation to give each patient a TAXSig score. By comparing the scores of patients 

within each cohort, the patients could be easily distinguished as chemoresistant or 
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sensitive. The equation worked well in both of the discovery cohorts, GSE349&350 

and GSE25055. In the validation cohorts with taxel-related regimes (GSE25065 and 

GSE41998), but not in the cohort without taxel as a chemotherapeutic agent 

(GSE4779), TAXSig still predicted chemoresistant patients well, but the success rate 

for predicting chemosensitive patients was relatively low. Therefore, it cannot be 

denied that the results may lead to overtreatment of a small fraction of chemosensitive 

patients. However, we noted in the GSE25065 cohort, 22 of the 23 chemosensitive 

patients had T3–T4 stage or AJCC IIA-IIIB tumors, which are thought to be high-risk 

and should be treated with more complicated regimes. Therefore, the results of 

TAXSig prediction can still reduce the absolute number of unnecessarily exposures to 

chemotherapy compared to treatment selection based on the clinicopathological 

criteria.  

Previously, Potti et al. did work similar to ours to assess the sensitivity to 

taxel-based chemotherapies [16]. They generated several separate signatures 

predicting the chemoresponse to agents such as docetaxel, paclitaxel, and adriamycin. 

All of these signatures were generated separately from docetaxel-, paclitaxel-, or 

adriamycin-resistant/sensitive NCI-60 cell lines. With a method similar to ours, i.e. 

leave-one-out cross-validation, the signature was validated in lung and ovarian cancer 

cell lines, as wells as clinical samples of ovarian and breast cancer. However, Potti et 

al. did not provide a discriminative equation. In the validation of the test for 

taxel-based therapies, Potti et al first used the same data set as we did (GSE349&350) 

to validate the single-agent regime. Both their (91.6%) and our studies (overall 
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accuracy = 23/24 = 95.8%) reached a high accuracy of prediction, suggesting that 

expression profiling from both cell lines and clinical samples may be a good choice 

for developing an effective gene-expression signature. Other studies have used both 

methods to develop cancer signature; Shats et al. and Hsu et al. [6, 7] used cell line 

data, and Chang et al. and Famer et al. [5, 9] used clinical data, but the later method is 

more frequently used. However, in validating the response to multiple-agent regimes 

that use paclitaxel as the taxel-based drug (paclitaxel, 5-FU, adriamycin, and 

cyclophosphamide are included in the regime), Potti et al. used a different signature 

developed from paclitaxel-resistant cell lines for this step of prediction, different from 

our use of the same TAXSig. Clearly, using one TAXSig with a clear discriminative 

equation is more convenient for clinical application.   

In addition, we compared the discriminative ability of TAXSig equation with 

logistic regression of TAXSig, and two methods generated similar results, suggesting 

the TAXSig equation is reliable. Previously, the logistic regression was commonly 

used to discriminate certain phenotypes based on a group of covariants [7, 16], but it 

is unpractical clinically. By contrast, it is possible that once the TAXSig equation is 

generated based on a group of patients with known chemoresistance, it may be used to 

calculate and predict the chemoresponse of patients with unknown chemoresistance 

and known gene-expression data of the 20 genes.  

The survival status after therapy is tightly associated with the chemoresponse. As 

one might expect, TAXSig also showed a good ability to predict DRFS. Patients 

predicted to be chemoresistant had an overall lower rate of DRFS. The results were 
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consolidated in 739 breast cancer patients by meta-analysis, suggesting the 

chemoresistant patients, as discriminated by TAXSig, overall have worse outcomes. 

Furthermore, the gene-expression profiling of these patients were from 6 different 

microarray chips but TAXSig worked well in all of them, suggesting that TAXsig is 

practical for clinical use.   

Furthermore, the TAXSig was powerful in discriminating good-outcome from 

bad-outcome ER
-
 patients. Although ER

-
 patients generally have a worse prognosis, 

TAXSig was able to identify chemosensitive ER
-
 patients with a good prognosis, thus 

avoiding overtreatment of this group. In addition, TAXSig was able to identify ER
+
 

patients resistant to taxane-anthracycline-endocrine-based chemotherapy, and this 

group of patients also showed bad clinical outcomes. ER
+
 patients generally have a 

better prognosis than those who are ER
-
, and routinely given endocrine therapy. 

However, a small number of ER
+
 patients still showed chemoresistance and a bad 

prognosis, so it is important to identify ER
+
 patients with a bad prognosis or 

chemoresistance and treat them carefully.  

Taken together, in this study we found 20 genes that reliably, effectively, and 

reproducibly classified patients who were chemoresistant to taxane-based therapies, 

and excluded those that were chemosensitive. Over the last decade, microarray-based 

technology has emerged as a new and personalized approach to tumor diagnosis. 

Therefore, the flexibility of TAXSig between different types of microarray platforms 

enables its practicability as both a prognostic and a predictive biomarker. 
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Figure legends 

Figure 1. Hierarchical clustering of patients in GSE349&350 and GSE25055 

based on the gene expression of TAXSig. The heat map depicts the two-way 

hierarchical clustering of 24 (GSE349&350) and 136 (GSE25055) breast tumor 

samples with 20 genes. Thirteen of the 24 patients in GSE349&350, and 79 of the 136 

in GSE25055 were chemoresistant, while the others were chemosensitive. Low (green) 

and high (red) activity of the genes and predicted clustering of the patients generally 

divided them into two large clusters of sensitive (blue bar) and resistant (purple bar) 

individuals. 

Figure 2. Performance of TAXSig in the discovery cohort. (A a and b) The 

signature score and threshold were calculated separately in GSE349&350 and 

GSE25055 cohorts using the Bayesian discriminative method. The violet dots indicate 

incorrectly-classified individuals. The accuracy of the signature was calculated as the 

number of patients correctly classified/total number of resistant or sensitive patients. 
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(B) The area under the receiver operating characteristic curve (AUC) was calculated 

to test how well the signature predicted chemoresistance. (C) The TAXSig equation 

was generated from GSE25055 using the Bayesian discriminative method, and the 

TAXSig scores were calculated in GSE349&350. (D a and b) The probability of 

chemoresistance was predicted by the binary logistic regression in GSE349&350 and 

GSE25055 cohorts. 0.5 was set as cutoff point.  

Figure 3. Survival analysis of the discovery cohort using TAXSig. (A) 

Kaplan-Meier analysis of DRFS (censored at 8 years) in 310 patients in the 

GSE25055 data set. The patients were grouped into chemoresistant or sensitive by the 

TAXSig calculation, and their difference in DRFS was calculated. (B and C) 

Kaplan-Meier analysis of DRFS in ER
+
 (B) and ER

-
 (C) patients in GSE25055. 

Figure 4. Validation of TAXSig. (A) The signature score and threshold were 

calculated using the TAXSig equation in GSE25065. The violet dots represent 

incorrectly-classified individuals. (B) Kaplan-Meier analysis of DRFS in 198 

TAXSig-grouped patients in GSE25065; the difference of DRFS was also calculated 

for the ER
+
 (C) and ER

-
 (D) patients. (E and F) The signature score and threshold 

were calculated using the TAXSig equation in GSE41998. The violet dots represent 

incorrectly-classified individuals. (G and H) The probability of chemoresistance was 

predicted by the binary logistic regression in GSE25065 and GSE41998 cohorts. 0.5 

was set as cutoff point.  

Figure 5. Meta-analysis of relapse/death using TAXSig. TAXSig scores were 

calculated for patients in GSE22220 and GSE22040, and those with the top 50% 
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scores were defined as chemosensitive, the rest were chemoresistant. RFSs were then 

compared between chemoresistant and sensitive patients in the GSE22220 (A) and 

GSE22049 (C) datasets by Kaplan-Meier analysis. The RFSs of chemoresistant and 

sensitive ER
-
 patients in GSE22220 were also calculated separately (B). Finally, the 

ability of TAXSig to predict clinical outcomes (measured as relapse/death events) in 

GSE25055, GSE25065, GSE22220, and GSE22049 were analyzed by meta-analysis. 

The results were visualized by forest plot. Odds ratios (OR) for each dataset are 

plotted as horizontal bars, the length of the bar represents the 95% confidence interval, 

and the bars can be compared vertically between datasets. The diamond represents the 

total OR of the signature in a total of 739 breast cancer cases. The weight means the 

relative size of each dataset. 
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