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Transcription factors play a key role in development and disease. ChIP-sequencing has become 

a preferred technique to investigate genome-wide binding patterns of transcription factors in 

vivo. Although this technology has led to many important discoveries, the rapidly increasing 

number of publicly available ChIP-sequencing data sets still remains a largely unexplored 

resource. Using a compendium of 144 publicly available murine ChIP-sequencing data sets in 

blood, we show that systematic bioinformatic analysis can unravel diverse aspects of 

transcription regulation; from genome-wide binding preferences, finding regulatory partners 

and assembling regulatory complexes, to identifying novel functions of transcription factors 

and investigating transcription dynamics during development. 

Introduction 

The control of cell-type specific gene expression underlies 

development of all multicellular organisms, and is thought to be 

achieved through combinatorial interactions of transcription factors 

with gene regulatory sequences. Moreover, dysregulation of 

transcription has widely proven as a major contributor to human 

pathologies, with the recent development of small molecule drugs 

targeting protein interactions between transcriptional regulator 

generating much excitement [1, 2]. 

With the interaction between cis-regulatory DNA elements and 

trans-acting transcription factors (TFs) representing the fundamental 

basis of transcriptional control, the delineation of comprehensive 

collections of regulatory sequences together with knowledge of the 

TFs bound to them will be essential to gain global insights into 

transcriptional control mechanisms. Over the past 10 years, 

chromatin immunoprecipitation (ChIP) followed by microarray 

(ChIP-chip) or sequencing (ChIP-Seq) have become the most widely 

used approaches for genome wide identification and characterization 

of in vivo protein-DNA interactions. Due to the rapid drop in the 

cost of high throughput sequencing, ChIP sequencing has become 

the method of choice for the generation of high resolution maps of 

genome-wide protein-DNA interactions in mammalian systems [3].  

To gain a holistic view of transcriptional control during 

development, it is essential to generate genome scale maps of key 

transcription factors across multiple cell types. However, generating 

such genome-scale maps in many different cell types remains a 

daunting task for individual research groups due to limiting human 

and financial resources. Moreover, each individual TF requires 

careful validation of antibody reagents, which limits the potential 

throughput of large-scale initiatives. Indeed, bespoke protocols are 

often developed by individual groups with specialist expertise, so 

that published ChIP-Seq studies commonly report binding maps for 

less than a handful of TFs [4–10] and only a few larger studies 

reporting 10 or more factors [11, 12] or a single factor across 

multiple cell types [13]. We have previously shown [14] that unlike 

gene expression data, ChIP-Seq datasets produced by different 

laboratories can be readily integrated. This analysis revealed that 

genome wide transcription factor binding profiles are largely 

governed by cellular context. We recently reported a TF ChIP-Seq 

compendium containing 144 publicly available studies pertaining to 

the mouse blood system [15]. Using this dataset, here we show how 

concerted bioinformatic analysis of such a high quality hand-curated 

compendium can reveal previously unknown aspects of 

transcriptional control. This includes identification of those TF-

bound sites most likely to be functional, prediction of TF 

interactions and multicomponent complexes, specific functionality 

of individual TFs and the dynamics of transcriptional regulation 

during differentiation and development. 

Results and discussion 

Enhancers, unlike promoters cluster according to cell type 

We collected genome-wide binding patterns (peaks) of 144 

publicly available murine ChIP-sequencing data sets for 53 

transcription factors in 15 major blood lineages and leukemia 

[15]  to obtain 270,261 regulatory regions with at least one 

factor binding. We classified peaks in two groups: promoter 

and enhancer peaks by defining the peaks within 1kb of TSS as 

promoter peaks. 7.5% of the total peaks belonged to promoters 

and all non-promoter peaks were classified as putative 

enhancers. The hierarchical clustering of enhancers clustered 

them according to cell type (Figure1B, Supplementary figure 2) 

irrespective of the factor such as Fli1 in hematopoietic 

progenitor cells (HPC) clustered with other samples in HPCs 

and Fli1 in T cells clustered with T cell samples. There was an 

exception of one transcription factor, Pu.1. Pu.1 samples across 

multiple cell types clustered together [14]. 
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The promoter regions did not show a strong cell type specific 

clustering but clustered into two major clusters (Figure 1A, 

Supplementary Figure 1). Cluster 1 consisted of Gata factors 

across multiple cell types with their known interacting partners 

such as Ldb1, Scl/Tal1 and Cluster 2 consists of a large 

agglomeration of over 35 samples of multiple factors in diverse 

cell types. More generally, the observation of lineage-specific 

pair-wise associations in distal but not promoter regions 

provides global confirmation for previous suggestions that 

tissue specific expression is largely mediated by distal elements 

(Heintzman et al., 2009). 

 

 
Figure 1: A,B Hierarchical clustering of pair-wise peak overlap of 

all in promoters and enhancers across all cell types red representing 

positive Pearson’s correlation coefficient values and blue 

representing negative correlation coefficients C,D: 5-way Venn 

diagram of Pu.1 ChIP sequencing data from 5 cell types in 

promoters and enhancers representing higher overlap in promoters 

compared to enhancers. 

As Pu.1 peaks in both promoters as well as enhancers cluster 

according to the factor rather than cell type, we characterized 

them in more detail. The 5-way Venn diagram of Pu.1 in 

promoter regions showed a high overlap of binding sites with 

about 50% of peaks present in all cell types (Figure 1C) 

whereas only about 10% of enhancer peaks were present in all 

cell types (Figure 1D). This shows that Pu.1 also agrees with 

the model where promoters mainly drive cell type invariant 

while enhancers drive tissue specific expression. 

It is well established that transcription factors bind to different 

interacting partners in a cell type specific manner to drive gene 

expression [8]. To check if TFs have distinct interacting 

partners in promoter and enhancer regions, we calculated cis-

regulatory motif enrichment in promoter and enhancer region 

separately for each factor using HOMER software. The 

sequence motif of the transcription factor chipped was enriched 

in both promoter and enhancers in most samples. Most samples 

also exhibited promoter-specific and enhancer-specific 

sequence motifs (Supplementary Figure 3).  The GFY-STAF, 

NRF1 sequence motifs were enriched in promoters of most 

samples. Only a few motifs were sample specific in promoters 

such as Sp1 motif was enriched only in Scl/Tal1 promoter 

peaks. Sp1 is known to interact with Scl/Tal1 to drive 

expression of key gene loci such as Kit [16]. On the other hand, 

enhancers showed more sample specific motif enrichment. Ebf1 

(early B cell factor) motif is enriched only for Pu.1 enhancers in 

B cells while MafA (macrophage activating factor) motif is 

only enriched in Pu.1 enhancers in macrophages. 

 

Taken together, the data supports the suggestion that tissue-

specificity is common feature of enhancers rather than 

promoters. 

 

Transcription factor gene loci are enriched for peaks. 
We mapped peaks across 15 blood lineages to their nearest 

genes resulting into an average of 13.5 peaks per gene. The 

19869 unique gene loci were associated with peaks ranging 

from a single peak to over 200 peaks. The 726 genes with more 

than 50 peaks in their gene loci are enriched for functional 

categories ‘transcription regulation’ (p-value: 6.6E-18), 

‘hematopoiesis’ (p-value: 1.9E-10) and ‘blood vessel 

development’ (p-value: 8.2E-8) demonstrating that 

hematopoietic regulatory genes have more binding sites in their 

gene loci. In an individual ChIP-sequencing experiment, most 

gene loci are associated with only one peak with an average of 

1.8 peaks per gene. Genes with more than 5 peaks in their gene 

locus were enriched for hematopoietic functions. Transcription 

factor gene loci have an average of 2.5 peaks per gene, in 

agreement with previously reported suggestions that TF gene 

loci have a higher number of regulatory elements than average. 

This difference is statistically significant even after correcting 

for the gene length (p value: 2.2e-6).  

It has been suggested that multiple peaks of a TF in a gene 

locus arise due to cross linking of multiple distant regulatory 

elements to the promoter, which might explain the lack of a 

consensus binding motif in many ChIP-seq peak regions [17]. 

We calculated the number of enhancer peaks for each factor 

with and without the presence of a peak at the promoter of a 

gene and did not observe any bias towards the presence of an 

enhancer peak with presence of a promoter peak.  

 

Candidate regulatory regions bound by multiple factors 

might be functionally more relevant.   
A typical ChIP-sequencing experiment generates millions of 

reads and hundreds to thousands of peaks. It is widely assumed 

that not all binding events are of equal functional significance. 

However, dissecting out functionally important binding events 

from potentially opportunistic binding events still remains an 

unsolved problem. Approximately 60% of the 270 thousand 

peaks of TFs across multiple cell types in blood are bound by 

more than one factor. We investigated whether the binding of 

multiple TFs provides any clues towards the functional 

implications of a binding event. As sequence conservation of a 

DNA fragment across species is predictive of functionality, we 

calculated human-mouse sequence conservation scores for all 

peaks. The sequences underlying peaks bound by multiple 

factors were more conserved across mammals than those bound 

by a single factor (Figure 2A). Moreover, peaks bound by 

multiple factors were enriched in the VISTA enhancer database 

(Figure 2B), a collection of over 700 enhancer regions 

functionally validated in transgenic mouse assays [18]. Taken 

together, these observations suggest that peaks bound by 

multiple factors might be more likely to be functional. Studies 

in mammalian cell types indeed have shown that the densely 

occupied regions tend to lie in the vicinity of genes 

characteristic of that particular cell type [11, 19]. In addition to 
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functionality of peaks bound by multiple TFs, it has also been 

shown that gene loci with multiple binding events are more 

likely to be functionally significant targets [20]. Genes bound at 

multiple locations in most samples are over-represented for 

developmental processes including 'muscle tissue development' 

and 'cell fate commitment', as well as for 'transcription factor 

activity'.     

 

 
Figure 2: A,B. Fraction of conserved peaks across human and 

mouse and fraction of in vivo validated peaks (Visel et al., 2007) 

respectively classified according to the number of transcription 

factors bound. C. Heatmap of all ChIP-seq samples against over-

represented (yellow) JASPAR motifs showing sequence motifs over-

represented in at least one of the samples. Box 1 represents variants 

of Cebp motif, box 2 represents variants of GATA motif, while box 3 

represents variants of homeo-domain motif. 

Prediction of new candidate regulatory partners using 

enriched cis-regulatory motifs  

Combinatorial transcriptional control is a key aspect of 

eukaryotic transcription as it provides cell type specificity as 

well as an ability to integrate multiple signals at a 

transcriptional level. In order to find over-represented cis-

regulatory sequence motifs in each ChIP sequencing sample, 

we used a list of approximately 1300 sequence motifs with 

known or unknown associated TFs from the JASPAR data- 

base [26]. Figure 2C shows all significantly enriched motifs (x 

axis) for all samples (y axis) highlighted in yellow. The 

enriched motifs are useful in three ways. Firstly, they validate 

the chipped TF e.g. the Cepb motif is enriched in the two 

samples CebpA and CebpB (Figure 2C (1)). Secondly, they 

indicate important binding motifs for a particular cell type, such 

as enrichment of the GATA motif in HPC7 and erythroid cells 

(Figure 2C (2)). Important regulators such as Runx1 and Tal1 

are thought to be recruited indirectly to many regulatory 

regions with the help of GATA factors [11]. Thirdly and most 

importantly, new candidate regulatory partners can be 

predicted, for example a homeodomain box motif is 

overrepresented only in the binding sites of all factors chipped 

in hematopoietic progenitor cells (Figure 2C (3)).  Hox 

proteins, known to play key roles in governing proliferation and 

differentiation of haematopoietic progenitor cells, can therefore 

be nominated as new candidate interacting partners with the 

other blood stem cell factors present in the compendium. 

 

Transcription factors show preference to a particular 

genomic location  

In order to investigate whether TFs have a preference for 

specific genomic contexts, we used HOMER [8] to calculate 

enrichment with respect to 9 categories defining gene structure 

such as 3' UTR, 5' UTR, Exon, Intron, Inter-genic, and 

Promoter regions as well as repeat elements such as LINE, 

SINE and LTR. All transcription factors were enriched for 

promoter binding as expected. The components of Ldb1 

complex in Erythroid cells were specifically enriched for 

intronic regions while Chd2 and Smc3 in MEL and Notch1 in 

T-ALL samples were enriched for 3’ UTR regions 

(Supplementary Figure 4). All Pu.1 samples were enriched for 

LTR repeat elements whereas CebpA and CebpB in 

macrophages were enriched for SINE repeat elements 

(Supplementary Figure 5).  Bourque et. al. [21] showed that 

binding sites of five transcription factors ESR1, TP53, 

POU5F1, SOX2, and CTCF are embedded in distinctive 

families of transposable elements which facilitate dynamics in 

transcriptional network during evolution such as new locations 

of CTCF binding generated by SINE repeat element expansion 

in mammals [22]. The repeat region enrichment analysis thus 

provides clues towards how these transcription factors might 

have gained new regulatory sites during evolution. 

Another genomic feature thought to be important for 

transcription control are CpG islands which facilitate promoter 

function by destabilising nucleosomes and attracting proteins 

that create a chromatin state suitable for transcription [23]. 

Rozenberg et. al [24] observed that the frequency of six TFBS 

(ETS, NRF1, BoxA, SP1, CRE and E-box) can accurately 

predict presence of CpG islands in promoters suggesting that 

they are structural elements critical for CpG island function. In 

line with this, transcription factors such as the three ETS factors 

Erg, Fli1 and Pu.1were enriched for CpG rich regions. 

Interestingly, peaks of components of the Ldb1 complex 

(Gata1, Gata2, Ldb1, Mtgr1 and Scl) occurred significantly less 

often than expected by chance in CpG rich regions.  

Taken together, we found binding biases of transcription factors 

with respect to genomic locations, repeats and CpG islands. 

The functional relevance of these observations remains to be 

investigated. 

 

Table 1: Top 5 over-represented and 5 under-represented ChIP-seq 

samples with peaks in CpG rich regions along with corresponding P 

value. 

#  Sample  
Prefer/

Avoid  
P value  

1  Erg_HPC7  Prefer  <1e-256  

2  Fli1_T-cells  Prefer  <1e-256  

3  Gfi1b_HPC7  Prefer  <1e-256  

4  Pu.1_B-cells  Prefer  <1e-256  

5  Rag2_thymocytes  Prefer  <1e-256  

5  Ldb1_Erythroid  Avoid  3.4e-4  
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4  Gata1_Erythroid_progenitors  Avoid  8.9e-8  

3  Lmo2_HPC7  Avoid  9.6e-5  

2 Lyl1_HPC7 Avoid 5.2e-8 

1  Smad1_Erythroid_progenitors  Avoid  <1e-256  

 

  

 TF complexes can be predicted using ChIP sequencing 

datasets  

Physical interaction of TFs is an important aspect in 

determining tissue specific gene expression, and cooperative 

binding to DNA may be subject to spatial constraints. For each 

TF pair, we mapped the sequence motifs to peaks bound by 

both TFs and calculated the distance between two motifs. We 

selected motif pairs displaying a specific distance preference in 

at least two independent ChIP-seq experiments. Importantly, 

this analysis recovered  previously known spacing of 8-10 bps 

between GATA and E-box motifs involved in binding of 

Gata1/Scl/E2A/Lmo2 multiprotein complexes [25]. Of interest, 

additional preferred pair-wise spacing could be recovered such 

as 20bp spacing between the motifs for CTCF and Pu.1. The 

functional significance of this remains to be explored. The co-

ordinate binding between a major fate determining factor such 

as Pu.1 with a more architectural transcription factor such as 

CTCF, does however provide tantalizing clues as to how 

interactions between such factors may potentially be involved 

in stabilizing cell type specific transcription programs. We also 

find an overlapping joint motif - CANNTGGAW between Scl 

and ETS factors (Pu.1 and Fli1).  

To investigate any new motifs showing distance specificity 

with respect to TF binding sites from our compendium, we 

calculated distances between each sample and all possible 

3mers (43=64 patterns). We found 3 binding distance 

preferences; the first pattern, GATA and GAT, had a 3/4bp gap 

consistent with Gata factors binding as homo-dimers validated 

by crystal structure (Bates et al., 2008). The second pattern, 

GATA and CTG or GTC, had a 9bp gap mapping to GATA and 

a half Ebox binding as a part of the Ldb1 complex. The final 

pattern, Gfi1b and (A/T)GC, had a 2bp gap. 

 

 

Lineage priming in progenitor cells 

TFs are major determinants of cell fate and lineage choice. 

However, most lineage determining TFs are expressed across 

multiple lineages, suggesting that combinatorial interactions are 

critical in determining cell type specificity. By merging data 

sets from different studies, the TF ChIP-seq compendium 

serves as an excellent resource in the study of genome wide 

binding patterns of the same TF in multiple cell types. 

Grouping the genome wide binding patterns of Pu.1 in 

haematopoietic progenitor cells (HPCs) along with two mature 

cell types (macrophages and B cells) highlights that cell type 

specific, as well as ubiquitous binding events are present in 

both promoters and enhancers with ubiquitous binding events 

being more common in promoters. T and B cells specific 

functional categories such as 'lymphocyte activation (p value: 

1.9e-6 )' , 'immune system development (p-value: 5.1e-4)', 'B 

cell receptor signalling pathway (p-value: 1.2e-2)' are enriched 

in genes near Pu.1 peaks in HPC7 and B cells and not in 

macrophages while macrophage specific functional categories 

such as 'endocytosis (p-value: 2.0e-5)', 'inflammatory response 

(p-value: 6.2e-3)' are over-represented in genes near Pu.1 peaks 

in HPC7 and macrophages and not in B cells. This is a strong 

indicator of lineage priming in the progenitor cells and 

therefore provides global confirmation for one of the most hotly 

debated topics in stem cell biology.  

 

 
Figure 3: A. Frequency of distance between the Scl motif and GATA 

motif in peaks occupied by both Gata1/Gata2 and Scl, plotted such 

that GATA motif is at position zero. A peak with 8-10 bps gap 

between the two sequence motifs is over-represented. B. Similarly 

there is a preferred gap of 20 bps between the CTCF and Pu.1 

motifs C. A gap of -1 bp between the Pu.1 and Scl motifs is 

significantly enriched. Each motif pair was validated by at least two 

independent ChIP-seq experiments. 

Methods 

The Genome-wide binding patterns of 53 transcription factors in 15 

major blood lineages and leukaemia were obtained from [15]. Peaks 

within a 1kb region from a gene TSS, based on RefSeq gene 

annotation, were classed as promoter peaks. For each transcription 

factor pair, the significance of peak overlap was calculated using 

1000 randomisations. Human-mouse orthologous regions were 

downloaded from the MGI database. The overlaps between peaks 

and human-mouse orthologous regions, as well as experimentally 

validated enhancers in mouse [27] were calculated using BEDtools 

[28]. For the two groups, we calculated whether the pair-wise 

overlap of promoter and non-promoter peaks was significantly over-

represented (red) or under-represented (blue) compared to 100 

randomizations. Using HOMER [8] and based on gene context or 

repeat elements, peaks were sorted into 9 categories: 3' UTR, 5' 

UTR, exon, intron, intergenic, promoter, LINE, SINE and LTR. 

CpG islands were downloaded from UCSC. A list of transcription 

factors in mouse was downloaded from RIKEN [29]. To find 

distance preferences between pairs of TFs, the sequences for peaks 

bound by both transcription factors were obtained using UCSC 
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Galaxy and the binding locations of each sequence motif was 

determined using TFSBsearch [30]. Cis-regulatory sequence motifs 

were downloaded from the JASPAR library [26] and the motifs were 

searched in peaks using TFSBsearch [30]; over-representation was 

calculated with respect to 100 random sequence sets of the same 

number and lengths of real peak sequences. Functional enrichment 

was calculated using DAVID [31]. Most analysis was done using 

Perl, MATLAB and R scripts. 

Conclusions 

The advent of next generation sequencing technologies has led 

to a dramatic shift in modern biological research, where 

bioinformatic processing and interpretation of large-scale data 

sets is rapidly replacing data generation as the major bottleneck. 

Moreover, bioinformatic analysis of genome-scale data sets is 

often restricted to the particular context of the paper that first 

reported them, even though the raw data are made publicly 

available in online repositories. Consequently, a whole 

potential treasure trove of biological insights remains 

essentially unexplored.   

To ameliorate this situation, progress on two fronts will be 

vital. Firstly, significant efforts need to be invested into the 

generation of data integration platforms that facilitate cross-

referencing between the multiple independent studies. 

Secondly, bioinformatic analysis strategies need to be 

developed to facilitate extraction of novel biological hypotheses 

from integrated genome-scale resources.  

In this paper, we have addressed this latter issue and provide 

seven examples of bioinformatic analysis, that together have 

allowed us to develop a number of new hypotheses on 

transcriptional control mechanisms with the potential to 

transform our understanding of blood cell development. 

Importantly, both the procedures outlined as well as the take-

home messages learned should be readily transferable to the 

exploitation of ChIP-Seq datasets in other cellular systems, and 

thus have the potential to significantly advance our 

understanding of a wide range of both normal and pathological 

cellular processes.  

 

Acknowledgements: AJ is a Chancellor's fellow at the 

Roslin institute, University of Edinburgh. The Gottgens' 

laboratory is funded by grants from Leukaemia and Lymphoma 

Research, the Leukaemia and Lymphoma Society, Medical 

Research Council, BBSRC, CRUK and the National Institute 

for Health Research Cambridge Biomedical Research Centre. 

The author(s) declare that they have no competing interests. 

 

Notes and references 
a The Roslin Institute, University of Edinburgh, Easter Bush Campus, 

Midlothian, EH25 9RG, UK 
b Department of Haematology, Cambridge Institute for Medical Research, 

Cambridge University, Hills Road, Cambridge, CB2 0XY, UK 

 

Electronic Supplementary Information (ESI) available: See 

DOI: 10.1039/b000000x/ 

 

REFERENCES 

 
1. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, 

Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, 

McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial 

IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, 

Bradner JE, Mitsiades CS: BET bromodomain inhibition as a 

therapeutic strategy to target c-Myc. Cell 2011, 146:904–917. 

2. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, 
Chan W-I, Robson SC, Chung C, Hopf C, Savitski MM, Huthmacher 

C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden 

PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, 
Jeffrey P, Drewes G, Lee K, Huntly BJP, Kouzarides T: Inhibition 

of BET recruitment to chromatin as an effective treatment for 

MLL-fusion leukaemia. Nature 2011, 478:529–533. 
3. Ho JWK, Bishop E, Karchenko PV, Nègre N, White KP, Park PJ: 

ChIP-chip versus ChIP-seq: lessons for experimental design and 

data analysis. Bmc Genomics 2011, 12:134. 
4. Yu M, Mazor T, Huang H, Huang H-T, Kathrein KL, Woo AJ, 

Chouinard CR, Labadorf A, Akie TE, Moran TB, Xie H, Zacharek S, 

Taniuchi I, Roeder RG, Kim CF, Zon LI, Fraenkel E, Cantor AB: 

Direct recruitment of polycomb repressive complex 1 to 

chromatin by core binding transcription factors. Mol Cell 2012, 

45:330–343. 

5. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH: 

Haploinsufficiency of Dnmt1 impairs leukemia stem cell function 

through derepression of bivalent chromatin domains. Genes Dev 
2012, 26:344–349. 

6. Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT, Johnson 

TA, Sun H, Vahedi G, Hakim O, Handon R, Schwartzberg PL, Hager 
GL, O’Shea JJ: Early Th1 cell differentiation is marked by a Tfh 

cell-like transition. Immunity 2011, 35:919–931. 

7. Ng S-L, Friedman BA, Schmid S, Gertz J, Myers RM, Tenoever BR, 
Maniatis T: IκB kinase epsilon (IKK(epsilon)) regulates the 

balance between type I and type II interferon responses. Proc 

Natl Acad Sci U S A 2011, 108:21170–21175. 
8. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, 

Murre C, Singh H, Glass CK: Simple combinations of lineage-

determining transcription factors prime cis-regulatory elements 

required for macrophage and B cell identities. Mol Cell 2010, 

38:576–589. 

9. Wontakal SN, Guo X, Smith C, MacCarthy T, Bresnick EH, Bergman 
A, Snyder MP, Weissman SM, Zheng D, Skoultchi AI: A core 

erythroid transcriptional network is repressed by a master 

regulator of myelo-lymphoid differentiation. Proc Natl Acad Sci U 
S A 2012, 109:3832–3837. 

10. Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, 
Calero-Nieto F, Dawson MA, Donaldson IJ, Dumon S, Frampton J, 

Janky R, Sun X-H, Teichmann SA, Bannister AJ, Göttgens B: The 

transcriptional program controlled by the stem cell leukemia 

gene Scl/Tal1 during early embryonic hematopoietic 

development. Blood 2009, 113:5456–5465. 

11. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, 
Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, 

de Bruijn MFTR, Göttgens B: Combinatorial transcriptional 

control in blood stem/progenitor cells: genome-wide analysis of 

ten major transcriptional regulators. Cell Stem Cell 2010, 7:532–

544. 

12. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov 
YL, Zhang W, Jiang J, Loh Y-H, Yeo HC, Yeo ZX, Narang V, 

Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung 

W-K, Clarke ND, Wei C-L, Ng H-H: Integration of external 

signaling pathways with the core transcriptional network in 

embryonic stem cells. Cell 2008, 133:1106–1117. 

13. Wei G, Abraham BJ, Yagi R, Jothi R, Cui K, Sharma S, Narlikar L, 
Northrup DL, Tang Q, Paul WE, Zhu J, Zhao K: Genome-wide 

analyses of transcription factor GATA3-mediated gene 

regulation in distinct T cell types. Immunity 2011, 35:299–311. 
14. Hannah R, Joshi A, Wilson NK, Kinston S, Göttgens B: A 

compendium of genome-wide hematopoietic transcription factor 

maps supports the identification of gene regulatory control 

mechanisms. Exp Hematol 2011, 39:531–541. 

15. Joshi A, Hannah R, Diamanti E, Göttgens B: Gene set control 

analysis predicts hematopoietic control mechanisms from 

genome-wide transcription factor binding data. Exp Hematol 

2013, 41:354–366.e14. 

16. Lécuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher 
C, Orkin SH, Hoang T: The SCL complex regulates c-kit 

Page 6 of 7Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

expression in hematopoietic cells through functional interaction 

with Sp1. Blood 2002, 100:2430–2440. 

17. Farnham PJ: Insights from genomic profiling of transcription 

factors. Nat Rev Genet 2009, 10:605–616. 

18. Visel A, Minovitsky S, Dubchak I, Pennacchio LA: VISTA 

Enhancer Browser--a database of tissue-specific human 

enhancers. Nucleic Acids Res 2007, 35(Database issue):D88–92. 

19. Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, 

Bellissimo DC, Oram SH, Smethurst PA, Wilson NK, Wang X, 
Ottersbach K, Stemple DL, Green AR, Ouwehand WH, Göttgens B: 

Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, 

and SCL binding in megakaryocytes identifies hematopoietic 

regulators. Dev Cell 2011, 20:597–609. 

20. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, 

Wenger AM, Bejerano G: GREAT improves functional 

interpretation of cis-regulatory regions. Nat Biotechnol 2010, 

28:495–501. 

21. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, 

Chew J-L, Ruan Y, Wei C-L, Ng HH, Liu ET: Evolution of the 

mammalian transcription factor binding repertoire via 

transposable elements. Genome Res 2008, 18:1752–1762. 
22. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, 

Kutter C, Brown GD, Marshall A, Flicek P, Odom DT: Waves of 

retrotransposon expansion remodel genome organization and 

CTCF binding in multiple mammalian lineages. Cell 2012, 

148:335–348. 

23. Deaton AM, Bird A: CpG islands and the regulation of 

transcription. Genes Dev 2011, 25:1010–1022. 

24. Rozenberg JM, Shlyakhtenko A, Glass K, Rishi V, Myakishev MV, 

FitzGerald PC, Vinson C: All and only CpG containing sequences 

are enriched in promoters abundantly bound by RNA 

polymerase II in multiple tissues. Bmc Genomics 2008, 9:67. 

25. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster 
A, Rabbitts TH: The LIM-only protein Lmo2 is a bridging 

molecule assembling an erythroid, DNA-binding complex which 

includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J 
1997, 16:3145–3157. 

26. Bryne JC, Valen E, Tang M-HE, Marstrand T, Winther O, da Piedade 

I, Krogh A, Lenhard B, Sandelin A: JASPAR, the open access 

database of transcription factor-binding profiles: new content 

and tools in the 2008 update. Nucleic Acids Res 2008, 36(Database 
issue):D102–106. 

27. Visel A, Minovitsky S, Dubchak I, Pennacchio LA: VISTA 

Enhancer Browser--a database of tissue-specific human 

enhancers. Nucleic Acids Res 2007, 35(Database):D88–D92. 

28. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for 

comparing genomic features. Bioinforma Oxf Engl 2010, 26:841–
842. 

29. Kanamori M, Konno H, Osato N, Kawai J, Hayashizaki Y, Suzuki H: 

A genome-wide and nonredundant mouse transcription factor 

database. Biochem Biophys Res Commun 2004, 322:787–793. 

30. Chapman MA, Donaldson IJ, Gilbert J, Grafham D, Rogers J, Green 

AR, Göttgens B: Analysis of multiple genomic sequence 

alignments: a web resource, online tools, and lessons learned 

from analysis of mammalian SCL loci. Genome Res 2004, 14:313–

318. 
31. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative 

analysis of large gene lists using DAVID bioinformatics 

resources. Nat Protoc 2009, 4:44–57.Citations here in the format A. 
Name, B. Name and C. Name, Journal Title, 2000, 35, 3523; A. 

Name, B. Name and C. Name, Journal Title, 2000, 35, 3523. 

Page 7 of 7 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


