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Piwi-interacting RNA (piRNA) is a class of small non-coding RNAs about 24 to 32 nucleotides 
long associated with PIWI proteins, which are involved in germline development, transposon 
silencing, and epigenetic regulation. Identifying piRNA loci on the genome is very useful for 
further studies in the biogenesis and function of piRNAs. To accomplish this, we applied the 
computational biology tool Teiresias to identify motifs of variable length appearing frequently in 
mouse piRNA and non-piRNA sequences, respectively, and then proposed an algorithm for 
piRNA identification based on motif discovery, termed “Pibomd” by using these sequence 
motifs as features in the Support Vector Machine (SVM) algorithm, a sensitivity of 91.48% and 
a specificity of 89.76% on a mouse test dataset could be achieved, much better results than those 
reported in previously published algorithms. We also trained an unbalanced SVM classifier 
(named as “Asym-Pibomd”) that got a higher specificity (96.2%) and a lower Sensitivity 
(72.68%) than the Pibomd. The predicted ACC is less than that of the Pibomd, in spite of this, 
the predicted ACC (84.44%) of Asym-Pibomd is about ten percent more than that of k-mer 
method. Further analysis of the motif positions on the piRNA sequences showed that the piRNA 
sequences may contain information on the 5’ and/or 3’ end recognized by the piRNA processing 
apparatus of actual piRNA precursors. Furthermore, this prediction method can be found on a 
user-friendly web server found at http://app.aporc.org/Pibomd/. 

Introduction 

Piwi-interacting RNA (piRNA) is a specific class of RNAs having a length of about 24-32nt and 

interacting with a subset of Argonaute proteins, catalytic components of the RNA-induced 

silencing complex RISC (RNA-inducing silencing complex), related to Piwi1-4. Many studies 

have shown that piRNAs have a specific germ line function in repressing transposable elements. 

The repression is thought to involve heterochromatin formation and both transcriptional and 
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post-transcriptional silencing2, 5-9. Mammalian piRNAs can be divided into pre-pachytene (26–

28nt) piRNAs derived from retrotransposons and required for their silencing and pachytene (29–

31nt) piRNAs whose function remains unknown10. piRNA biogenesis remains to be elucidated; 

however, two popularly accepted mechanisms have been reported. One is termed as the “Ping-

Pong” Model11, 12, based on the formation of a feed-forward amplification loop that “facilitate 

piRNA surveillance of transposon transcription in the germ line10.” Another holds that piRNAs 

are derived from genomic regions depleted in transposons, generated by a pathway called 

‘‘primary processing’’ present in somatic cells, and that they may have a role in the regulation of 

target mRNAs13. 

To detect piRNAs, a previous approach combined immunoprecipitation and deep sequencing in 

model and sequenced organisms7. However, this experimental model has some shortcomings. 

For example, this method may miss low-expressing or tissue-specific piRNAs. Thus, 

computational methods would be a good complementary technique to search for piRNAs. Such 

method could summarize the general properties from known piRNAs and then train them to 

predict novel ones14. 

Some computational methods have already been developed to detect piRNAs14, 15. Betel et al.15 

trained a support vector machine (SVM) classifier to discriminate between 5’RNA and all other 

uridine positions. Feature vectors were constructed by converting the 21-base sequences into 84-

bit vectors such that each nucleotide position was converted to a 4-bit vector representing the 

RNA base. SVM training and classification was then performed, resulting in the identification of 

mouse piRNAs with a precision of 61–72%. However, their method could not efficiently detect 

those piRNAs derived from the 3’UTR of mRNA, which are not produced by forward loop 

amplification, as suggested in the Ping-Pong Model 16, 17. To predict piRNAs, Zhang et al.14
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implemented a k-mer algorithm which does not require a reference genome and gives much 

better performance. They used all the 1364 1-5nt strings and an improved Fisher algorithm by 

setting different cutoffs and elevating the precision rate to characterize the piRNA sequence in 

five model species: rat, mouse, human, fruit fly and nematode. The k-mer method performed 

much better with a precision of over 90% and a sensitivity of over 60%. 

Previously published methods have used the sequence feature of fixed size. Liu et al. 18 carried 

out exhaustive searches for all possible sequence-structure motifs (ss-motifs) on potential RNA 

hairpin structures. A machine learning algorithm was implemented to successfully predict 

precursor miRNAs based on the identified string of variable-length sequence-structure motifs. 

This method was able to predict miRNA loci in the human genome with higher specificity and 

sensitivity than other previously published computational tools18. The present study was based 

on a similar idea, i.e., extracting sequence information of variable length, to better capture the 

real features of piRNA and other RNA sequences. In order to test this hypothesis, we proposed 

an SVM algorithm for piRNA identification based on motif discovery, termed ‘‘Pibomd”, which 

was able to predict piRNAs in mouse with high specificity and sensitivity when only using 258 

motifs appearing frequently. 

Materials and Methods 

Data 

We downloaded the data from http://59.79.168.90/piRNA/download.php 
14. The positive piRNA 

data consisted of 173,090 sequences of 5 species (rat, mouse, human, fruit fly and nematode) 

from NONCODE version 2.019 and NCBI. The non-piRNA sequences were also derived from 

NONCODE version 2.019 and consisted of 193,321 sequences of various types, such as ‘miRNA’, 

‘piRNA’, ‘mlRNA’, ‘snoRNA’, ‘snRNA’, ‘tmRNA’, ‘SRP RNA’, ‘gRNA’ , ‘sbRNA’, and 
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‘snlRNA’ 14. The piRNA dataset consisted of 72,747 mouse piRNA sequences and 100,343 non-

mouse piRNA sequences, with171,703 mouse sequences and 21,618 non-mouse sequences 

comprising the 193,321 sequences of the negative dataset. 

Anastassios Vourekas et al.20 used high-throughput sequencing after cross-linking and 

immunoprecipitation (HITS-CLIP) coupled with RNA-sequencing (RNA-seq) to characterize the 

genome-wide target RNA repertoire of Mili (Piwil2) and Miwi (Piwil1). Therefore, we 

downloaded Miwi and Mili (GEO accession: GSM684624 and GSM684620, respectively) 

mapped reads and then took out sequences in the range of 23–31nt for Mili and 25–33nt for 

Miwi mapped reads, respectively, according to their designation. After removing the duplicated 

sequences, 649052 Miwi-bound piRNA and 166988 Mili-bound piRNA sequences were left. 

The training dataset was obtained by randomly selecting 5000 sequences from mouse piRNA 

and 5000 sequences from mouse non-piRNA sequences. Three types of test sets were used. The 

first type included 2,500 mouse piRNA sequences and 2,500 mouse non-piRNA sequences 

randomly selected from the above mouse piRNA and non-piRNA sets after removal of the 

sequences used for the training sets. The second type included 100343 non-mouse piRNA 

sequences from the above positive piRNA data. The third type included 649052 Miwi-bound 

piRNA and 166988 Mili-bound piRNA sequences. 

Motif extraction 

The computational biology tool Teiresias 21 derived from IBM was used to discover the 

frequently occurring motifs. With the help of Teiresias, we were able to search for motifs of 

variable length in the two groups of training sequences, respectively. The options used here were 

‘‘Exact discovery’’, ‘‘Seq Version’’ and “Only nucleic acid characters”. The parameters used 

were L=3, W=5, and K=2,000, implying that any motif of length W = 5 positions containing at 
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least L = 3 defined nucleotides and occurring in at least K=2,000 different sequences will be 

retained (see [16] for more details). 

 

SVM for training and prediction 

Support Vector Machine (SVM) was used to classify piRNAs versus non-piRNAs using the 258 

features as input. The famous SVM software package LIBSVM was downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/22. First, the 258 features (the 10000 sequences in the 

training set) were rescaled linearly by the SVM-scale program to the interval [-1, 1] (svm-scale -l 

-1 -u 1mousetrain.txt>mousetrain.scale) to 1) prevent attributes in higher numeric ranges from 

dominating those in smaller numeric ranges and 2) avoid other numerical difficulties during the 

calculation. The test set features (5000 sequences in the test set) were also rescaled using the 

same scaling factors. The classifier model was trained with ‘svm-train’ 2CC g   and the 

default RBF kernel (
2|| ||( , ) x yK x y e   ). As both the penalty parameter C and the RBF kernel 

parameter  are critical for the SVM performance23, they were optimally selected by an 

exhaustive grid-search strategy, which was carried out using ‘grid.py’, as described by Ng and 

Mishra24. We performed a 5-fold cross validation. In order to avoid over fitting the 

generalization, we employed the combined hyper parameters ( , )C  , thus maximizing the 5-fold 

leave-one-out cross-validation accuracy rate as the default setting for training the classifier. The 

optimal values of the parameters ( , )C   are 32768 and 8, respectively. Finally, classification was 

conducted on the test set and independent evaluation datasets with ‘svm-predict’ (see [16] for 

more details). 

For the purpose of genome screening, a highly specific detector is desirable. In order to meet that 
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kind of requirement, a biased SVM classifier was also trained.  The penalty for class “-1”was set 

30 times over that of class“1” in order to improve the predicted specificity as much as possible to 

reduce the incidence of false-positives. Here we used the “-wi ” options in the libsvm software 

package to train an unbalanced classifier (svm-train  –c  32768  –g  8  -w-1  30  w1  1), and we 

named it as Asym-Pibomd. Classification was conducted on the test set also. 

 Evaluating the importance of motifs in prediction performance 

F-score is a simple technique which measures the discrimination of two sets of real numbers25. 

Here, we used F-score to evaluate the importance of motifs in prediction performance. Given a 

training vector , 1,2, , ,kx k n   if the number of positive and negative instances are n and n , 

respectively, then the F-score of the ith motif is defined as  

( ) 2 ( ) 2

( ) ( ) ( ) ( )
, ,

1 1

( ) ( )
( )

1 1
( ) ( )

1 1

i i i i
n n

k i i k i i
k k

x x x x
F i

x x x x
n n

 

 

   

  

  


  
 
 

 

Where ix ( )
ix  ( )

ix  are the average of the ith motif of the whole, positive and negative datasets, 

respectively; ( )
,k ix  is the ith motif of the kth positive instance, and ( )

,k ix  is the ith motif of the kth 

negative instance. As the F-score increases, the likelihood that this motif will become more 

discriminating also increases. 

Results and Discussion 

The variable-length sequence motif 

The functionality of an RNA molecule is primarily determined by its nucleotide sequence. 

Accordingly, its molecular information can be represented by a string of letters (e.g., 

UCACAUAACUCCGGCCCUAC), denoting, in this case, the chemical composition of an RNA 
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molecule that is 20 nucleotides long. We only extracted sequence information for piRNAs since 

they may lack conserved secondary structure motifs26. From these piRNA sequences, we 

extracted frequently occurring motifs of variable length (see Materials and Methods) which were 

subsequently used to distinguish piRNAs from non-piRNA sequences.  

Motif extraction 

An SVM-based classifier was developed to test the efficacy of the motifs in classifying piRNA 

sequences from non-piRNA sequences. The Teiresias tool was used to discover frequently 

occurring motifs in 5000 mouse non-piRNA sequences and 5000 mouse piRNA sequences, and 

254 and 73 motifs were extracted, respectively. After the elimination of redundancy motifs, 258 

motifs remained (Table S1). We then developed a program to compute the frequency of each 

motif in the training sequences: a 258*10,000 feature matrix and a 258*5000 feature matrix 

which could be used to construct a classifier and test that it had been generated. 

Motifs evaluation 

F-score was adopted to analyze the discriminatory power of the motifs (see Materials and 

Methods for details). Based on its ability to distinguish piRNA sequences from negative 

sequences, the motifs were subsequently ranked in descending order according to their F-score 

(Table S1). The fifteen motifs showing greatest discriminatory power are listed in Table 1. We 

employed 258 motifs (10000 mouse sequences in the training data) to train an SVM classifier 

(Fig.1). Pibomd reached a prediction accuracy of over 90%, with a sensitivity of 91.48% and a 

specificity of over 89.76% (Table 2). We also drew an ROC curve for Pibomd (figure not shown). 

The area under the curve (AUC) was 0.953, which may further imply the potential of sequence 

motifs in piRNA prediction. 

The same training and testing datasets were used to train an unbalanced SVM classifier, termed, 
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as noted above, Asym-Pibomd, which achieves a higher specificity of 96.2% and a lower 

sensitivity of 72.68% than the balanced SVM classifier Pibomd. However, the predicted ACC is 

84.44%, which is less than that of Pibomd (Table 3). 

Pibomd identifies novel and non-mouse piRNAs 

It is well known that piRNA is not conserved among the different species. Therefore, we asked if 

the sequence motifs derived from mouse would be representative of piRNAs of most organisms. 

To address this question, we applied Pibomd to 100343 non-mouse piRNA sequences and found 

that it could distinguish 86% of them. When it was applied to the new version of the Miwi and 

Mili IP dataset, including 649052 Miwi-bound piRNAs and 166988 Mili-bound piRNAs, 

Pibomd identified 82.55% (535797/649052 ) and 76% (126910/166988 ),  respectively( Table 4).  

Comparison with k-mer scheme 

The results obtained for Pibomd are comparable to those achieved by previously published 

computational methods of piRNA prediction, in particular, the k-mer scheme (Table 3). The k-

mer schema used all of the 1364 1nt-5nt strings and an improved Fisher Discriminant algorithm 

to identify piRNA sequences in five model species; the algorithm reached high prediction 

precision and low sensitivity in those species. In order to make a more effective comparison, we 

trained a k-mer scheme based on the training dataset used in the present work and tested it on the 

test set, achieving a very high prediction specificity of 97.16% and very low sensitivity of 48.32% 

in those species, with accuracy of 72.74%. Afterwards, we trained a k-mer scheme on the 

training dataset used in Zhang et al.14 (120000 piRNAs and 120000 non-piRNAs) and tested it on 

the dataset used in the present work. Again, we achieved a prediction specificity of 98.4% and 

very low sensitivity 52.04%, with accuracy of 75.22%.  Obviously, the k-mer scheme 

consistently demonstrates high specificity at the cost of sensitivity, and the predicted accuracy 
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(~75%) is much less than that of Pibomd (90.62%).  

As previously noted, we also trained an unbalanced SVM classifier, Asym-Pibomd, at the 

expense of the predicted ACC (see Material and Methods for details). It achieved higher 

specificity (96.2%) and lower sensitivity (72.68%) than Pibomd. The predicted ACC is much 

smaller than that of Pibomd. In spite of this, the predicted ACC (84.44%) of Asym-Pibomd is 

about ten percent more than that of the k-mer method. 

Betel15 trained an SVM classifier to only discriminate between 5’piRNA and other uridine 

positions with a precision of 61–72%. However, this method cannot efficiently detect those 

piRNAs derived from the 3’UTR of mRNA, which are not produced by the ‘Ping-Pong Model’. 

Pibomd identifies mouse CLIP piRNAs and chromosome cluster piRNAs more efficiently 

piRBase is a manually curated resource of piRNAs. It focuses on the functional analyses of 

piRNAs, as well as piRNA annotation. piRBase collected piRNAs obtained from such methods 

as small RNA sequencing, protein IP or chromatography, and protein CLIP.  The protein CLIP 

method is a high-quality means of identifying piRNAs. Therefore, we downloaded the clip 

piRNAs from http://www.regulatoryrna.org/database/piRNA/. Altogether, we found 2092708 

Clip piRNA sites in piRBase. The k-mer method could identify 696740 

(696740/2092708=33.3%; see Fig.2A), and Asym-Pibomd could identify 

966093(966093/2092708=46.16%; see Fig.2A). The specificity of Asym-Pibomd is only two 

percent lower than that of the k-mer method, but the sensitivity of k-mer is much less (see Table 

3) than that of Asym-Pibomd. These results show that Asym-Pibomd has the capacity to identify 

more piRNA sites, even though false-positives are slightly increased over those in the k-mer 

method. Pibomd could identify 1614483(1614483/2092708=77.15%; see Fig.2A). Furthermore, 

most of the piRNA sites identified by the k-mer method were also recognized by Asym-Pibomd 
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(561830/696740=80.64%) and Pibomd (669709/696740=96.12%).  

Most piRNAs are generated from genomic piRNA clusters. A piRNA cluster from 44329185 to 

44352221 is found on theNo.1 chromosome.  Using piRBase, 399 piRNAs were identified on the 

No.1 chromosome from 44329185 to 44352221. The k-mer method was able to identify 85 

(85/399=21.3%; see Fig.2B) piRNAs, and Asym-Pibomd could identify 131(131/399=33%; see 

Fig.2B) piRNAs. Furthermore, Pibomd could identify 222(222/399=55.64%; see Fig.2B) 

piRNAs. Similarly, most of the piRNA sites identified by the k-mer method were also 

recognized by Asym-Pibomd (561830/696740=80.64%) and Pibomd (669709/696740=96.12%).  

 

Motif positions on the piRNA sequence  

In order to determine if the distribution of the individual motif on the piRNA sequences is 

different from that of the non-piRNAs, we counted the number of motifs appearing on the 

piRNA and non-piRNA sequences separately and analyzed the distribution. For simplicity, we 

only analyzed the distribution of the motifs on the piRNAs having a length of 29nt and 30nt, 

which accounted for about fifty percent of all piRNAs(Fig.3). We plotted the distribution of the 

motifs along the piRNA sequences. The motifs could be divided into two categories: those 

headed by a nucleotide “T” and those headed by the remaining three nucleotides (Fig.4A).  

Considering the entire sequence, the first category of motifs would typically appear on the 5’ end 

of the piRNA sequences (Fig.4 A). This observation is in accordance with nucleotide preference 

at the 3’end position of piRNAs, which is enriched for 3’uridine. The second category of motifs 

seemed to appear with significantly less frequency on the 5’and 3’ ends of the piRNA sequences 

(Fig.4 B). On the other hand, it has been shown that the motifs were uniformly distributed on the 
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Table 1. Discriminatory power of the top 15 motifs. The discriminatory power of the motifs that 

distinguish piRNA sequences from negative RNAs is calculated using the F-score, and the 15 

motifs with greatest discriminatory power are listed here (“N” denotes any nucleotide). 

No. 1 2 3 4 5 

Motifs ANAA CNTG CNTA CTNT CNTC 

F-score 0.044701 0.042748 0.042698 0.041646 0.041185 

No. 6 7 8 9 10 

Motifs CAC CNTNT GNCA ATA ANTT 

F-score 0.040529 0.039217 0.035025 0.028029 0.025241 

No. 11 12 13 14 15 

Motifs TGNNT GNAC CTT ANNCT AGNG 

F-score 0.02471 0.023792 0.023612 0.023527 0.023306 

Table 2. Definitions of precision and sensitivity of prediction. 

 Predicted positive Predicted negative 

Actual positives True positives (TP) =2287 False negatives (FN)=213 

Actual negatives False positives (FP)=256 True negatives(TN)=2244 

Sensitivity (sn) 

Specificity(sp) 

Accuracy(ACC) 

Sn  =2287/2500=91.48% 

Sp  =2244/2500=89.76% 

ACC=4531/5000=90.62% 
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Table 3.Comparison with k-mer scheme 

 Sp(%) Sn(%) ACC(%) 

k-mer 98.4 52.04 75.22 

Pibomd 89.76 91.48 90.62 

Asym-Pibomd 96.2 72.68 84.44 

Betel’s method / / 72 

 

Table 4. Pibomd prediction accuracy for independent evaluation datasets.      

Test set Number of piRNAs Accuracy (%) 

Non-mouse piRNAs 100343 86% 

Miwi-bound piRNAs 649052 82.55% 

Mili-bound piRNAs 166988 76% 

 

whole non-piRNA sequences. Furthermore, the distribution of the “TGA” motif between the 

piRNA and non-piRNA sequences was significantly different by the independent two-sample K-

S test (p<0.05). This indicates that the piRNA sequences may contain information on the 5’ 

and/or 3’ end, as recognized by the piRNA processing apparatus of actual piRNA precursors. 

 

Web Server Guide 

For the convenience of the other researchers, a web server for implementing the algorithm and 

the software code is freely available at http://app.aporc.org/Pibomd/. Here are the step-by-step 

instructions.  
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Step1. Open the web server at http://app.aporc.org/Pibomd/, and you will see the dialogue 

window on your computer screen (Fig.5). Click on the “Read Me” button, and you will see a 

brief introduction describing the Pibomd predictor. 

Step2. Either paste or upload the query sequences in FASTA format in the text box at the center 

of your dialogue window (Fig.5). A sample FASTA format can be seen when you click on the 

“Example” button on the top of the input frame.  

Step3. Chose the model type. Users can choose the model type according to their requirements. 

Pibomd method can achieve high predicted ACC. Asym-Pibomd gets relatively lower predicted 

ACC than pibomd with higher specificity and lower sensitivity. 

Step4. Click on the “Submit” button to get the predicted result.  

Step5. Click on the “Data” button to download the data to train and test the Pibomd predictor. 

Step6. Click on the “Citation” button to find documents related to the Pibomd algorithm. 

 

Conclusions 

Pibomd was developed to predict piRNAs by using only variable-length motifs that frequently 

appear in RNA sequences as features, using the SVM algorithm. At the outset, this work was 

only intended to improve piRNA prediction software based solely on sequence information. 

However, when using the Teiresias tool to identify sequence motifs of variable length in piRNA 

and non-piRNA sequences, it was discovered that we achieved more accurate piRNA 

identification than that of other previously published software and that we obtained a very 

informative catalogue of nucleotide information in the motifs that distinguish piRNAs from other 

kinds of RNA sequences in the genome. Further analysis of the motif positions on the piRNA 

sequences led to important clues suggesting that the sequence information of RNA sequences is 
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utilized by the piRNA processing apparatus.  

It is unfortunate that we cannot get the result of a genome screen due to the computational 

complexity and computational ability. The present version of Pibomd could not search for the 

mouse genome yet. We plan to fulfil it in the following work. 
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 Fig.1 Pibomd pipeline. 
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Fig.2 Pibomd  identifies mouse CLIP piRNAs more efficiently than the k-mer method. Venn diagram showing the intersections between 
mouse piRNAs identified by the k-mer method14 (red circle), Pibomd predictions (large blue circle), and Asym-Pibomd predictions (small green 
circle). (A)  Clip piRNA sites in piRBase , (B) chromosome cluster piRNAs. 

 

 

 

Fig.3 Frequency distribution of the length of piRNAs. 
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Fig.4 Position of motifs. (A) Motif ‘TGA’ usually appears on the 5’ end of the piRNA sequences. (B) Motif ‘ANNTG’ appears with 
significantly less frequency on the 5’and 3’ ends of piRNA sequences (“N” denotes any nucleotide). 

 

Fig.5 Screen shot showing the Pibomd web server. Its website address is at http://app.aporc.org/pibomd/ 
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