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L1 regularisation methods fail to infer the correct network even when the

data is so informative that all existing links can be proven to exist.
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Andreas Tjärnberg,ab‡ Torbjörn E. M. Nordling,∗acd‡ Matthew Studham,a Sven

Nelander,cd and Erik L.L. Sonnhammer,abe

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 20XX

DOI: 10.1039/b000000x

Statistical regularisation methods such as LASSO and related L1 regularised regression methods are commonly used
to construct models of gene regulatory networks. Although they theoretically can infer the correct network structure,
they have been shown in practice to make errors, i.e. leave out existing links and include non-existing links.
We show that L1 regularisation methods typically produce a poor network model when the analysed data is ill-
conditioned, i.e. the gene expression data matrix has a high condition number, even if it contains enough information
for correct network inference. However, the correct structure of network models can be obtained for informative data,
i.e. data with such a signal to noise ratio that existing links can be proven to exist, when these methods fail, by using
least-squares regression and setting small parameters to zero, or by using robust network inference, a recent method
taking the intersection of all non-rejectable models.
Since available experimental data sets are generally ill-conditioned, we recommend to check the condition number of
the data matrix to avoid this pitfall of L1 regularised inference, and to also consider alternative methods.

1 Introduction

Gene regulatory network (GRN) inference, also known
as reverse engineering or network reconstruction, is an
essential endeavour in Systems biology. Several stud-
ies1–3 state that mRNA transcriptional regulatory net-
works can be inferred based on gene expression data ob-
tained from in vivo experiments in which all genes of in-
terest are systematically perturbed and the resulting ex-
pression changes are measured. To be biologically realis-
tic, the network needs to be relatively sparsely connected,
in other words, only a fraction of all possible links exist.
The LASSO method4 and derivatives of it, all of which
use L1-regularisation to induce sparsity, achieve this and
have become popular for GRN inference. Several other
modelling techniques exist such as Bayesian5,6, informa-
tion theoretic7,8, neural networks9,10, Boolean11,12 and
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dynamical systems1,13. Nonetheless, in this study we fo-
cus on L1-regularisation methods, in particular LASSO,
Elastic Net14, and Bolasso15, due to their widespread us-
age. We show that they fail to infer the correct network
even when the data is informative enough for correct in-
ference by other methods. We also test the methods on
the in vivo data collected by Lorenz et al. 2 for inference
of the Snf1 network in S. cerevisiae and relate the result
to our simulations on in silico data with known golden
standard networks.

Theoretically, LASSO has been shown to be able to re-
cover the correct network under certain conditions, such
as the Strong Irrepresentable Condition (SIC) and Re-
stricted Isometry Property (RIP)16–18. In a network
inference context, these conditions concern the relation
among observed vectors of expression changes. However,
even results based on SIC only ensure that the LASSO
estimator is sign consistent with a probability that goes
to one as the number of samples goes to infinity. Some of
the inferred links could thus not exist in reality, in partic-
ular for the low number of samples seen in biological data
sets. In real applications, SIC is of little use because it
cannot be calculated without knowing the true network.
Even though performance of L1-regularisation methods
has been analysed rather extensively, we have not seen
any article reporting that they fail for sufficiently infor-
mative data, which we show here.
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In a number of cases, when reverse engineering algo-
rithms have been applied to biological networks, believed
to have a well understood connectivity, networks with a
different connectivity have been obtained. For instance,
Lorenz et al. 2 reported a mere 62% sensitivity and 69%
precision with 24% of the predicted regulatory interac-
tions having the opposite sign in the model of the Snf1
network in S. cerevisiae. Moreover, benchmarking stud-
ies, such as the Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM), have shown that GRN
inference usually results in a large fraction of false posi-
tives, i.e. inferred links absent in the true network, and
false negatives, i.e. missed links present in the true net-
work19,20. This has in later years lead researchers to
complement expression data with other data types, such
as binding data, ChIP-seq, and a priori information21,22.
Note that we here speak about addition of other data
types to guide the inference method and not integration
of other data types in the model. In the former case the
degree of freedom of the model is kept fixed and the data
is intended to constrain model parameters, while the de-
gree of freedom in the later case is increased. Use of
these, so called multi-data-type genomic datasets, makes
it harder to asses the performance of inference methods
compared to expression data alone. It is in particular
harder to know to which degree a link is supported by
expression data versus a priori information. Even if the
complete topology of the network is provided, e.g. from
ChIP binding data, the signs (activation/repression) of
the links still need to be inferred. Addition of other data
does not fix the method per se. We therefore think that
awareness of the pitfall of L1-regularisation methods that
we report here is more essential than before.

A number of GRN inference benchmark studies23–25

have been published, spanning a wide range of meth-
ods and data sets. In general, the conclusion is that
although they tend to perform better than random, all
inference methods produce models that are far from cor-
rect. The dependency on the nature of the data is strong
as a method may do well in one benchmark but poorly
in another one. Selection of the regularisation coefficient,
which determines the sparsity of the estimate, is a major
issue because it must be correct for the estimated network
model to be correct26. Vinh et al. 27 detail the difficul-
ties of benchmarking, especially on small networks, where
sparsity cannot be achieved to any larger degree due to
the network’s small size. They show that methods for
inference of GRNs do not construct any good networks
with sufficient confidence and that the parameter settings
of the algorithms are crucial to find a good estimate of
the structure of the network. However, no method for
optimising these crucial parameters is given. Jörnsten

et al. 28 show that the structural agreement between net-
work models inferred for the same biological system us-
ing bootstrapping based on measurements obtained at
two different platforms only is good for a narrow range
of the regularisation coefficient. This makes it important
to assess how the accuracy of different inference methods
depends on data and system properties, which we here
do for five methods.

Data sets generated in vivo for gold standard networks
are rare for benchmark purposes due to a lack of knowl-
edge about the interactions among the genes. An at-
tempt has been made to create such a gold standard for
benchmarking by recording an in vivo data set from a
synthetically engineered five gene network in yeast, called
IRMA3. Penfold and Wild 24 benchmarked time series al-
gorithms in addition to steady-state algorithms and eval-
uated their performance on IRMA. They found that no
methods could retrieve the designed structure of IRMA
from the data. The IRMA network was perturbed by
single gene over-expression to trigger the response of the
network and the change in mRNA abundance was then
measured when the system had reached steady-state, as
well as a time series sampled either every 10 or 20 min-
utes for up to 5 hours. For single gene perturbations
there is no guarantee that the gene space is sufficiently
excited to give informative data, i.e. that a sufficient vari-
ation in the response of the genes over the experiments is
achieved29. Another issue with gold standard networks
is the definition of a link. The inference method and
model formalism has to yield the same type of links as
recorded in the gold standard in order for a comparison to
be meaningful and fair. The five methods employed here
infers so called influences, while gold standard networks
typically contain links corresponding to physical binding
between molecules23. Simulated data sets are thus still
necessary for benchmarking due to the lack of “real” data
sets that are informative enough for accurate GRN infer-
ence and differences in the definition of a link. It is thus
not possible to exhaustively demonstrate the pitfalls of
L1-regularisation methods on real data, despite the mul-
titude of data that exist. However, we have applied the
studied inference methods to the in vivo data collected by
Lorenz et al. 2 , compared the inferred networks to three
networks that can be seen as gold standards, and relate
the accuracies to the expected performance in our simu-
lations based on the properties of the data.

In this study, we focus on analysing network and data
properties that are important for the accuracy of GRN
inference. In particular, the condition number of the net-
work and response matrices, as well as the Signal to Noise
Ratio (SNR), are examined. To this end, we generated
a set of linear networks with essential properties simi-
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lar to real biological GRNs. These were then used to
generate both gene expression data sets that have prop-
erties similar to published in vivo data and data sets that
are informative enough for inference of the correct net-
work. This was done to mimic real data sets, while vary-
ing the properties and utilising the advantage of knowing
the true network. We restrict ourselves to linear models,
because it is sufficient to demonstrate the presented pit-
fall of L1-regularisation methods. Considering that the
class of linear models is a subset of the class of nonlinear
models, awareness of this pitfall is essential also when in-
ferring a nonlinear model. By identifying easily testable
conditions that need to be satisfied for successful GRN in-
ference, we provide guidelines useful for avoiding pitfalls
that can cause poor network models.

2 Problem description

In this paper we make the common assumption that the
GRN can be described by a linear dynamical systems
model1,30,31

ẋi(t) =
∑N

j=1 aijxj(t)+pi(t)−fi(t)

yi(t) = xi(t)+ei(t).
(1)

In biological terms, the state vector x(t) =
[x1(t),x2(t), . . . ,xN (t)]T represents actual mRNA expres-
sion changes relative to the initial state of the system,
the perturbation vector p(t) = [p1(t),p2(t), . . . ,pN (t)]T

represents the applied perturbation, which may be
corrupted by the noise f(t). The perturbations could
be e.g. gene knock-downs using siRNA or gene over-
expressions using a plasmid with an extra copy of the
gene. The response vector y(t) = [y1(t),y2(t), . . . ,yN (t)]T

represents the measured expression changes that differ
from the true expression changes by the noise e(t). The
parameters aij of the interaction matrix describe the
influence of an expression change of gene j on gene i. A
positive value represents an activation, while a negative
value represents an inhibition. The relative strength of
the interaction is given by the value of the aij parameter.
We make the common assumption that only steady-state
data is recorded, which simplifies our data model (1) to

Y = −A−1P +A−1F +E (2)

when the set of experiments are considered. Here Y is
the observed steady-state response matrix after applying
the perturbations P and A is the interaction matrix i.e.
network.

By taking the transpose of the variables and “true”
network model, and introducing the notation used for
regressors Φ , [φ1, . . . ,φj , . . . ,φN ] = Y T , regressands

Ξ , [ξ1, . . . ,ξi, . . . ,ξN ] = −P T , regressor errors Υ ,

[υ1, . . . ,υj , . . .υN ] = ET , and regressand errors Π ,

[ǫ1, . . . ,ǫi, . . .ǫN ] = −F T , we obtain the matrix form of
the standard linear data model used in errors-in-variables
regression problems

Φ = Φ̌+Υ, Ξ = Ξ̌+Π (3a)

Φ̌Ǎ
T

= Ξ̌ Φ,Ξ ∈ R
M×N . (3b)

Here M is the number of experiments/samples, i.e. data
points, and N is the number of states/nodes.

3 Materials and methods

3.1 Network inference algorithms

Least Absolute Shrinkage and Selection Operator
(LASSO) penalises models with small nonzero parame-
ters by introducing a L1 penalty term in the objective
function which equals the sum of the absolute values of
the parameters4

Âreg(ζ̃) = argmin
A

||AY +P ||2L2
+ ζ̃||A||L1

. (4)

The effect of the introduced L1 regularisation term de-
pends on the regularisation parameter ζ. If it is set to
zero then the ordinary least squares estimate is obtained,
while a network model with no links is obtained when
it goes to infinity. The regularisation term will trade the
models predictive performance on the fitted data for a re-
duction of the number of descriptive model parameters.

The Elastic net14 is a method based on LASSO which
combines the L1 penalty from LASSO and the L2 penalty
from ridge regression. The influence of the penalties are
then weighted by a parameter α such that,

Âreg(ζ̃) = argmin
A

C+ ζ̃
(

α||A||L1
+(1−α)||A||2L2

)

, (5)

where C = ||AY +P ||2L2
.

Bolasso15 is a bootstrap approach to LASSO inference,
where the statistical properties of bootstrapping are com-
bined with the LASSO, see algorithm 1. We use a con-
stant number of bootstraps, nBS = 100, for each data set,
as the statistical confidence should increase with nBS .
This is well above the minimum number of bootstraps
needed15,

√
N , with N being the number of variables.

We extend the bootstrap algorithm by requiring that the
bootstrapped data set has the same rank as the original
data. In practice this means putting a rank requirement
on the P matrix so that it has full row rank. This im-
proves the performance, because it ensures that all genes
are perturbed in at least one experiment, which is a nec-
essary condition for correct inference32. Bolasso was not
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Algorithm 1 Plain bootstrap LASSO algorithm. B is
the inferred model and A the logical intersection of in-
ferred models. aij is a link from j to i. nBS is the number
of bootstraps.

procedure bootstrap lasso(data,nBS)
aij = 1 ∀ i and j ∈ A

for 1:nBS do

dataBS = draw with replacement(data)
B = lasso(bdataBS,ζ)
A = A ∧ logical(B)

end for

A = {aij ∈ A}
end procedure

function draw with replacement(data)
Draw samples with replacement
s.t. |dataBS| = |data|
return dataBS

end function

applied to the 10 gene data sets because the data matrix
becomes rank deficient if a sample that is left out during
the bootstrap procedure contains the only perturbation
of a gene. This is often the case in the 10 gene data,
and the consequence is that links can not achieve 100%
bootstrap support if they can only be inferred when that
unique experiment is sampled. For the same reason, Bo-
lasso was not applied to the data by Lorenz et al. 2 as it
only consists of one set of single gene perturbations, lead-
ing to a rank deficient data matrix as soon as one of the
experiments is excluded during the bootstrap procedure.

Least-Squares Cut-Off (LSCO) is a simple inference al-
gorithm based on ordinary least squares (OLS) followed
by the removal of all weak links, i.e. small nonzero pa-
rameters,

âij ,

{

aols
ij if |aols

ij | ≥ ζ̃

0 otherwise
with Aols , −P Y †. (6)

The cutoff is used like a sparsity parameter and is varied
over a range; for each data set the value producing the
network with structure closest to the true network was
picked26.

Robust Network Inference (RNI) is achieved by implic-
itly checking all network models that cannot be rejected
based on the assumed data model and desired signifi-
cance level and only including the links that are present
in all of these models32. This gives the intersection of all
non-rejectable models. In practice, the network model is
obtained by calculating Nordling’s confidence score and
only including links with a value above one. Nordling’s
confidence score for the existence of the link aij is defined

as

γ(aij) , σN (Ψ(χ)) , (7a)

with each element

ψkl(χ) ,
ψkl

√

χ−2(α,NM)λkl

(7b)

and Ψ , [φ1, . . . ,φj−1,φj+1, . . . ,φN ,ξi], (7c)

assuming that the data has been generated by the data
model (3), with υj and ǫi drawn from a normal distri-
bution with zero mean and a diagonal covariance ma-
trix32. Here σN denotes the Nth singular value, and
χ-2(α,NM) the inverse of the chi-square cumulative
distribution with NM degrees of freedom, such that
P[χ2(NM) > χ-2(α,NM)] = α33. A confidence score
above one implies that the link can be proven to exist
at the desired significance level α, in this article set to
0.01. RNI obtains a network model that under the as-
sumptions above only contains true positives32. False
positives are thus avoided at the expense of accepting
false negatives. RNI was done using code provided by
Nordron AB (www.nordron.com), which owns all rights.

3.2 Networks

To assess the performance of the inference methods we
generated a number of networks by varying model prop-
erties that have been considered important in the litera-
ture 29,34–36. The sparsity of the networks was set to 0.25
for N = 10 based on reported sparsities. For instance, the
data on the ten gene network of the Snf1 signalling path-
way in S. cerevisiae 2 can be explained well with networks
having a sparsity in the range 0.22 to 0.28 and 29 tran-
scriptional regulatory influences have been reported for it
in the literature. For N = 45 we generated networks with
a sparsity around 0.07. Sparsity is defined as the fraction
of links present in the network, denoted L, relative to the
total number of possible links, N2, i.e. s, L

N2 . The in-
terampatteness degree for a linear system is defined as the
condition number of the system matrix G = A−1 29. It

is thus κ(G) , κ(A) , σ1(A)
σN (A) , where σ1(A) and σN (A)

are the largest and smallest singular values of the net-
work matrix A, respectively, for each network. We picked
a small value between κ ∈ [0.5,1] ·N , and a large value
κ ∈ [9,11] ·N , with 10 networks for each level. The latter
is within the range reported for real networks based on
data on a ten gene network of the Snf1 signalling path-
way in S. cerevisiae 253, and a nine gene subnetwork of
the SOS pathway in E. coli 541,2,29. We generated the
networks randomly, while making sure the networks have
full rank, and weighted the model parameters to ensure
stability37, and that we achieved the desired κ(A).
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Table 1 and Table 2 gives an overview of the N = 10
and N = 45 network properties respectively. For a com-
plete list of the networks and properties see Table S.3 and
Table S.4.

Table 1 Network properties, for N = 10 networks

Network properties low κ(A) high κ(A)

# genes, N 10 10
# networks 10 10
structure random random
interampatteness degree, κ(A) 6.9−10 91.6−108
sparsity 0.25 0.25

Table 2 Network properties, for N = 45 networks

Network properties low κ(A) high κ(A)

# genes, N 45 45
# networks 10 10
structure random random
interampatteness degree, κ(A) 25.4−41.3 411.5−492.8
sparsity ≈ 0.07 ≈ 0.07

3.3 Data sets

Data sets were created according to the linear dynamical
model in (2). Given the true network Ǎ we calculate an
initial P generated with the given perturbation design.

Our noiseless expression data is then Y̌ = −Ǎ
−1

P . We
included 2N samples for N = 10 and 4N samples for N =
45, because published data sets typically contain one to
three replicates of N experiments1–3.

We followed three different perturbation approaches
two for N = 10: Naive Random Double Perturba-
tion (NRDP) and Sparse Balanced Excitation Design
(SBED), and one for N = 45: triple Single Sets and a
Single Double set (SSSD).

NRDP was constructed by perturbing two randomly
chosen genes for each sample while making sure that P

had full rank and that each gene was perturbed at least
once. By perturbing genes more than once we make sure
that each sample has some dependency on the remaining
data set, a requirement for using the sample in leave one
out cross-optimisation of ζ 26. This design yields data
sets where the condition number of Y is close to the in-
terampatteness degree of the network. We therefore gen-
erate data sets with similar conditions to those reported
in the literature, 5, 154, and 215, respectively in Gardner
et al. 1 , Alter et al. 34 , and Lorenz et al. 2 .

The objective of the SBED is to excite all directions
of the gene space uniformly, i.e. spread out the response

equally in the gene space, and obtain a well conditioned
Y matrix29. We do this approximately by minimising
κ(Y ) and the number of perturbed genes. To achieve
uniform excitation is simpler for a dense perturbation
matrix P as the different signal directions in Y can be
more easily tuned. However as the possibility to perturb
a majority of the genes at once is unrealistic, we keep P

as sparse as possible, i.e. we do a trade-off between a
sparse perturbation design and uniform excitation in all
directions of the gene space.

The SSSD perturbation design is constructed by us-
ing triple replicates where a single gene is perturbed for
each sample with one extra set of double perturbation
where two random genes are perturbed for each sample.
This setup simulates a plausible experimental design ap-
proach that naively tries to maximise the information in
the data set while utilising the fact that there need to be
a dependence between samples to do some form of cross
validation.

Table 3 and Table 4 shows an overview of data set prop-
erties. For a complete list of the data sets and properties
see Table S.1, Table S.2, and Table S.5.

Table 3 Data set properties

Data set property

perturbation design SBED NRDP
samples, M 2N 2N
# data sets 20 20
condition number, κ(Y ) 1.3−2.0 9.5−181.3
max # perturbations per sample 2−6 2
min # perturbations per sample 1−3 2

Table 4 Data set properties

Data set property

perturbation design SSSD SSSD
samples, M 4N 4N
# data sets 10 10
condition number, κ(Y ) 25.7−41.3 412.8−504.51
max # perturbations per sample 2 2
min # perturbations per sample 1 1

We applied noise to each data set with a variance λ
selected to give the desired Signal to Noise Ratio (SNR)

SNR ,
σN (Φ̌)

√

χ−2(α,NM)λ
, (8)

where σN (Φ̌) is the Nth singular value of Φ̌, and
χ−2(α,NM) is the inverse of the chi-square cumulative
distribution function as explained above. We generated
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100 different noise realisations to do Monte Carlo simu-
lations, each from a normal distribution with zero mean
and variance λ using the randn function in Matlab ver-
sion R2012a (www.mathworks.com). For each data set,
the variance of each realisation was then scaled based on
(8) to achieve the desired SNR. For the data sets we used
the significance level α = 0.01. By covering the whole
range of SNRs from completely uninformative to infor-
mative enough, we include the levels seen in real data.

3.4 Performance evaluation

We assessed the accuracy of the estimated networks using
the Matthew Correlation Coefficient (MCC)38. MCC ac-
counts for both true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), provid-
ing one number in the range [−1,1] that captures the
structural similarity between two networks containing the
same labelled nodes. To use it one needs a golden stan-
dard that is taken as the true network that all the esti-
mates are compared to.

The Fraction of Provably Existing Links (FPEL) is the
fraction of links existing in the true network that can be
proven to exist based on the observed data. They are
proven to exist by rejecting all alternative network mod-
els lacking these links at a desired significance level based
on the observed data and true data model, i.e. when the
considered set of network models contains the true net-
work and the measurement noise is described by the error
model that was used to generate it. FPEL is calculated
as the number of links with Nordling’s confidence score
(7) above one divided by the number of links in the true
network32. It is the sensitivity of RNI. If all existing links
can be proven to exist, i.e. FPEL = 1, then the data set
is said to be informative enough for network inference.
Note that FPEL and MCC are not directly comparable,
since only the later accounts for FP and TN. MCC is rel-
ative to the number of possible links N2, while FPEL is
relative to the number of links present in the true net-
work L. Nonetheless, MCC = 1 corresponds to FPEL = 1
for RNI. Only measurement data and an error model is
needed to calculate the number of provably existing links,
implying that it can be used for validation even when no
golden standard or true network exists.

3.5 Analysis of the irrepresentable condition

The network model in (3b) can for each row i of the in-

teraction matrix A be expressed as Φ̌θ̌i = ξ̌i, yielding
a sparse estimation problem for each row. By introduc-
ing Φ0i

and Φ0c

i
that contain regressors corresponding to

the zero and nonzero elements of θ̌i, respectively, and βi

containing the nonzero elements of θ̌i, the Common part
of the Irrepresentable Conditions (CIC), used by Zhao
and Yu 16 in theorems ensuring sign consistency of the
LASSO estimator, can be expressed as

µ̃i ,

∣

∣

∣

∣

ΦT
0i

Φ0c

i

(

ΦT
0c

i

Φ0c

i

)−1
sign(βi)

∣

∣

∣

∣

. (9)

If all elements of µ̃i are smaller than 1, then the Weak
Irrepresentable Condition (WIC) is fulfilled and if all
elements are smaller than 1 minus a positive constant
η, then the Strong Irrepresentable Condition (SIC) is
fulfilled16. The latter is used to show that LASSO is
strongly sign consistent and the former that it is general
sign consistent; both imply that the probability that all
elements in the LASSO estimate of θi have the correct
sign goes to one when the number of samples M goes
to infinity. A few additional technical conditions are re-
quired in the theorems, but it is logical to expect a high
accuracy of the network estimate produced by LASSO
when

µ, max
i

max µ̃i < 1 (10)

If all columns in Φ0i
are orthogonal to all columns

in Φ0c

i
, then µ̃i = 0 and SIC is fulfilled. Assume for

a moment that Φ0i
= φ1 and Φ0c

i
= φ2, then µ̃i =

∣

∣

∣
φT

1 φ2 ‖φ2‖−2
∣

∣

∣
. Now if φ1 = αφ2, i.e. φ1 is parallel

to φ2, then µ̃i = |α| is greater or equal to one unless α
is smaller than one, i.e. unless φ1 is shorter than φ2.
Hence the projection of any regressor corresponding to a
zero element that is not orthogonal to the regressors cor-
responding to a nonzero element onto them must always
be shorter than all of them to fulfill SIC. This would al-
ways hold if all regressors corresponding to a zero were
shorter than all regressors corresponding to a nonzero
element. This makes it interesting to calculate the mini-
mum ratio between the shortest regressor corresponding
to a nonzero element and the longest corresponding to a
zero over all rows

rmin , min
i

(

minφk∈Φ
0

c

i

‖φk‖
maxφl∈Φ0i

‖φl‖

)

. (11)

4 Results and discussion

We first present a comparison of the accuracy of the net-
work models yielded by LASSO, Elastic Net, LSCO, and
RNI as a function of the SNR for two different groups of
data sets from 10 gene networks. One set generated by
SBED in which the condition number of the response ma-
trix, Y , is low and another generated by NRDP in which
it is high. Similarly, we also compare the accuracy of the
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network models yielded by LASSO, Elastic Net, Bolasso,
LSCO, and RNI for data sets from 45 gene networks. We
used the network inference methods LASSO, Elastic Net,
Bolasso as representatives of commonly used algorithms.
In addition, we used LSCO and the recently proposed
method RNI, which, under the assumptions used to gen-
erate our data sets, finds all links that can be proven to
exist. We then use the irrepresentable conditions to anal-
yse why and when LASSO fails based on these two groups
of data sets. Finally, using the in vivo data collected by
Lorenz et al. 2 , we demonstrate how our simulated results
can be used to estimate the performance of the methods
when they are applied to biological data.

4.1 Vulnerability analysis of GRN inference

methods

The most striking result on the data set with high re-
sponse matrix condition number is that all the L1 regu-
larisation methods fail to recover the true network model
even when the SNR is so high that the data is informative
enough for network inference and all existing links can be
proven to exist (Figure 1 and 3). This unexpected failure
of L1 regularisation constitutes an important pitfall in
network inference, since many inference methods use L1

penalties and gene expression data sets often have a high
condition number29. Actually the condition numbers of
the 20 response matrices with N = 10 are in the range 9 to
181, which is modest compared to the condition number
of recorded response matrices used for inference of GRNs,
e.g. the ten gene network of the Snf1 signalling pathway
in S. cerevisiae (215)2 and the nine gene sub-network of
the SOS pathway in E. coli (154)1. Even when the data
is so informative that all existing links can be proven to
exist using RNI, LASSO in the best case only obtained an
MCC of 0.84, while LSCO in all cases for N = 10 recovers
the true network. In the N = 45 case Bolasso outperforms
LASSO and Elastic Net but fails to recover all links cor-
rectly even for the data sets that are informative enough.
It is worth noting that Bolasso requires approximately
100 times more computations than LASSO. In LSCO the
sum of squared residuals is minimised before any weak
link is removed so it will provide good estimates for in-
formative data. We therefore recommend all users of L1

regularisation to check the condition number of the re-
sponse matrix in order to avoid this pitfall. If it is high,
then LSCO and RNI can yield better network estimates.

It is important to note that in each case, for each
noise realisation, we selected the ζ value that yielded the
LASSO estimate that was closest to the true network, i.e.
highest MCC for the 100 noise realisations for each noise
level, and similarly for Elastic Net, Bolasso, and LSCO.

The former was done to avoid the influence of the rule
used to select the regularisation coefficient ζ, which typ-
ically has a strong influence on the accuracy of the net-
work estimate and is difficult to select correctly26. Our
network estimates are thus in general unrealistically ac-
curate and require knowledge of the true network which
is only available for simulated data, yet they are still far
from correct. The latter was done to decrease the impact
of random effects of the noise realisations in favour of
data properties by doing Monte Carlo simulations. For
this reason we also used the same 100 noise realisations
for all data sets and all SNRs. We varied the network and
data properties within ranges deemed reasonable and rel-
evant for network inference based on previous works. In
the literature a single gene is typically perturbed in each
experiment, but we here used NRDP, i.e. perturbed two
genes in each experiment, selected at random while en-
suring that each gene is perturbed and that the pertur-
bations constitute a linearly independent set. We also
analysed data sets generated by the typical single gene
design and observed the same failure of LASSO (data not
shown). A total of 2N (N = 10) or 4N (N = 45) simu-
lated perturbation experiments were used in all data sets,
which is comparable to the 3N experiments performed in
vivo by Lorenz et al. 2 and Gardner et al. 1 , respectively.

For the 20 SBED data sets with a response matrix
having a low condition number, LASSO, Elastic Net, and
LSCO performed equally well and recovered the true net-
work in all cases when the data sets were informative
enough for network inference, see Figure 2. The SBED
was in these cases used to balance the excitation of all
directions in the space spanned by the 10 genes of the
network, so that all singular values of the response ma-
trix were of similar magnitude, while perturbing as few
genes as possible in each experiment. These response ma-
trices therefore have condition numbers in the range 1.3
to 2.0, which we have not yet seen for any published gene
expression data set. It is worth remembering that we
selected the optimal ζ value for each data set and noise
realisation for both LASSO, Elastic Net, and LSCO, so
the performance is in general unrealistically good. For
SNR 0.1, a weak indication of LASSO and Elastic Net
outperforming LSCO is present but we cannot say that
one method in practice is preferable over the other be-
cause the accuracy is sensitive to the selection of the value
of the regularisation coefficient ζ 26. The same networks
and noise realisations as described above were used.

For the 10 SSSD data sets with a response matrix hav-
ing a low condition number Bolasso and LSCO performed
equally well and recovered the true network in all cases
when the data sets were informative enough for network
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Fig. 1 GRN inference accuracy versus signal to noise ratio
using LASSO, Elastic Net, LSCO, and RNI on NRDP data
sets with N = 10 and high condition number κ(Y ). LASSO
and Elastic Net fail even when all existing links can be
proven to exist, corresponding to MCC= 1 for RNI. Boxes
are grouped according to five SNR values. Box edges signifies
q1 = 25th and q3 = 75th percentile, whiskers encapsulate the
most extreme data points not considered outliers. Outliers
are considered points which are > q3 + w(q3 − q1) or
< q1 − w(q3 − q1) where w = 1.5 and marked with +.
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Fig. 2 GRN inference accuracy versus signal to noise ratio
using LASSO, Elastic Net, LSCO, and RNI on SBED data
sets with N = 10 and low condition number κ(Y ). For an
SNR of 10 LASSO, Elastic Net, and LSCO can infer the true
network structure for some of the data sets even though all
existing links cannot be proven to exist (RNI has a MCC
< 1). For an SNR > 10 the median of all methods inference
accuracy is approaching 1 and is above 90% for all data sets.
For a description of the plot see Figure 1.

0.0128 0.0405 0.128 0.405 1.28 4.05 12.8 40.5 128 405 1280
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

M
C

C

 

 

Elastic Net
LASSO
Bolasso
RNI
LSCO

Fig. 3 GRN inference accuracy versus signal to noise ratio
for LASSO, Elastic Net, Bolasso, LSCO, and RNI on SSSD
data sets with N=45 and high condition number κ(Y ). All
L1 regularised methods fail even when all existing links can
be proven to exist, corresponding to MCC= 1 for RNI. For a
description of the plot see Figure 1.

0.0128 0.0405 0.128 0.405 1.28 4.05 12.8 40.5 128 405 1280
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

M
C

C

 

 

Elastic Net
LASSO
Bolasso
RNI
LSCO

Fig. 4 GRN inference accuracy versus signal to noise ratio
for LASSO, Elastic Net, Bolasso, LSCO, and RNI on SSSD
data sets with N=45 and low condition number κ(Y ). For a
description of the plot see Figure 1.
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inference, see Figure 4, while LASSO and Elastic Net
performed worse. This is probably due to the condition
number of the response matrix being significantly larger
than for the 10 gene case in Figure 2. It is now in the
range 26 to 41. We also observe that Elastic Net per-
forms worse than all other methods for the 45 gene case,
but have not investigated why. The same networks and
noise realisations as described above were used.

For low SNRs, RNI seems partly outperformed by all
other methods because of a large number of false nega-
tives, which are a consequence of ensuring that only true
positives are included in the network model under the
mild assumptions that are fulfilled here, and partly be-
cause the optimal regularisation coefficient ζ is selected
based on knowledge of the true network. RNI partly per-
forms better than LASSO and Elastic Net from SNR 1
and better than Bolasso from SNR 100 for the data sets
with a higher condition number because the SNR is de-
fined based on the weakest singular value and the total
excitation hence in general is higher. RNI is mainly in-
cluded in this study because it gives FPEL and thereby
can be seen as a lower bound on the performance that
should be required from every other inference method.
No other inference method that we are aware of can be
used to prove that a link must exist in order to explain
the observed data when accounting for the error model
of the noise. The ability to prove the existence of links
under mild assumptions is in our opinion so valuable in
knowledge generation that network models generated by
other methods only should be used when the methods
outperform RNI.

4.2 When and why does LASSO fail?

The indicators SIC and WIC (Strong and Weak Irrepre-
sentable Conditions) are fulfilled, i.e. µ is below one, only
for the data sets with a low condition number and SNR
of one or higher, see Figure 5. This suggests that the
response matrix, which is the transpose of the regressor
matrix, needs to have a low condition number for accu-
rate GRN estimation using LASSO. In our simulations
LASSO typically fails due to introduction of several false
positive links, Figure S.2.

Another indicator is rmin, the minimum ratio between
the shortest regressor corresponding to a nonzero element
and the longest corresponding to a zero. All data sets
with a low condition number have a considerably higher
rmin than all data sets with a high condition number, see
Figure 6. The fact that rmin is below one for all data sets
implies that the longest regressor corresponding to a non-
existing link exceeds the length of the shortest regressor
corresponding to an existing link. For the data sets with
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Fig. 5 LASSO GRN inference accuracy versus
irrepresentable condition. SIC and WIC are fulfilled only for
the data sets with a low condition number (red) and an SNR
of one or higher. The data sets with a high condition
number (blue) all have a µ above one. µ describes the
irrepresentable condition (10).

low condition number, the longest regressor correspond-
ing to a non-existing link is expected to be nearly or-
thogonal to all regressors corresponding to existing links,
while in data sets with high condition number they are
not.

Evaluation of the irrepresentable conditions and ratio
between the shortest regressor corresponding to a nonzero
element and the longest corresponding to a zero require
knowledge of the true network, so they cannot in practice
be used to evaluate if LASSO will produce an accurate
estimate. The lack of a linear relation between MCC and
µ or rmin indicates that neither of the measures captures
all aspects that affect the performance of LASSO, so fur-
ther studies are needed. Until a better testable criterion
for failure of LASSO is presented, we recommend all users
to check the condition number of the response matrix as
discussed above. The condition number has the advan-
tage of being a classical tool in linear algebra that is easy
to calculate.

4.3 Analysis of biological data

How well do the tested methods perform on real bio-
logical data? Although we can not control or vary the
conditions of real data, we can take a data set and exam-
ine how well the methods can use it to infer a reference
GRN. Such data has e.g. been collected by Lorenz et al. 2

for the Snf1 signalling pathway in S. cerevisiae, and they
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Fig. 6 LASSO GRN inference accuracy versus minimum
ratio between the shortest regressor corresponding to a
nonzero element and the longest corresponding to a zero over
all rows. A clear separation between data sets where LASSO
can infer the true structure (red) and where it cannot (blue)
is seen at 0.5 for the ratio rmin. Colours as in Figure 5.

provide two reference GRNs. They perturbed the ten
genes of the Snf1 signalling pathway in S. cerevisiae by
inserting a plasmid containing an extra copy of each gene
one-by-one and recording the resulting expression change
of all ten genes. We calculated the weighted mean vari-
ance based on the reported propagated standard error
of each data point of the response and perturbation ma-
trix to 0.8 and 0.4, respectively. Because the variance of
the response is twice as large as the variance of the per-
turbations, we calculate the SNR ≈ 0.01 using (8) with
α = 0.05. The closest data point based on the number
of genes N = 10, estimated degree of interampatteness
25332, the condition number κ(Y ) = 215, and SNR 0.01
in our simulated data is SNR 0.1 in Figure 1. Consid-
ering that (i) the estimated degree of interampatteness
is roughly twice that of the most interampatte simulated
10 gene network (108), (ii) the condition number is larger
than the largest condition number of the simulated data
sets (181), (iii) the number of perturbations are half, and
(iv) the SNR is one order of magnitude lower, the ex-
pected MCCs should be well below 0.5. It is worth noting
that the expected MCC of RNI is zero, i.e. the data is
expected to contain so little information that no link can
be proven to exist.

To avoid the influence of the selection of the regularisa-
tion parameter ζ we varied it over the whole range from a
full to an empty inferred network, see supplemental, and

Table 5 Optimal performance based on MCC similarity
with reported networks in Lorenz et al.

2 .

S10 S19 S9

LASSO 0.18 0.22 0.36
LSCO 0.21 0.20 0.32
Elastic net 0.18 0.27 0.40
RNI 0.00 0.00 0.00
NIR (S9) 0.25 0.28 1.00

report the largest MCC value of each method for each of
the networks reported by Lorenz et al. 2–S10, S19, and
S9. The first golden standard S10 is a collection of links
that Lorenz et al. 2 found experimental evidence for in the
literature. To get the second golden standard S19 they
complemented these links with links that they found in
their validation experiments using ChIP and qPCR. S9
is their final network estimate using NIR39 followed by t-
tests keeping only statistically significant interactions. It
is not a gold standard but we included it for comparison.
Note that a link in these golden standards can mean very
different things; anything from a binding observed in a
ChIP experiment to an influence on the expression of the
other gene. The applied inference methods can only pick
up influences that led to expression changes present in the
recorded data. It is therefore unlikely that any of these
golden standards equal the “true” network that would
be achieved if more data was collected until Nordling’s
confidence score for each possible link either is above one
or approaches zero. We therefore refrain from making
statements about which method that performs best based
on comparison to these golden standards. The MCC of
LASSO, Elastic Net, LSCO, and RNI is below 0.27 for
both golden standards and hence in agreement with our
expectation based on our simulations, see Table 5. The
MCC between S9 and the two golden standards is below
0.28, i.e. of the same magnitude. The RNI inferred net-
work is empty, indicating that the data contains so little
information that no link can be proven to exist.

5 Conclusions

We have shown that all the tested L1 regularisation
methods–LASSO, Elastic Net, and Bolasso–typically per-
form poorly in GRN inference when using data as ill-
conditioned as typical experimental data. Testing on the
in vivo data collected by Lorenz et al. 2 concurs with the
expected performance in our simulations based on the
properties of the data. As we use the regularisation co-
efficient that gives the most accurate network for each
data set and noise realisation, the here reported perfor-
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mance of LASSO, Elastic Net, Bolasso, and LSCO is in
general unrealistically good. We can therefore with cer-
tainty say that the L1 regularisation methods fails for
ill-conditioned data matrices even when the data is infor-
mative enough for network inference, while LSCO does
not. However, this does not necessarily imply that LSCO
in practice is always better and preferable over LASSO,
Elastic Net, or Bolasso, because the accuracy is sensi-
tive to the selection of the value of the regularisation
coefficient26. Nonetheless, LSCO and RNI can yield bet-
ter network estimates when the data is ill-conditioned so
it is worth applying them. When the data is informa-
tive enough for network inference then all existing links
can be proven to exist and RNI recovers the correct net-
work structure32. As can be expected, we observed that
LASSO fails when the SIC and WIC criteria are not ful-
filled.

For both well-conditioned and ill-conditioned data, we
found an SNR, as defined in (8), of 10 to be sufficient for
LSCO and RNI to achieve maximum accuracies close to
one. For data with an SNR below one the accuracy of
all methods was in general low. This puts high demands
on the quality of experimental data to be useful for GRN
inference.
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