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Abstract 

 

Understanding the basal gut bacterial community structure and the host metabolic composition is 

pivotal for the interpretation of laboratory treatments designed to answer questions pertinent to 

host-microbes interactions. In this study, we report for the first time the underlying gut microbiota 

and systemic metabolic composition in BALB/c mice during the acclimatisation period. Our results 

showed that stress levels were reduced in the first three days of the study when the animals were 

subjected to repetitive handling daily but the stress levels were increased when handling was carried 

out at lower frequencies (weekly). We also observed a strong influence of stress to the host 

metabolism and commensal compositional variability. In addition, temporal biological 

compartmental variations in the responses were observed. Based on these results, we suggest that 

consistency in frequency and duration of laboratory handling is crucial in murine models to minimise 

the impact of stress levels to the commensal and host metabolism dynamics.  Furthermore, caution 

is advised in consideration of the temporal delay effect when integrating metagenomics and 

metabonomics data across different biological matrices (i.e. faeces and urine).    
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Introduction 

Animal models form an essential part of biomedical research in the 21st century1, 2 particularly with 

the advent of various omics platforms that generate large complex biological datasets.3-5 Increasingly, 

multiple omics platforms in a single animal model were employed to generate comprehensive 

systems overview of a physiological state or disease pathophysiology.6-9 Combination of 

metabonomic and metagenomic investigations have been used to shed light on the host-microbiome 

interactions and responses to metabolic diseases,10 parasitic infections7 and therapeutic 

interventions.9, 11 Such a system biology approach has contributed greatly to the understanding of 

the link between host microbiome inhabiting the gut and host physiological conditions.9-15 

 

The accuracy of host-microbe modelling is highly dependent on the complex microbiota composition 

and host basal metabolic phenotype prior to an intervention.16-19 Factors contributing to the 

heterogeneity of the gut microbiome and metabolic profiles of experimental animals include various 

physiological factors such as diurnal variation, batch variation, age, gender, and species5, 18, 20-22   as 

well as  external environmental factors such as food and water intake, bedding and temperature. 

Amongst them, the latter has been closely correlated to the stress levels of the animals.  Previous 

studies have shown that both invasive (e.g. bleeding, oragastric gavage etc) and non-invasive (e.g. 

cage changing cleaning and animal lifting etc) laboratory routines are likely to exert stress to the 

animals. The stressed animals usually exhibit abnormal physiological and immunological responses 

which compromised the reliability of the subsequent experimental observation.23  

 

Thus, in order to normalise the basal physiological and gut microbial compositional difference in the 

experimental animals, standardisation in feed, incubation condition, and animal selection (e.g. 

weight, age, gender etc) is normally considered in the development of animal models. In addition, 

experimental animals usually undergo a period of acclimatisation before treatment to allow 

stabilisation of host physiology and gut ecosystem. Interestingly, however, the period of 
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acclimatisation is usually decided arbitrarily (Table 1). It is also still unclear whether both host 

metabolism and gut microbial dynamics respond at the same rate during acclimatisation.  

 

Although various studies have been conducted to understand the effect of stress on animals, little 

attention has been placed on the stress levels exerted and its effect on the animals during 

acclimatisation prior to experimental treatments. Furthermore, current measures of stress were 

mainly focused on the behavioural or selected physiological responses of the animal such as the 

blood pressure, heart beat and corticosterone levels.24-26 Only a few studies have examined the 

relationship between stress and overall metabolic profiles5, 27 or gut microbiota status.28, 29 In 

addition, an integrated systems biology approach utilising both metagenomics and metabolomics 

platforms have not been widely used to study the basal composition and stress responses of the gut 

microbiota and metabolic status of experimental animals.30  

 

Here, we assess the basal metabolic and metagenomic variation and their responses in relation to 

stress during acclimatisation in the mouse-model for the first time using both nuclear magnetic 

resonance spectroscopy (NMR)-based metabonomics approach coupled with terminal restriction 

fragment length polymorphism (TRFLP) analyses. The data obtained from both platforms were 

statistically co-analysed to allow for systems level information recovery. Understanding the boundary 

of ‘normality’ within the host is paramount to ensure correct extraction of biological information 

from the experimental animals. Additionally, the pattern of change in experimental animals during 

acclimatisation will be essential to aid future experimental design in animal studies and delineating 

non-study specific biological variations. 

 

Methods 

Animals and sample collection 
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All animals used in this study were BALB/c female mice (5 weeks of age) purchased from the Institute 

for Medical Research (Kuala Lumpur, Malaysia). Animal experiments were carried out at the 

International Medical University (Kuala Lumpur, Malaysia), according to the guidelines and 

requirements of local and national authorities. Briefly, the animals were maintained at controlled 

environmental conditions (temperature: 26°C, relative humidity: 60-70%, light/dark cycle: 12/12 

hours) with free access to water and standard rodent chow. In this study, urine and faecal samples 

were collected on day 1, day 2, day 3, day 8 and day 15. Faecal samples were collected for 

corticosterone assay and TRFLP analyses. Urine samples were collected for metabolic profiling. 

Faecal and urine sample collection took place between 0800 and 1100 hours to minimise diurnal 

variation in concentrations of biofluids.18 At least 30 μL of urine and 6 faecal pellets were collected 

into Petri dishes without cross-contamination by gently rubbing the abdomens of the mice. Samples 

were transferred into 1.5 mL microcentrifuge tubes, immediately frozen and stored at −80 °C. 

 

Corticosterone enzyme immunoassay from faecal material 

Faecal corticorsterone measurement was used as a non-invasive technique to monitor stress levels in 

the laboratory animals. Corticosterone is a hormone secreted by the adrenal cortex when an animal 

is stressed and has been shown to be an accurate indicator of animal status.31  This technique has 

been proven to be a reliable and accurate method for assessing physiological stress in experimental 

animals.32, 33 Faecal material obtained from mice were measured for the levels of corticosterone 

using the Corticosterone Enzyme Immunoassay kit (Enzo Life Sciences, USA) with minor modifications 

to the sample preparation procedure. Prior to use, the faecal samples were dried overnight in an 

oven at 37 °C and powdered through mashing. The amount of starting material was weighed and 500 

μL of Assay Buffer 15 from the kit was added to each sample. The samples were vortex-mixed for 15 

s and left to stand for 5 min at room temperature. The samples were then centrifuged at 7000 rpm 

for 3 min. 100  µL of the supernatant was used for the assay according to manufacturer’s instructions. 
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The level of corticosterone in each sample was calculated based on the standard curve obtained with 

reference to the weight used for each sample. 

 

Urine sample preparation and 1H NMR spectroscopic analysis 

Urine samples were prepared by mixing 20 μL of urine with 30 μL of a phosphate buffer containing 

90% D2O and 0.25 mM 3-trimethylsilyl-1-[2,2,3,3-2H4] propionate (TSP) and left to stand for 10 min. 

The resulting mixtures were then transferred into 5 mm NMR microbore tubes with 1.7 mm stem 

(Norell, USA). 

 

A standard 1-dimensional (1-D) 1H NMR spectrum was acquired for each sample with a pulse (recycle 

delay (RD)-90°-t1-90°-tm-90°-acquire free induction decay (FID)) on a Bruker AVIII 600 MHz 

spectrometer (Bruker Biospin, Fallenden, Switzerland) with a 5 mm BB(F)O broadband probe 

operating at 600.13 MHz (ambient probe temperature 27 °C). Samples were automatically delivered 

to the spectrometer by a Bruker SampleCaseTM. The field frequency was locked on D2O solvent. The 

water peak was suppressed by gradient water presaturation during the RD of 4 s and mixing time (tm), 

of 0.01 s. The 90° pulse length was adjusted to ~ 10 μs and an acquisition time of 2.65 s was used. In 

total, 32 transients were collected into 64 K data points using a spectral width of 20 ppm. An 

exponential line broadening function of 0.3 Hz was applied to the free induction decay prior to 

Fourier transformation. 

 

Faecal DNA extraction and TRFLP analyses 

DNA was extracted using QiAmp DNA stool mini kit (Qiagen, USA) according to the manufacturer 

protocol. The TRFLP was carried out as described in Chong et al 34 with minor modifications. Briefly, 

PCR was conducted using universal primers (27F and 1492R) targeting bacterial 16S rRNA gene region. 

Both primers were tagged with the fluorescence dye phosphoramidite fluorochrome 5-

carboxyfluorescein (FAM) and 6-carboxy-hexachlorofluorescein (HEX) at 5’ respectively. The 
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amplicons were digested using a 4-base cutter MSP-1 before subjected to electrophoretic separation 

using ABI 3100 and ABI 3730XL genetic analysers (Applied Biosystems, USA). ROX labeled GeneScan 

500 control was used as size standard. The resulting fragment profiles were scored, aligned and noise 

filtered using the web-based programme T-REX.35 Noise filtered procedure was carried out by 

removing peaks which are lower than the overall standard deviation. In addition, alignment was 

carried out by binning the peaks into TRFs with the clustering threshold of 0.5 bp, starting from the 

smallest peak among all the profiles. 36 

 

Data processing and analysis 

For metabonomics analysis, 1H NMR spectra of urine samples were manually phased and baseline-

corrected using Bruker TopSpin (Version 3.1, Bruker Biospin, Fallenden, Switzerland). All spectra 

were referenced to the TSP resonance at δ 0.00. The complete spectra (δ 0.0-10.0) were digitised 

into 7K data points using an in-house developed MATLAB script (O. Cloarec, Imperial College London). 

The region containing the water resonance (δ 4.5-6.5) was removed from each spectrum to eliminate 

baseline effects of imperfect water suppression. In addition, the regions δ 0.0-0.5 and δ 9.2-10.0 

containing only noise were removed. For each spectrum, normalisation to the total sum of the 

residual spectrum was carried out prior to pattern recognition analyses followed by scaling of the 

data to unit variance. Both unsupervised (principal component analysis, PCA) and supervised 

multivariate data analysis methods (projection to latent structures-discriminant analysis, PLS-DA and 

orthogonal partial least squares discriminant analysis, O-PLS-DA37, 38) were employed to visualise and 

interpret experimental differences. The statistical significance and validity of subsequent results were 

calculated using a permutation test (number of permutations = 1 000).39 The covariance plot was 

used to aid interpretation of the significance of each metabolite from the permutation tests. The 

colours projected onto the spectrum indicate the significance of the metabolites with blue indicating 

no significance difference at p > 0.05 confidence levels and red indicating high significance difference 

at p < 0.05. In this study, only metabolites with p < 0.01 will be considered significant. 
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The TRFLP data obtained from T-REX was exported into PERMANOVA + add-on of the PRIMER6 

multivariate data analysis package (Plymouth Marine Laboratory, UK) for analyses. Alpha-diversity 

indices including Shannon diversity index (H’) and Pielou’s measure of species evenness (J’) were 

calculated using the DIVERSE option. For multivariate-analyses, the data was pre-treated with unit 

variance normalisation procedure before generating a Euclidean distance matrix which was used to 

perform permutational multivariate analysis of variance (PERMANOVA) and PCA. The PERMANOVA 

was carried out to test for gut microbial compositional difference between the groupings while the 

PCA was used to visualise the distribution of the samples across the sampling points.   The 

significance of the PERMANOVA was calculated based on 999 permutations and corrected using 

Monte Carlo correction.  

 

To test for the agreement between urine metabolite profiles and gut microbial composition, the two 

distance matrices were correlated using spearman rank correlation under 999 permutations. Two 

separate distance based linear modelling (DISTLM) were carried out to regress the urine metabolites 

on the bacterial assemblage pattern and with the opposite order (i.e. regress the T-RFLP peaks on the 

metabolites data cloud). The parsimonious model was constructed using stepwise selection under 

the second-order bias-corrected Akaike information criterion (AICc).40 Specifically, the stepwise 

selection  procedure allow both forward inclusion and backward elimination of the variables while 

the AICc was used to account for the large number of predictor variables (q) in relatively small 

number of samples (N).  

 

Results 

Faecal corticosterone measurements 

Faecal corticosterone level of samples collected on 5 different days within a 15-day period showed a 

decreasing trend from day 1 to day 3 (decreasing from the highest level to the lowest level), after 
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which, the level of corticosterone increased from day 3 onwards to day 15 (Table 2). The level of 

corticosterone in samples collected from days 8 and 15 were not significantly different from the 

samples collected from days 1 and 2. The statistics indicated that the level of corticosterone was only 

significantly lower on day 3 as compared to day 1. 

 

Effects of acclimatisation and the associated stress on 16S rRNA gene-based gut microbiota profiles 

An opposite trend was observed for the bacterial diversity in the faecal samples. The lowest bacterial 

diversity was observed in the faecal samples collected on day 1 and day 2, while the highest bacterial 

diversity was found on day 3, corresponding to the lowest level of the stress biomarker 

(corticosterone). Subsequently, a reduction in diversity was detected from the samples collected on 

day 8, followed by a slight recovery in diversity on day 15.  

 

PERMANOVA analysis of the TRFLP data suggested a significant difference in bacterial profiles at P = 

0.001 (Pseudo-F = 5.82). A follow-up PCA was conducted to examine the distribution of the data. Fig. 

1A showed a clear distinction between samples collected from day 3 as compared to those collected 

from other time points indicating that the day 3 samples showed the most distinct bacterial TRFLP 

profiles. It is interesting to note that the distinction is consistent with the sample having lowest mean 

corticosterone level among the total collected samples (Table 2). A PCA mean trajectory plot was 

drawn to detect the presence of finer separation within the sample cluster other than replicates from 

day 3 (Fig. 1B). From the trajectory plot, the biggest faecal bacteria compositional change occurred 

from day 2 to day 3 along the first principal component (PC1) followed by a movement along PC1 of 

almost the same magnitude to day 8 in the opposite direction before shifting along the second 

principal component (PC2) to day 15 indicating there was a clear time-dependent faecal bacteria 

development profile.  

 

Effects of acclimatisation and the associated stress on urinary metabolic profiles 
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Median 1H NMR spectra of urine obtained from all time points showed almost similar metabolic 

composition dominated by a number of metabolites such as short chain fatty acids (SCFA) i.e. 3-D-

hydroxybutyrate and α-hydroxy N-valerate, tricarboxylic acid cycle intermediates i.e. pyruvate and 

citrate, methylamines i.e. trimethylamine and trimethalyamine N-oxide, creatine, creatinine, taurine, 

phenylacetylglycine and hippurate (Fig. S1). Visual inspection of the NMR spectra showed subtle 

differences in overall metabolic composition among the time points with the exception of urinary 

NMR spectra obtained on day 8, where relatively lower concentrations of urinary hippurate and 

citrate, and higher concentrations of urinary phenylacetylglycine and taurine were observed. 

 

The urinary metabolic perturbations during acclimatisation were compared using PERMANOVA 

under Monte Carlo correction (999 permutations). Based on the results, the urine profiles were 

significantly different at P = 0.001 (Pseudo F = 4.46). The distribution of the data was further 

visualised using a principal component analysis based on the entire NMR data set. A total of 5 PCs 

were calculated for a PCA model using unit variance-scaled spectral data shown in Fig. 2A. In contrast 

to the gut microbiota profiles where sample with lowest stress level (day 3) showing apparent 

separation from other time points, a clear separation can be observed between urine samples 

obtained on day 8 as compared to all the other time points along PC1, whereas urine samples 

collected on day 1 were partially separated from the main cluster of samples along PC2. PCA 

trajectory analysis was used to give an overview of the metabolic alterations during acclimatisation 

(Fig. 2B). Three clear clusters can be observed in the urinary metabolic space, separating samples 

collected on day 1, day 8 and the remaining three time points (day 2, day 3 and day 15). The 

metabolic trajectory shifted from day 1 to day 2 along the PC2 followed by a slight shift along PC1 

from day 2 to day 3. The biggest shift in metabolic trajectory occurred on day 8 along PC1 before 

returning to day 2 and day 3 metabolic spaces by day 15 along PC1.  
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In order to identify metabolites that are significantly different between each time point pairs, pair-

wise O-PLS-DA models were constructed for each comparison of two time points based on two PLS 

and one orthogonal component with unit variance scaling. In addition, permutation testing was 

carried out on each pair-wise model to identify metabolites that are significantly different.  The total 

explained variation for the NMR data was indicated by the R2 value and the corresponding parameter 

indicating the predictive performance of the model (Q2) reflected a high predictive ability (> 60% for 

all pairs except two (day 2 vs day 3 and day 2 vs day 15) Supplementary Table S1). All pair-wise 

models involving urine collected from mice on day 8 exhibited high Q2 values, which is in agreement 

with the PCA scores plot (Fig. 2A) showing samples from day 8 clearly separated from the other time 

points. In these models, urine collected from mice on day 8 showed elevated 2,3-dihydroxybutyrate, 

α-hydroxy N-valerate, D-3-hydroxybutyrate, phenyalacetylglycine, succinate, taurine, trimethylamine, 

trimethylamine N-oxide, arginine and N-acetyls of glycoproteins, together with decreased levels of 2-

oxoglutarate, acetate, citrate, dimethylglycine, formate, fumarate, guanidinoacetate, hippurate, N-

methyl nicotinate, pyruvate and sarcosine (Supplementary Table S1). 

 

In contrast, changes in urinary metabolites were less pronounced when urine NMR spectra collected 

from the remaining time points were compared against each other. Elevated urinary creatine, 

dimethylglycine, guanidinoacetate and phenylacetylglycine, and decreased urinary trimethylamine N-

oxide were observed when comparing urine collected on day 1 against urine collected on day 2 and 

day 3 respectively (Supplementary Table S1). Urine collected on day 1 also showed relatively higher 

levels of 2-oxoglutarate, citrate and pyruvate, and lower levels of taurine, trimethylamine, 

trimethylamine N-oxide and tryptophan as compared to urine collected on day 15. Urine collected on 

day 2 and day 3 showed, by far, the least difference when compared with only one significantly 

different metabolite, 2-oxoglutarate. Similarly, when comparing urine collected on day 3 against 

urine collected on day 15, only one significantly different metabolite was identified, creatine. The 

results from O-PLS-DA and permutation tests on the latter were reflective of the scores and mean 
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trajectory plots (Fig. 2A and B), which showed no clear discrimination between these three time 

points. 

 

Correlation and linear modelling of the urine metabolic profiles and gut microbiota  

Due to the difference in the assemblage pattern, no significant correlation was found between the 

unit variance normalised Euclidean Distance matrices of both urine metabolites and gut microbial 

profiles (Spearman ρ = -0.04, P = 0.69). We further modelled the relationship separately using urine 

profiles as the predictor for gut microbiota distance matrix, followed by matching the distribution of 

the gut microbiota distribution using the urine metabolite profiles as predictor. According to the AIC 

selection criterion (with second order bias correction), 9 TRFLP peaks (Table 3A) were chosen to 

model the changes of the urine metabolite pattern over the 5 time points (cumulative R2 =41.11%). 

We attempted to relate the putative identity of the TRFLP peaks by comparing to the TRF lengths 

generated via in-silico digestion, however the virtual digestion of the 16S rRNA gene database from 

ribosomal database project (>1200 bp) did not yield matchable identity (data not shown).  

Conversely, 6 1H-NMR peaks were selected using the same criterion to model the variation in gut 

microbial composition over the 15 days acclimatisation experiment (Table 3B). They included 

dimethylamine (2.77 ppm), fumarate (6.55 ppm), hippurate (3.99 ppm), α-hydroxy N-valerate (0.93 

ppm), malonate (3.14 ppm, tentative assignment) and unknown 1 (6.99 ppm). Together, a 

combination of the 6 variables explained 29.1% of the total variance in the model. 

 

Temporal effect of urine metabolites and gut microbiota composition 

Despite the overall dissimilarity between the distribution pattern of PCAs generated using the urine 

(Fig. 1) and stool profiles (Fig. 2), a similar trend was observed between the urine metabolite profile 

obtained from days 2, 3, 8 and 15 with the gut microbiota composition derived from days 1, 2, 3 and 

8. We speculated that such a pattern might be indicative of a delayed response in the urine 

metabolites in comparison to the gut microbial composition. To support our postulation, we 
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repeated the correlation analysis by matching the sample labelling of the urine and stool samples, 

accounting for one time point response delay in the urine metabolite profile (Fig. S2). The results 

showed a significant correlation at Spearman ρ = 0.209 (P = 0.015). However, DISTLM modelling using 

the relabelled data did not show a significant improvement in the overall predictive power. R2 of 

0.4187 was obtained when the urine profile was modelled using the relabelled gut microbial 

composition pattern. On the other hand, R2 of 0.2761 was obtained when the relabelled gut 

microbial distribution was modelled using the urine metabolites composition. Nonetheless, the 

association of 2,3-dihydroxybutyrate (microbial associated metabolites, 1.223 ppm) to the gut 

microbial pattern was apparent in the relabelled data, accounting for nearly 14% of the overall 

variance in the model. 

 

Discussion 

By integrating both metagenomic and metabonomic approaches, we were able to show that the 

basal host metabolic and gut microbiological profiles were significantly affected during 

acclimatisation. The diversity and compositional changes of host gut microbe were shown to relate 

to host stress levels, potentially due to routine faecal and urine collection procedure; and that the 

gut microbe composition and host metabolic responses to the acclimatisation-induced stress may be 

operating on a different time scale. We postulated a potential delayed effect in the latter in 

comparison to the former.  Overall, the stress level, gut microbiota composition and urine metabolite 

profiles were reasonably stable throughout the duration of the entire study (15 days).  

 

Host responses to laboratory procedure -induced stress 

All animals, including humans, undergo an adaptation process known as ‘acclimatisation’ when they 

are introduced or placed in a new environment.41  Such a process takes time to normalise and usually 

invokes stress, which in turn induces metabolic changes in the hosts.5 Indeed, studies have shown 

that experimental animals do habituate to frequencies of handling, which may introduce bias to host 
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sleep homeostasis and stress levels.42, 43 As such, sufficient acclimatisation period should be factored 

into any animal study design to allow for stabilisation of host metabolic and gut microbe composition 

to enable useful extraction of biological information and inference. Our current study showed that 

the faecal corticosterone level was significantly reduced by day 3 of acclimatisation (Table 2), and 

subsequently increased by day 8 and day 15. This is further supported by our study sampling regime 

when sample collection was carried out on days 1, 2, 3, 8 and 15, with the highest frequency of 

handling in the first three days followed by a longer sampling time interval on days 8 and 15. The 

changes in corticosterone levels indicated that experimental animals do habituate to repeated 

handling as observed by the significantly lower levels of faecal corticosterone by day 3, and the 

subsequent increase in faecal corticosterone levels coincided with the longer sampling time interval 

on days 8 and 15. Our finding is in line with Leussis and  Bolivar41 who suggested that habituation is 

common among rodents and that the level of habituation is strongly related to the duration (i.e. intra 

session habituation) and frequency (i.e. inter session habituation) of handling. Initially, we speculated 

that the animals were habituated to the frequency of handling by the third day, but the memory to 

the handling routine dissipated over time as seen in the elevated corticosterone level in day 8 and 

day 15 samples. Thus, the interval between handling should be consistent in order to minimise 

fluctuations in the stress level across the study period.  

 

Our study also showed that animal stress levels may have a direct influence on the host gut microbe 

diversity (Table 2) as well as composition (Fig. 1A). This was substantiated with the faecal samples 

collected on day 3 showing the highest bacterial diversity and significantly different gut microbe 

composition, both of which coincided with the lowest corticosterone levels. Studies pertinent to 

effect of stress on gut microbiota composition dates back to the 70s, when Tannock and Savage44 

showed that  stressed mice harboured  strikingly reduced lactobacilli in their gut. In addition, studies 

have shown that stress factors such as pups-mother separation, confinement (water avoidance stress) 

and social disruption affects the diversity of gut microbiota in experimental animal models. 28, 45, 46 
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Our result provided additional support that the stress induced by non-invasive laboratory routines 

during acclimatisation can also impact on the gut bacterial composition.  

 

Surprisingly however, the urinary metabolic changes on day 3 were unremarkable. Overall 

metabolite profiles of day 3 were similar to other samples (Fig. 2) except for a few metabolites that 

are known to be metabolised both by the host and the commensal flora (microbial-mammalian co-

metabolites) such as hippurate that was elevated and trimethylamine N-oxide and 3-D-

hydroxybutyrate which were reduced in comparison to the metabolite profiles of day 8 

(Supplementary Table S1). It is interesting to note that from the urinary mean trajectory plot (Fig. 2B), 

although the metabolic composition changes over time, it returned to initially stable levels  similar to 

that of day 2 and day 3 by day 15 as evidenced by the relatively lower number of metabolites 

perturbed (Supplementary Table S1). However, the opposite was observed in the faecal microbe 

composition where a progressive change in direction of the compositional trajectory occurred 

throughout the entire 5 time points indicating compositional changes occurs through time. This 

observation highlighted one of the commonly overlooked challenges when conducting 

metagenomics studies wherein the “stability” of the faecal microbe composition in experimental 

animals is difficult to attain even after fifteen days of study.  

 

Temporal intercompartmental biological variation 

In contrast to the corticosterone level as well as the gut microbe compositional variations when 

samples collected on day 3 showed most significant differences (Fig. 1 and Fig. 2), urine samples 

collected on day 8 showed the biggest metabolic variation as compared to other time points. The 

discrepancy could be explained by the presence of temporal inter-compartmental biological variation 

whereby the changes in gut microbe composition would not be reflected immediately in the urine 

samples on the same day. Indeed, a significant correlation was obtained when the gut microbiota 

composition was compared with the relabelled (to account for 1 time point delay) urine metabolite 
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profiles. Furthermore, the reduction in the rodent stress related marker such as hippurate47 in urine 

of day 8 coincided with the lower stress and elevated bacteria diversity in stool collected on day 3. 

These findings are in agreement with previous studies, which showed that a high degree of temporal 

variation exists between faecal and urine samples.27, 48 It should also be emphasised that host urinary 

metabolic composition is a manifestation of the interplay between the host homeostasis and gut 

microbial interactions with the environment. Hence, urinary metabolic composition is more 

regulated by the host as compared to faecal microbe composition which interacts directly with the 

diet and environment. Our results also indicate the need for extra caution when correlating host-gut 

microbiome systemic data as the delay in manifestation of urinary metabolic effect from the gut 

microbiota could lead to misinterpretation of the link between host metabolism and the functional 

role of gut microbiota.    

 

Separation of the urine metabolite profiles collected on day 8 from other time points was mainly due 

to the relative increase in microbial-mammalian co-metabolites such as trimethylamine, 

trimethylamine N-oxide and phenylacetylglycine, and concomitant decrease in tricarboxylic acid cycle 

intermediates such as 2-oxoglutarate, citrate and pyruvate (Supplementary Table S1). However, the 

opposite was observed in level of hippurate, a known microbial-mammalian co-metabolite.11, 49, 50 

Hippurate is formed by glycine conjugation of benzoate in the liver, which is produced from bacterial 

metabolism of plant phenols51 or quinic acid.52 In addition, the gut microbiota is also involved in the 

catabolism of aromatic amino acids including tyrosin and tryptophan.53 Significant changes in urinary 

microbial-mammalian co-metabolites observed on day 8 in the current work indicated a change in 

bacterial metabolism of phenolics in the animals. A variation in the composition of bacteria in the 

host could also explain the directionality of change in certain microbial-mammalian co-metabolites 

such as hippurate and phenyacetylglycine. The evidence of systemic gut microbe modulations was 

also found in the cross modelling analyses (Table 3). A series of host bacteria co-metabolites 

accounted for the highest explanatory values to gut microbe compositional change such as 

Page 16 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



dimethylamine (2.77 ppm), fumarate (6.55 ppm), hippurate (3.99 ppm), and α-hydroxy N-valerate 

(0.93 ppm). The same was observed with the re-labelled table after accounting for temporal delay 

between the two biological compartments with 2,3-dihydroxybutyrate (1.223 ppm) explaining 50% of 

the total R2 value (~ 27%). 

 

Further indicators of gut microbe perturbation were observed with changes in metabolites of choline 

metabolism, the methylamines, such as trimethylamine, trimethylamine N-oxide and 

dimethylglycine.54, 55 Choline metabolism involves both mammalian and sym-xenobiotic metabolic 

pathways that are regulated through complex host-symbiont interaction.56 Methylamines are also 

known to be co-metabolised by the host and the gut microbiota in the large intestine.54 Changes in 

choline metabolites were only observed from day 8 onwards possibly indicating that perturbation in 

gut microbes involved in choline metabolism occur on day 8. In addition, significant increases in the 

level of urinary SCFAs such as 3-D-hydroxybutyrate and α-hydroxy N-valerate were also observed 

from day 8 onwards. SCFAs and lactic acid were products of bacterial fermentation of carbohydrates 

in the cecum and colon.57, 58 Our observations are consistent with a previous animal study by Li et 

al.27, which showed increases in SCFAs during later time points of acclimatisation. 

 

Conclusion 

Animal handlings such as lifting, cage changing and biological sample collections are common in 

animal studies. In this work, we showed that routine laboratory procedures during acclimatisation 

may affect the stress levels of mice resulting in modifications to the metabolic and gut microbiota 

composition. We would like to suggest that stress biomarkers such as corticosteroid levels be 

monitored when conducting an animal study in order to track animal stress levels throughout the 

study.32 Additionally, animal handling intervals should be consistent especially in the murine model 

to minimise variations in stress levels, which could further complicate the extraction and 

interpretation of biological information. 
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Figure Captions 

 

Fig 1. (A) PCA scores plot (R2, 32.1%)  derived from faecal TRFLP of female BALB/c mice from day 1 

(green), day 2 (blue), day 3 (red), day 8 (orange) and day 15 (turqouise). (B) Corresponding PCA mean 

trajectory plot derived from the same TRFLP profiles as (A). Error bar indicates standard error. Key: 

D1, day 1; D2, day 2; D3, day 3; D8, day 8; D15, day 15 

 

Fig 2. (A) PCA scores plot (R2, 36.1%) derived from 1H NMR urinary spectra of female BALB/c mice 

from day 1 (green), day 2 (blue), day 3 (red), day 7 (orange) and day 14 (turqouise). (B) 

Corresponding PCA mean trajectory plot derived from the same 1H NMR urinary spectra as (A). Error 

bar indicates standard error. Covariance plot showing the colour-coded significance of urinary 

metabolite profiles calculated using permutation test between (C) day 1 and day 8, and (D) day 8 and 

day 15. Key: D1, day 1; D2, day 2; D3, day 3; D8, day 8; D15, day 15 
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Figure 2 
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Tables 
Table 1. Period of acclimatisation reported in selected metagenomics or/and metabonomics studies. 
 

Study Period of 
acclimatisation 

Type of 
animals 

References 

Dietary effects on tissue inflammation, 
hypercholesterolaemia and gut 
microbiota 
 

1 week 
 

Male Balb/c 
mice 

59 

Ability of gut microbes to adapt to 
dietary perturbations 

Not stated Male germ-
free C57BL/6J 

mice 

60 

Immunological alteration and changes 
of gut microbiota to dextran sulfate 
sodium administration 

Not stated Wild-type 
female 

C57BL/6 mice 

61 

Metabolic profiling on batch and age-
related changes 

Not stated Female NMRI 
mice 

27 

Metabolic phenotyping in experimental 
laparotomy model of surgical trauma 

1 week Male Wistar 
rats 

62 

Metabonomics and microbiological 
studies of vancomycin-induced changes 

1 week Female NMRI 
mice 

11 

Metabonomics study of ethionine-
induced metabolic changes 

10 days Male 
HanWistar 

rats 

63 
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Table 2. Corticosterone levels and bacterial diversity (mean±SE) in the faecal samples. Different 
letters in superscript denote significant difference at P < 0.05.  
 

Days 
 

Corticosterone 
level  
(log pg/mL) 

Total TRFLP 
peaks 
 

Shannon 
diversity index 
(H’) 

Diversity evenness 
(J’) 
 

1 
6.87A 

±0.12 
309.3B 
±13.1 

4.69CD 
±0.09 

0.82CD 
±0.013 

2 
6.80AB 

±0.09 
178.1C 
±33.3 

4.30D 
±0.19 

0.87D 
±0.010 

3 
6.53B 

±0.05 
530.9A 
±14.3 

5.73A 
±0.03 

0.91A 
±0.005 

8 
6.70AB 

±0.03 
283.4B 
±25.0 

4.95BC 
±0.17 

0.88BC 
±0.017 

15 
6.75AB 

±0.05 
337.4B 
±13.1 

5.34AB 
±0.08 

0.92AB 
±0.014 
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Table 3. Cross modelling of urine metabolite and T-RFLP profiles using stepwise selection procedure. 
Note: Prop. = explanatory proportion, Cumul. = cumulative explanatory proportion, res.df = residual 
degree of freedom. a +, inclusion; - exclusion. 
 

A. Modelling of urine metabolite pattern using gut microbial composition as predictors 

        Variablea   AICc SS(trace) Pseudo-F     P     Prop.    Cumul. res.df 
+59G 315.35 1189.1 5.3738 0.001 8.76E-02 8.76E-02 56 
+252G 314.55 630.09 2.9464 0.003 4.64E-02 0.13395 55 
+350B 313.72 619.2 3.0008 0.005 4.56E-02 0.17955 54 
+217B 312.64 649.46 3.2804 0.002 4.78E-02 0.22737 53 
+310G 311.61 618.03 3.2544 0.002 4.55E-02 0.27287 52 
+61B 310.91 544.78 2.9778 0.006 4.01E-02 0.31299 51 
+372B 310.66 462.65 2.6086 0.017 3.41E-02 0.34705 50 
+431G 310.55 435.7 2.5319 0.071 3.21E-02 0.37913 49 
+424B 310.42 434.17 2.6057 0.047 3.20E-02 0.4111 48 

        B. Modelling of gut microbial composition using urine metabolite profile as predictors 
Variablea   AICc SS(trace) Pseudo-F     P     Prop.    Cumul. res.df 
+3.982 383.58 2851 3.9732 0.001 6.62E-02 6.62E-02 56 
+2.765 381.88 2630.6 3.8527 0.001 6.11E-02 0.12738 55 
+6.546 381.5 1704.6 2.5677 0.001 3.96E-02 0.16699 54 
+3.142 381.16 1651.7 2.5598 0.013 3.84E-02 0.20536 53 
+3.991 380.93 1571.1 2.504 0.002 3.65E-02 0.24187 52 
-3.982 380.15 977.69 1.5583 0.027 2.27E-02 0.21915 53 
+0.934 379.75 1631.3 2.6532 0.001 3.79E-02 0.25706 52 
+6.993 379.63 1464.3 2.4479 0.001 3.40E-02 0.29109 51 
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