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At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best

characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many

important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed

a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical

modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this under-

lying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order

network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biolog-

ical features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary

relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number

of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif

structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

Introduction

Many biological systems can be described using the tech-

niques of network science1,2, which provides a powerful set

of tools for analysing the underlying connectivity structures

that naturally arise within all living organisms3,4. At the

cellular level, networks emerge via interacting proteins, and

other macro-molecules, resulting in various biochemical nets,

such as gene regulatory networks5,6, protein-protein interac-

tion networks7 and protein residue networks8,9. In this re-

gards, the metabolic process in particular plays a fundamental

role, providing the building blocks (nucleic acids and amino

acids) that enable genes to interact effectively, and thus for

the cell to function properly. Moreover, recent evidence sug-

gests that the interaction patterns described by metabolic net-

works reflect the evolutionary origins of important functional

changes10–12, and thus understanding their topological organ-

isation promises to unravel important features of biological

organisation at the systems level.

Metabolic networks have been the focus of a large number

of studies (see for example the review by Lacroix et al.13 and

references therein) and several important structural character-

istics have been evidenced. For example, modularity, i.e. the

propensity for a network to organise into nearly-independent
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structural units, has been shown to be a prevalent feature

within metabolic networks14,15, and has, for example, been re-

lated to important biological properties such as robustness16,17

and evolvability10,11,16. However, metabolic networks are by

no means perfectly modular; their inter-module connectivity

is relatively high, leading some authors to conclude that these

networks are better described as being hierarchically struc-

tured14, that is metabolic networks may be considered to pos-

sess fractal-like properties, such as self-similarity. Indeed, the

existence of many small highly integrated units, which then

group together to form larger modules and so on, provides

one possible explanation for the high level of inter-modular

connectivity observed in these networks.

Another popular approach for analysing metabolic net-

works is provided by network motifs18, i.e. recurrent, statis-

tically significant subgraphs. Motifs are of particular inter-

est since they are typically associated with certain biological

functions, and their relative over-abundance is considered to

be an evolutionary result reflecting their “importance” to the

organisms involved19,20. Moreover, they constitute the basic

structural units from which complex metabolic networks are

formed, and thus provide a simplified framework for prob-

ing large-scale topologies. For example, in a recent study

Shellman et al.21 successfully captured key evolutionary dif-

ferences between metabolic networks from the six different

kingdoms of life, employing network motif analysis. Another

example highlighting the considerable potential of such an ap-

proach, is provided by the work of Asgari and colleagues22,

1–10 | 1

Page 1 of 10 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



in which the authors employ recent advances in the theory

of network controllability as a method for improving drug-

target discovery techniques. In particular, they suggest that

network motifs provide ideal ‘driver’ candidates, which can

be employed to manoeuvre the system of interest into certain

desirable states.

Here, we introduce a novel technique for comparing biolog-

ical networks of varying size based on local network structure.

In particular, we propose a new embedding technique based

on low order network motifs. In our approach, each network

is mapped to a point in a high-dimensional vector space, the

dimension of which depends on the number of motifs consid-

ered (n = 212 in our work as we consider all 3 and 4 node

motifs23). By using a suitably defined low-rank approxima-

tion, we are able to combine the 212 motif frequency scores

into a single network specific measurement, which allows us

to compare and contrast networks in terms of just a single pa-

rameter. Using this new measure we investigated 383 bacterial

metabolic networks with identified growth conditions, as well

as a smaller subset of 115 networks classified according to the

amount of variability present within their natural habitats, and

found a number of significant correlations between network

motif structure and fluctuations in environmental conditions.

A new graph embedding approach

Motivated by the prominent role that network motifs have

played to date in the analysis of biological networks (see for

example the book of Alon3 and references therein), we pro-

pose a new, lossy graph embedding technique based on low-

order motifs. The proposed technique is lossy in the sense

that the original network cannot be recovered from the cor-

responding vector-space representation. Importantly, such an

approach takes a difficult and unwieldy problem, i.e. the anal-

ysis of many large, complex biological networks of differing

order, and replaces it by one which is ‘easier’ to manipulate

– a plethora of tools and techniques from statistical machine

learning24,25 already exist for the analysis of the resultant em-

bedded data.

Motif frequency vectors

Motif frequencies can be used to directly compare different

metabolic networks as they provide a ‘unique’ network signa-

ture21. Alternatively, networks can be compared by calculat-

ing a feature vector of z-score’s, computed in the usual way,

i.e.

zi, j =
Ni

j −
〈

Nrandi
j

〉

σ randi
j

,

where here, Ni
j denotes the rate of recurrence of the jth motif

within the ith network whilst 〈Nrandi
j 〉 and σ randi

j denotes the

mean and standard deviation of the rate of recurrence of the

jth motif in an ensemble of randomised networks3.

In this way, for each network of interest we can compute

a feature vector, zi, whose elements are the z-scores of each

network motif. For example, if, as in this work, we consider

all 3- and 4-node motifs then the result is a vector zi ∈ R
212

representing the ith network.

Note that it is typically the case that the networks we wish

to compare are of varying order and as such we need to take

care that network size does not bias any results. To handle this

issue one can consider instead of the z-scores defined above, a

so-called significance profile26 defined by

si, j =
zi, j√
∑k z2

i,k

.

The motif significance profile for the ith network, si, is sim-

ply the normalised vector of z-scores. The motif significance

profile allows for direct comparisons between networks of dif-

ferent sizes. This is important due to the fact that motifs in

larger networks tend to exhibit larger z-scores than they do in

smaller networks23,26. Note also, that each entry of the motif

significance profile lies in the interval [−1,1].

In the work presented here, we threshold the network sig-

nificance profiles such that any entries si, j < 0 are set to zero

as we are only interested in those motifs that are over repre-

sented. Motifs that are under represented are known as anti-

significant motifs, or anti-motifs, and although we do not con-

sider them in this study, the approach forwarded here can eas-

ily be extended to that case. This results in a matrix

S = [s1, . . . ,sm]
T ≥ 0,

i.e. a non-negative matrix, whose rows consist of the signifi-

cance profiles (thresholded) for the m networks under investi-

gation.

To analyse the matrix S we use a matrix decomposition to

compute a low-rank approximation of the data25. Since our

data is non-negative, it is natural to decompose it using a non-

negative matrix factorisation27 (NNMF) (for algorithmic de-

tails see the Methods section). Such an approach is akin to

a principal component analysis, that reduces the dimension of

the problem, thus allowing us to detect important network fea-

tures. Mathematically, we approximate S as follows:

S ≈WH, (1)

where W ∈ R
m×k and H ∈ R

k×212 are non-negative matrices.

Here, k is the rank of the approximation and m the number

of networks being considered. Importantly, both the columns

of W and the rows of H can be used to reveal important net-

work features28,29. Note, that in all of our experiments, the
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factorisation in (1) was carried out using k = 3, and W,H were

chosen so as to minimise the residual25

||S−WH||F .

Here, || · ||F denotes the Frobenius norm (see the Methods sec-

tion for further details concerning, for example, the choice of

k).

The approach can be concisely summarised into the follow-

ing three basic steps (see Figure 1 for a schematic description):

Step 1: For each metabolic network compute the signifi-

cance profile, si ∈R
212, consisting of the normalised sig-

nificance scores for each of the 212 three- and four-node

motifs.

Step 2: Compute a low-dimensional (k << 212) repre-

sentation of the thresholded matrix of significance scores,

S = [s1, . . . ,sm]
T , using a non-negative matrix factorisa-

tion.

Step 3: Use the columns/rows of W/H to determine im-

portant network features.

Global and local motif significance scores

In order to determine the relative importance of the jth mo-

tif in the ith network we construct the following local motif

significance score:

P(i, j) = si, j ·h1, j. (2)

Note that this results in a matrix P ∈ R
m×212 (m = 115 or

m = 383 here), whose rows encapsulate the network motif

structure of each metabolic network, and whose columns pro-

vide information pertaining to the relative importance of spe-

cific motifs across the network ensemble.

In the experiments in the next section, we derive a global
significance score for each network by summing the rows of

P as follows

Pglobal(i) = ∑
j

P(i, j) = ∑
j

si, j ·h1, j, (3)

= si ·h1.

As alluded to by the second row in the above, this is equiv-

alent to projecting the significance vector si onto h1, the first

row of H. Note that in practice h1 is the row of greatest mag-

nitude and thus is likely to provide the optimal single-variable

projection of the data25. Moreover, we consider the global

significance score in (3) to be a proxy for network complexity,

in the sense that a large value indicates the presence of a rela-

tively large number of network motifs, whereas a low value is

indicative of a simpler, more tree-like structure.

Environment Number of Nodes Number of Edges

min median max min median max

Obligate (34) 78 273 620 91 340 840

Specialised (5) 442 480 541 566 641 692

Aquatic (4) 541 580 647 700 751 868

Facultative (41) 90 652 809 101 890 1160

Multiple (28) 430 615 800 560 821 1119

Terrestrial (3) 557 689 693 779 944 966

Total (115) 78 541 809 91 730 1160

Table 1 Network statistics for the reaction graphs of 115 bacterial

species studied classified according to environmental variability.

According to the NCBI32, obligate bacteria have the most constant

environment, followed by specialised and aquatic, and then

facultative, multiple and terrestrial bacteria in that order.

Environment Number of Nodes Number of Edges

min median max min median max

Aerobic (154) 65 605 892 74 809 1210

Facultative (180) 78 602 816 91 825 1168

Anaerobic (49) 307 488 681 381 645 969

Total (383) 65 581 892 74 789 1210

Table 2 Network statistics for the reaction graphs of the 383

bacterial species studied classified according to species’ oxygen

requirements. The degree of oxygen required increases in the order

anaerobic, facultative and aerobic.

Results and discussion

In this section we present the results of applying the approach

described in the previous section to a large cohort of metabolic

networks. We begin by giving a brief description of the organ-

isms studied, and details of the network construction process.

Metabolic networks

The metabolic data in this study is the same as used by Take-

moto30, and was derived from the KEGG database31 on May

20th, 2011. In total, we studied upto 383 bacterial species (see

Tables 1 and 2 for an overview of some basic network proper-

ties), each being characterised by a number of shared biolog-

ical features (e.g. environmental variability, oxygen require-

ments and genome size), using graph theoretical techniques.

A complete list of all the bacterial species used in our analysis

is provided in the Supplementary Materials†.

Metabolic processes can be modelled using simple graphs

in a number of ways33 and it is important to choose an appro-

priate representation. The most common representation is the

substrate-product graph whereby nodes and edges correspond

to metabolites and reactions, respectively. Note, that a poten-

tial caveat of such an approach is that it can lead to the detec-

tion of erroneous pathways (see, for example, the discussion

in Montañez et al.34). However, since we are not considering
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Fig. 1 A schematic illustration of our algorithmic approach in the case of E. coli. Step 1: by considering all 3- and 4-node motifs, the

metabolic network of E. coli is mapped into a 212-dimensional Euclidean space. Step 2: a low-dimensional representation of the data point is

obtained via a non-negative matrix factorisation. Step 3: important network features are determined by analysing the resultant

low-dimensional representation (not shown).

a path analysis here and for the ease of comparability with re-

lated studies, we consider the substrate-product representation

in all of our experiments. Moreover, ubiquitous metabolites

such as H2O, ATP and NADH were removed from the analysis

as they tend not to be involved in higher order functions, and if

included, typically lead to physiologically meaningless path-

ways. Finally, to further simplify the analysis, we consider

only the largest connected component for each network. This

avoids, for example, issues that arise when constructing ran-

domised networks through the rewiring of metabolic networks

consisting of a number of disconnected components. For fur-

ther details of the network construction the interested reader is

referred to the papers of Takemoto and colleagues11,30,35.

It is worth noting that, in addition to the modelling issues

touched upon above, there are general limitations to any com-

plex network study of metabolism due to noisy and incom-

plete metabolic maps (e.g. missing/spurious links), the omis-

sion of reaction stoichiometry data and incomplete reaction

reversibility data. Nevertheless, the approach taken here is

standard within the field and provides a global picture of the

biochemical systems under investigation.

As an illustration of the approach introduced in the previ-

ous section, we carried out two experiments with the aim of

testing the hypothesis that organism adaptability is manifested

via the network motif structure of the corresponding metabolic

networks.

Habitat variability and network motif structure

The first experiment undertaken considered 115 metabolic

networks, each being categorised according to their environ-

mental habitat (see Table 1). The organisms can be found in

a variety of conditions, ranging from highly specialised (e.g.

Environment

〈
P
g
lo
b
a
l(
i)
〉

0.5

0.6

0.7

O S A F M T

Fig. 2 Relationship between environmental variability and the mean

global significance score 〈Pglobal〉 for the six bacterial habitats:

Obligate, Specialised, AQuatic, Facultative, Multiple and

Terrestrial. Vertical bars represent standard errors.
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Environment Significant motifs

Specialised (43)

motif 5 motif 9

Varied (72) motif 5 motif 9 motif 14 motif 26

motif 15 motif 62

Table 3 Motifs significantly overrepresented in networks pertaining

to a specialised and varied environment.

symbiotic bacteria living within a host), to extremely hetero-

geneous conditions such as soil, and thus have evolved under

very different selective pressures.

Figure 2 shows a plot of the mean global significance score,

〈Pglobal〉, versus environmental variability for the 115 different

bacterial networks. Note that the average here is taken over

each of the six environmental classes: obligate, specialised,

aquatic, facultative, multiple and terrestrial. Importantly, we

found that motif frequency, and thus network complexity, in-

creased significantly with environmental variability. The low-

est motif frequency was found for the bacteria within the ob-

ligate class, followed by a relatively steep increase to the spe-

cialised and aquatic classes, then higher again for the facul-

tative and multiple classes, and then highest for the terrestrial

class. The group differences shown in Figure 2 are statistically

significant (Kruskal-Wallis test, p < 10−9).

This result provides evidence supporting the view that vari-

ability in an organisms habitat has important consequences for

the topology of the resultant metabolic networks, and is con-

sistent with previous studies10,12,36,37 that have demonstrated

important links between the metabolic networks of organisms

and their biochemical environments. In the current context,

these results can be understood as an evolutionary effect due to

the greater uncertainty that accompanies an increasingly fluc-

tuating environment: greater numbers of 3- and 4-node motifs

lead to larger numbers of cycles, i.e. closed paths, and thus to

increased redundancy in the metabolic network, which in turn

promotes greater adaptability and robustness.

The effect of oxygen requirement on network structure

Next, we considered the effect of oxygen requirements on

metabolic network structure. We studied 383 bacterial species

which were categorised into three groups: 154 aerobes, 180

facultatative aerobes and 49 anaerobes.

Figure 3 shows a plot of the mean global significance

scores versus growth conditions for the 383 different bacte-

rial species. Interestingly, we found that networks that have

evolved in the presence of oxygen, i.e. aerobes and facultative

aerobes, have a significantly larger number of network mo-

tifs. The group differences shown in Figure 3 were found to

be significant (Kruskal-Wallis test, p < 10−4).

Aerobic AnaerobicFacultative

Oxygen requirement

〈
P
g
lo
b
a
l(
i)
〉

0.69

0.72

0.75

Fig. 3 Relationship between growth conditions, in particular

oxygen requirements, and mean global significance score 〈Pglobal〉.
Vertical bars represent standard errors.

The results shown in Figure 3 are in agreement with recent

studies (see, for example, the paper by Raymond and Segré38)

demonstrating that bacterial networks that are exposed to oxy-

gen are able to form additional pathways, compared to those

that are oxygen deprived. In particular, the study by Raymond

and Segrè38 found that aerobic bacteria have approximately

a 1.5 fold increase in the number of reactions and metabo-

lites relative to anaerobic bacteria, resulting in the expansion

of metabolic networks evolving in the presence of oxygen, and

thus supporting the view of oxygen induced network complex-

ity.

Motifs responsible for the observed differences

To determine the specific motifs driving the observations of

the previous section, we considered the quantity ∑i P(i, j), that

is, the column sum of the matrix P defined in Equation (2) –

recall that the columns of P contain information specific to

individual motifs. Moreover, by restricting the sum above to a

particular subgroup of interest (specialised, obligate, multiple,

etc.), it is possible to detail the extent to which any particular

motif featured within that group. In the following we consider

a motif to be significant within a particular group, if the mean
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Environment Significant motifs

Aerobic & Facultative (334)

motif 5 motif 9 motif 14 motif 15 motif 26

Anaerobic (49)

motif 5 motif 9 motif 14 motif 26

Table 4 Motifs significant to networks with differing oxygen requirements.

local significance score of that motif (restricted to the group

of interest) is at least 2 standard deviations greater than the

mean score across the entire network ensemble. Note that a list

of all 3- and 4-node motifs is provided in the Supplementary

Material.

Habitat variability In order to simplify the analysis we

considered two groups: specialised (consisting of the obli-

gate, specialised and aquatic classes) and varied (consisting

of facultative, multiple and terrestrial classes). The signifi-

cant motifs are displayed in Table 3. The first thing to note

is that motifs 5 and 9, a feed forward loop and closed cycle,

respectively, are prominent throughout the entire ensemble of

networks, regardless of environmental factors. This is perhaps

not too surprising as both of these patterns are considered to

play important functional roles in many biological networks.

The addition of a feed forward loop to a linear cascade of bio-

chemical reactions, for example, has been hypothesised to ac-

celerate the metabolic process39. Importantly, we found the

number of significant motifs to be greatest in those metabolic

networks exposed to more variable environments: 2/212 for

specialised and 6/212 for varied (see Table 3). Clearly, this

represents only a very small percentage of available 3- and

4-node motifs (≈ 1-3%), and so the differences observed in

Figure 2 can be attributed to a small set of motifs more or less

specific to the different kinds of bacteria.

The increased numbers of network motifs present within the

varied class indicates a potentially significant growth in net-

work redundancy within those organisms inhabiting fluctuat-

ing environments, and can be considered as further evidence of

so-called functional redundancy mediated robustness40, that

is, the observed perseverance of systems level redundancies

prevalent in metabolic, as well as more general, cellular net-

works. More specifically, of the 4 additional significant motifs

found in the varied class, motifs 14 and 15 may be considered

variants of the single-input motif, motif 62 a bi-parallel fan,

and motif 26 a multi-input motif, all of which have been im-

plicated as potential indicators of network redundancy. For

example, in the context of metabolism the single-input motif

consists of a substrate X that is consumed in multiple reac-

tions, the result of which are the products Y,Z, . . .; whilst the

bi-parallel fan implies the presence of multiple, or compen-

satory, pathways whose efficiencies may vary according to al-

terations in environmental conditions. Indeed, these findings

are in agreement with a number of recent studies relating ge-

netic robustness and organism adaptability40,41, and suggest

that bacteria that live in more variable environments typically

display a greater abundance of redundant metabolic reactions.

In addition to the topological differences observed between

varied and specialised bacteria, we found that the distribution

of those metabolites occurring within motif structures present

across the entire network ensemble, i.e. motifs 5 and 9, also

differed significantly. Figures 4 and 5 shows the mean fre-

quency for metabolites occurring within motif 5 for the 115

metabolic networks, again grouped into the specialised (blue

bars) and varied classes (red bars). Note that the frequencies

plotted in Figures 4 and 5 have been normalised to remove

any bias due to network size (see Methods section for further

details), and metabolites are displayed in decreasing order ac-

cording to the varied class. Figure 4 displays the distribution

for those 263 metabolites that occurred at least once within

motif 5 across the two classes under consideration. Interest-

ingly, we see that the distribution for the varied class is rel-

atively broad, with a large number of metabolites occurring

with a relatively low frequency, whereas the distribution for

the specialised class is more akin to a scale-free or power-law
distribution, consisting of a small set of relatively high fre-

quency metabolites. Note that similar results were found for

motif 9 (see Supplementary Material).

Next we used a Chi-square test (Fisher’s exact test, p <
0.01) to explore the differences in proportions of the indi-

vidual metabolites between the two groups. Figure 5 shows

the 47/263 metabolites for which a significant difference in

proportions was found, again displayed according to decreas-

ing frequency of the varied class. Metabolites displaying

the most significant differences (Fisher’s Exact test, p <
10−5) included (2R)-2-Hydroxy-3-(phosphonooxy)-propanal,

Tetrahydrofolate and Isopentenyl diphosphate, all of which

were overrepresented in the specialised group compared to

the varied group. Note that the aforementioned overrepre-
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sented metabolites are required for biosynthesis of various

amino acids, folates and terpenoids and are also responsible

for the regulation of carbohydrate metabolism in many bacte-

rial species.

Oxygen requirements Similar to the above, we then in-

vestigated which motifs were driving the observed differences

between metabolic networks that evolved in the presence or

absence of oxygen. Again, for simplicity we divided the bac-

teria into two separate groups: anaerobic and aerobic (in-

cluding facultative aerobes). The significant motifs are dis-

played in Table 4. For aerobic networks 5/212 possible motifs

were found to be significant, whilst for the anaerobic networks

4/212 were found to be significant. Again, motifs 5 and 9

were significant across the entire cohort, along with motifs 14

and 26 in this instance. The only motif that differed between

the two groups was motif 15, which was specific to the aer-

obic class. Interestingly, the study by Raymond and Segré38

found that the effects of oxygen exposure on metabolic net-

work structure was most prolific at the periphery of the net-

work, that is, network alterations were largely due to the ad-

dition of new reactions and pathways, rather than network

rewiring. Thus, the enrichment of motif 15 is a natural con-

sequence, as it acts as a branch point on these newly formed

peripheral reactions and pathways.

Figures 6 and 7 shows the distribution of metabolites across

motif 5 for the two groups, ordered according to decreasing

metabolite frequency for the aerobic class (blue bars). Note,

that the aerobic class exhibits a fairly broad distribution,

whilst the anaerobic distribution tails off slightly quicker, in

a similar but less pronounced manner to that displayed by

the specialised bacteria in Figure 4. Figure 7 shows those

metabolites that displayed a significant group difference.

Interestingly, the majority of metabolites, some 37/52, were

found to be overrepresented in the aerobic group com-

pared to the anaerobic group, the most significant of which

were Isopentenyl diphophosphate, Fatty acid, trans,trans-

Farnesyl diphosphate, Phosphatidylethanolamine, Phos-

phatidylserine, L-Threonine, L-2-Amino-3-oxobutanoate,

Phosphatidylcholine, 2-Acyl-sn-glycero-3-phosphocholine,

L-2-Lysophosphatidylethanolamine, 3’.5’-Cyclic GMP

(Fisher’s Exact test, p < 10−5). These metabolites are known

to be involved in the biosynthesis of a range of amino acids

and secondary metabolites. Again, similar results where

found for motif 9 (see Supplementary Material).

Conclusions

In this work, we have introduced a new graph embedding ap-

proach for studying large numbers of networks, of possibly

differing order, and employed it to investigate the effect of

environmental variability on the metabolic network structure

of a large cohort of bacterial species. Using the new tech-

nique, we found evidence supporting the view that organisms

that evolve in more uncertain environments exhibit more com-

plex metabolic connectivity structures than those evolving un-

der more stable conditions. Note, that the motif based ap-

proach forwarded here strongly supports the view that envi-

ronmental conditions play a pivotal role in shaping the resul-

tant metabolic networks, and is robust in the sense that the

patterns described in Figures 2 and 3 are reproducible in both

the latest and older, less complete versions of the data42 (data

not shown). This is in contrast to recent studies in which net-

work features that were found to correlate with environmen-

tal variability (e.g. modularity) disappeared when tested on

newer versions of the data30,43. These findings suggest that

alterations in the motif signature provide a robust indicator of

adaptability and evolvability in bacterial metabolic networks.

Methods

Detection of network motifs and the choice of null model

Network motif frequencies were computed using the open-

source software mfinder 23,44. To determine significance, mo-

tif frequencies were compared against frequency distributions

for some 1000 random graphs, chosen so as to preserve both

the in- and out degree, as well as (n− 1)-node motifs. Note

that the latter condition ensures that the enrichment of n-node

motifs is not simply due to the presence of highly significant

subgraphs.

Non-negative matrix factorisation

There are many different variants of the non-negative matrix

factorisation algorithm28. In our work we used the Multi-

plicative Update algorithm which is included in the MATLAB

statistics toolbox∗. Starting with initial guesses W 0, H0, typi-

cally random matrices, the method computes a rank-k approx-

imation to the data matrix A ≈WH (here A ∈R
n×m,W ∈R

n×k

and H ∈ R
k×m) via successive iterations of the equations

Hi+1 = H.∗ W iT A
W iHiHiT +10−9

W i+1 =W i.∗ AHiT

W iHiHiT +10−9
.

Here .∗ denotes point-wise multiplication.

Note that due to the iterative nature of the scheme, the re-

sulting decomposition can vary depending upon (a) the choice

of initial matrices W 0, H0; (b) the choice of the parameter k,

which is usually not obvious a priori, and tends to be based on

heuristics such as the number of expected clusters in the data,

∗http://www.mathworks.com/
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Fig. 4 Mean normalised frequency for the 263 metabolites obtained for the 115 metabolic networks. Blue bars represent the specialised class

and red bars represent the varied class. Here, the metabolites are in descending order of the metabolite frequencies for the varied class.

Fig. 5 Mean normalised frequency for the significant metabolites with p < 0.01 (Fisher’s Exact test). Vertical bars are standard errors.

Asterisks indicate large significant differences between metabolic networks from a specialised and varied environment, where *,**,and ***

correspond to p < 0.001, p < 0.0001 and p < 0.00001. Metabolite names are provided for the most significant metabolites.
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Fig. 6 Mean normalised frequency for the 291 metabolites obtained for the 383 metabolic networks. Blue bars represent the

aerobic-facultative class and red bars represent the anaerobic class. Metabolites are displayed in descending order of the metabolite

frequencies for the varied class.

Fig. 7 Mean normalised frequency for the significant metabolites with p < 0.01 (Fisher’s Exact test). Vertical bars are standard errors.

Asterisks indicate large significant differences between metabolic networks from a specialised and varied environment, where *,**,and ***

correspond to p < 0.001, p < 0.0001 and p < 0.00001. Metabolite names are provided for the most significant metabolites.
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or a visual inspection of the scree plot. In our experiments, we

ran the algorithm with 100 different random initial conditions,

choosing as our factorisation the matrices W , H for which the

residual ||A−WH||F was minimised, according to the Frobe-

nius norm. Moreover, we repeated the experiments for a range

of different k values (up to and including k = 25) to test the ro-

bustness of our results. We found the effects of varying k to

be inappreciable, in the sense that the patterns reported were

reproduced for most values of k.

Determining significant metabolites

When considering the differences between the frequency of

metabolites occurring in a motif of interest (5 or 9 in our case)

care must be taken to eliminate the influence of network size

on the analysis. This bias is due to the increased number of

motifs exhibited by larger networks which naturally leads to

greater frequencies of metabolites. Thus, given a network i
and a metabolite j, we denote by fi, j the frequency with which

metabolite j appears within the motif of interest, motif q say,

for the ith network. Now, in order to remove any bias due to

network size we normalise the statistic fi, j by dividing it by the

frequency with which motif q appears in network i, which we

denote by fi,motq . This then leads to the following normalised

statistic:

f̂i, j =
fi, j

fi,motq

,

describing the relative importance of metabolites via their par-

ticipation within specific motifs.
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