Molecular BioSystems

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Unexpected similarities	between the	e Schizosacci	haromyces	and human
--------------------------------	-------------	---------------	-----------	-----------

2	blood metabolomes, and novel human metabolites
3	
4	
5	Romanas Chaleckis ¹²³ , Masahiro Ebe ³ , Tomáš Pluskal ³ , Itsuo Murakami ² , Hiroshi
6	Kondoh ^{2*} , and Mitsuhiro Yanagida ^{3*}
7	
8	¹ Graduate School of Biostudies, and ² Graduate School of Medicine, Kyoto
9	University, Sakyo-ku, Kyoto, Japan and Okinawa Institute of Science and Technology
10	Graduate University (OIST), Onna-son, Okinawa, Japan
11	
12	*Co-corresponding authors: myanagid@gmail.com (MY), hkondoh@kuhp.kyoto-
13	u.ac.jp (HK)
14	
15	Running title: Human blood and fission yeast metabolomes
16	Abbreviations: RBC, red blood cell;
17	Keywords: red blood cell, erythrocyte, leukocyte, metabolome, fission yeast, <i>S</i> .
18	pombe
19	

Abstract

2	Metabolomics, a modern branch of chemical biology, provides qualitative and
3	quantitative information about the metabolic states of organisms or cells at the
4	molecular level. We here report non-targeted, metabolomic analyses of human blood,
5	using liquid chromatography-mass spectrometry (LC-MS). We compared the blood
6	metabolome to the previously reported metabolome of the fission yeast,
7	Schizosaccharomyces pombe. The two metabolomic datasets were highly similar:
8	101 of 133 compounds identified in human blood (75%) were also present in
9	S. pombe, and 45 of 57 compounds enriched in red blood cells (RBCs) (78%), were
10	also present in yeast. The most abundant metabolites were ATP, glutathione, and
11	glutamine. Apart from these three, the next most abundant metabolites were also
12	involved in energy metabolism, anti-oxidation, and amino acid metabolism. We
13	identified fourteen new blood compounds, eight of which were enriched in RBCs:
14	citramalate, GDP-glucose, trimethyl-histidine, trimethyl-phenylalanine, trimethyl-
15	tryptophan, trimethyl-tyrosine, UDP-acetyl-glucosamine, UDP-glucuronate, dimethyl-
16	lysine, glutamate methyl ester, N -acetyl-(iso)leucine, N -acetyl-glutamate, N_2 -acetyl-
17	lysine, and N_6 -acetyl-lysine. Ten of the newly identified blood metabolites were also
18	detected in S. pombe, and ten of them were methylated or acetylated amino acids.
19	Trimethylated or acetylated free amino acids were also abundant in white blood cells.
20	It may be possible to investigate their physiological roles using yeast genetics.

Introduction

Metabolomics is a rapidly growing branch of comprehensive, post-genom	IIC,
quantitative chemical biology ¹⁻⁵ . It aims to profile small molecules present in liv	ing
organisms, and is now recognized as an important tool for studying metabolic	
regulation in a synthetic way, together with transcriptomic and proteomic analyse	es ⁶ .
Mass spectrometry (MS), a highly sensitive molecular detection method, can reve	eal
thousands of intracellular metabolites over a very broad range of concentrations.	
However, the number of identified, named compounds is surprisingly small. One	3
reason is the paucity of commercially available standards. Second, it is difficult to	to
identify unknown ions, due to the limited structural information that can be obtain	ned
using MS Third, the concentrations of many metabolites present in biological	
samples are very low, and they tend to undergo changes during sample preparation	on.
Hence fewer than several hundred relatively abundant compounds are usually	
reported in comprehensive metabolomic studies ⁷⁻⁹ .	
Red blood cells (RBCs or erythrocytes), deliver oxygen to tissues and remo	ove
carbon dioxide. In humans, approximately 5 L of blood circulate through the wh	ole
body per min ¹⁰ . In healthy individuals, RBCs comprise 45% of the blood volume	2 ,
and the remainder is mostly plasma, with a tiny additional fraction of leucocytes,	or
white blood cells (WBCs). Plasma contains proteins (e.g. albumins, globulins,	
fibrinogen, etc.), electrolytes, hormones, glucose, and other metabolites. Mamma	alian
RBCs exclude nuclei, mitochondria, and other prominent cell organelles, such as	
lysosomes, endoplasmic reticulum, and Golgi bodies during erythropoiesis in the	bone
marrow. Mature, simplified and specialized for gas transfer, RBCs have no	
demonstrable protein synthesis, nor tricarboxylic acid (TCA) cycle activity ¹¹ .	
Nevertheless, RBCs produce adenosine triphosphate (ATP) glycolytically, mainta	ain

1	redox homeostasis, and osmoregulate ¹² . Human RBCs have a relatively long life span
2	of about 120 days ¹³ . When senescent, they are captured by the spleen for degradation.
3	Numerous blood metabolomic analyses have been previously reported, mostly
4	of serum and plasma ¹⁴⁻¹⁹ . However, metabolomics of whole blood or RBCs have
5	been less well investigated, except for several reports on long-term stored blood ²⁰⁻²³ ,
6	blood of disease patients ^{24, 25} , or blood marker compounds of food intake ²⁶ . Reports
7	on the WBC metabolome are scarce ^{27, 28} . This study focuses on the metabolome of
8	blood cells, mainly RBCs, separated from plasma by low speed centrifugation. We
9	also briefly investigated the metabolome of WBCs prepared by Ficoll gradient
10	centrifugation, to compare it with that of RBCs.
11	The fission yeast, Schizosaccharomyces pombe, a eukaryotic microbe with a
12	genome encoding only ~5,000 genes ^{29,30} , is an excellent model organism to study
13	nutritional control of the transition between proliferation and quiescence (e.g.
14	Yanagida et al. ³¹). We have employed metabolomic analysis of <i>S. pombe</i> cells in
15	order to understand cellular metabolic states under different nutritional regimes and as
16	governed by different genotypes. Initially, we reported the identification of 123
17	compounds using liquid chromatography-mass spectrometry (LC-MS) and their
18	changes following heat stress and genetic perturbations ⁸ . We described the
19	accumulation of antioxidants, glutathione, and ergothioneine in a proteasome
20	regulatory subunit mutant $mts3-1^{32}$. Also we made targeted measurements of
21	intermediates of the coenzyme A biosynthetic pathway from pantothenate ³³ ,
22	investigated changes in the cellular metabolome upon glucose ³⁴ and nitrogen
23	starvation ³⁵ , and accumulation of various metabolites in the quiescence-defective
24	$\Delta klfl$ mutant ³⁶ . These studies showed that S. pombe may be used as a model

1	organism to study comprehensive metabolic patterns under defined genetic and
2	physiological conditions.

S. pombe cells grow and divide in culture media containing only 0.08% glucose, as rapidly as in regular synthetic culture media containing 2% glucose; however, their division rate is impaired if extracellular glucose drops below 0.08%³⁴ (4.4 mM), a concentration that is roughly equivalent to that in the blood of healthy humans before breakfast. That the glucose concentration required to sustain life is roughly equivalent between such diverse eukaryotes, is remarkable. In this study we report further significant conservation in metabolites between evolutionarily distant human RBCs and S. pombe vegetative cells.

Results

Preparation and analysis of human blood metabolomic samples

Blood samples (4-5 mL) for metabolomic analysis were collected from healthy volunteers before breakfast (schematized in Fig. 1A, Materials and Methods). WBCs stained with Giemsa (Fig. 1B) were infrequently observed (<1%) in blood. WBCs were not removed, since rapid quenching of metabolic reactions was necessary to obtain reproducible, quantitative data (Ficoll centrifugation to separate WBCs is a time-consuming step.). Low-molecular-weight metabolites were isolated by filtration with a 10 kDa cut-off filter at 4° C, concentrated on a rotary evaporator, re-suspended in 40 μ L 50% acetonitrile, and stored at -80° C until analysis.

For LC-MS analysis, metabolites were first separated by hydrophilic interaction chromatography (ZIC-pHILIC column; Merck SeQuant)³⁷, and detected using an LTQ Orbitrap MS (Thermo Fisher Scientific), in full scan mode (100-

1	1000 m/z, ratio of	f mass-to-charge) with both լ	positive and	negative el	lectrospray

- 2 ionization. LC-MS data contain semi-quantitative information about thousands of
- 3 compounds in human blood. For compound analysis and quantification, we employed
- 4 basically the same procedures used in previous analyses of *S. pombe* metabolites⁸
- 5 (Fig. 1C). For quantification, we integrated peak curves, obtaining peak areas in
- 6 arbitrary AU units. ATP and glutathione are RBC-enriched, meaning that peak areas
- 7 in the RBC-fraction were at least 2-fold higher than corresponding peaks in plasma
- 8 (See 'Fifty-seven RBC-enriched compounds' below). It is difficult to obtain
- 9 reproducible quantitative data on reduced glutathione (GSH) due to its auto-oxidation
- during sample preparation. For that reason, only levels of oxidized glutathione
- 11 (GSSG) are reported in the present study.

13

14

15

16

17

18

19

20

21

22

23

24

25

Thirty-two compounds identified in human blood were not detected in yeast

MZmine 2 software³⁸ was used for data processing and identification of blood metabolites. We employed an in-house database of m/z and RT values of compounds previously identified in fission yeast studies⁸ and others. For peaks not in the database, we performed a search using online databases HMDB³⁹, KEGG⁴⁰, or ChemSpider⁴¹. Whenever possible, identified compounds were verified using purchased standards. In some cases, isomers (e.g. *N*-acetyl-leucine, *N*-acetyl-isoleucine; paraxanthine, theobromine, theophylline) could not be clearly distinguished by LC and were designated by more general names (*e.g.*, *N*-acetyl-(iso)leucine or dimethyl-xanthine, respectively). To identify metabolites for which standards were not available, we performed MS/MS analysis. Methyl-lysine, trimethyl-phenylalanine, and trimethyl-tyrosine were tentatively identified and described (Supplemental Fig. 1A-C). We

were able to identify 133 compounds in blood, representing 14 categories (Table 1).

To compare compounds present in S. pombe with those in human blood,
S. pombe cells were cultivated at 26° C in synthetic, minimal EMM2 medium with
0.1% glucose (5.6 mM; roughly the same glucose concentration found in blood).
Among 133 identified blood metabolites, 32 were not found in fission yeast (Table 1).
They include three nucleoside bases and derivatives, one coenzyme precursor (4-
aminobenzoate), one nucleotide-sugar derivative (UDP-glucuronate), one sugar
derivative (1,5-anhydroglucitol), two organic acids (chenodeoxycholic acid, glyceric
acid), six methylated amino acids including dimethyl-proline, eight other amino acid
derivatives including creatine, creatinine, and taurine, and ten carnitines. Thus, 24 of
32 compounds are derived from three categories, namely, methylated amino acids,
other amino acids, and carnitines. These three categories illustrate the major
difference between human blood and S. pombe metabolomes. Some compounds may
play specific roles in higher eukaryotes. For example, creatine and phosphocreatine
are stored in muscle as an energy source, and creatinine is the metabolic byproduct of
creatine phosphate ⁴² . Carnitines are produced in liver and stored in muscle for
consumption and transport of fatty acids ⁴³ . Urate is a purine metabolic byproduct,
high blood concentrations of which can cause gout ⁴⁴ , while caffeine is a xanthine
alkaloid and of dietary origin ^{45, 46} . S. pombe does not produce caffeine, but can
become hypersensitive or resistant to caffeine by certain mutations ^{47, 48} .
Fourteen newly identified blood compounds

To our knowledge, 14 metabolites have not hitherto been reported in human blood, based on a recent report of detected blood metabolites⁴⁹ and literature database searches (Table 1). These new blood metabolites include citramalate, dimethyllysine, GDP-glucose, glutamate methyl ester, N-acetyl-glutamate, N-acetyl-

1	(iso)leucine,	N2-acetyl-lysine,	N ₆ -acetyl-lysine,	trimethyl-histidine,	trimethyl
---	---------------	-------------------	--------------------------------	----------------------	-----------

- 2 phenylalanine, trimethyl-tryptophan, trimethyl-tyrosine, <u>UDP-acetyl-</u>
- **glucosamine** and **UDP-glucuronate**. The eight compounds in boldface were
- 4 enriched in RBCs, while ten underlined compounds were also found in *S. pombe*. Ten
- 5 of the 14 novel blood metabolites are methylated or acetylated amino acids.

Quantification of blood metabolite peaks

Each blood sample produced thousands of peaks in positive and negative ionization modes with a broad range ($10^4 \sim 10^9$ AU) of peak areas. We quantified compounds on the basis of their peak areas: High (H, over 10^8 AU), Medium (M, 10^7 - 10^8 AU) and Low (L, $<10^7$ AU). In blood samples, L, M, and H groups comprised 92, 7, and 1% of all peaks, respectively.

Quantitative reproducibility of peak areas was examined by collecting two blood samples independently from the same person at 1h intervals. Each pair of samples (#1 and #2) of blood, plasma, and RBCs was compared in a scatter plot (Fig. 2A, and Supplemental Fig. 2A). In all cases, 85-87% of peak areas varied less than 2-fold (0.5 – 2.0x). Fission yeast samples obtained under identical conditions showed similar reproducibility⁸. Very small peaks (area <10⁶ AU) showed larger deviations. For 133 compounds identified in blood, plasma or RBCs, however, 97% of peaks in the compared samples changed less than 2-fold (Fig. 2B, Supplemental Fig. 2B). Thus, in both, blood and fission yeast metabolomes, quantitative reproducibility was better for identified peaks⁸.

Highly abundant metabolites form various adducts or fragments, resulting in multiple MS peaks. For quantification, we used singly charged proton adducts in positive [M+H]⁺ and negative modes [M-H]⁻. ATP produced these two peaks as its

24

25

both samples.

1	highest signals (Fig. 2C). ATP also produced 16 additional peaks (6 in positive and
2	10 in negative mode). Since their retention time (RT) was basically identical to that
3	of the corresponding primary peak, we suspect that these additional peaks were
4	produced during ionization in the MS. For ergothioneine, 17 peaks were identified in
5	addition to the primary peaks (Supplemental Fig. 2C).
6	In blood samples we were able to identify 37 (74%) peaks in group H, 118
7	(33%) peaks in group M, and 518 peaks (11%) in group L. The total number of
8	assigned peaks (673) is much larger than that of actually identified compounds (133),
9	due to the fact that many metabolites produced multiple peaks. A number of peaks
10	were also produced by electrolytes such as NH ₄ Cl, originating from NaCl in blood
11	samples. While several thousand peaks were obtained by LC-MS, the actual number
12	of compounds that can be detected in blood may be much less, possibly ~1,000.
13	
14	Fifty-seven RBC-enriched compounds
15	To determine the degree of compound enrichment in RBCs vs plasma, samples
16	of both were prepared from the same blood donor several times. We designate RBC-
17	enriched compounds as those having an RBC:plasma ratio more than 2.0 (Figure 2D
18	and Table 1; detailed annotation of all peaks in Supplemental Fig. 3).
19	ATP and glutathione showed particularly large peak areas (>10 ⁸ AU) in the
20	RBC sample, but much smaller in the plasma sample (RBC:plasma ratios of 81 and
21	1900, respectively). In contrast, carnitine and urate showed RBC:plasma ratios of
22	0.85 and 0.69, respectively, even though their peak areas were large (>10 ⁸ AU) in

Fifty-seven compounds were enriched in RBCs (Table 1). Most metabolites

highly enriched in RBC-fractions (RBC:plasma ratio >30) were nucleotides (ADP,

- 1 AMP, ATP, GDP, GTP, IMP) sugar phosphates (6-phosphogluconate, diphospho-
- 2 glycerate, fructose-1,6-diphosphate, glyceraldehyde-3-phosphate, pentose-phosphate,
- 3 phosphoenolpyruvate, phosphoglycerate), vitamins (NAD⁺, NADH, NADP⁺,
- 4 NADPH), antioxidants (ergothioneine, glutathione disulfide (GSSG), ophthalmic
- 5 acid), methylated compounds (S-adenosyl-homocysteine, S-methyl-ergothioneine,
- 6 tetradecanoyl-carnitine, trimethyl-histidine) and *N*-acetyl-D-glucosamine. There was
- 7 no evidence of leakage of these highly enriched compounds from RBCs, confirming
- 8 that cells were not damaged during handling. Metabolites moderately enriched in
- 9 RBCs (RBC:plasma ratio between 2 and 30) contain compounds from the categories
- mentioned above, as well as nucleotide-sugar derivatives and at least one or two
- 11 compounds from other categories (except antioxidants and choline derivatives).
- Many RBC-enriched compounds, such as nucleotides and sugar-phosphates,
- are involved in RBC metabolic pathways²³. Others such as acetyl-carnitine⁵⁰ and
- trimethyl-lysine⁵¹ were previously reported to be enriched in RBCs, but their origins
- and roles in RBCs are unknown. Interestingly, eight of the fourteen newly discovered
- blood components (nucleotide-sugar derivatives and methylated amino acids) were
- 17 also enriched in RBCs.
- In contrast to RBC-enriched compounds, adenosine, guanosine, and inosine
- were scarcely detected in RBCs. Thus, brief centrifugation to sediment RBCs in
- 20 combination with LC-MS quantification enabled us to classify metabolites into
- several groups based upon their RBC:plasma ratios (>30 highly RBC-enriched, <30,
- 22 >2 RBC-enriched; <2 present in both plasma and RBC).

24

Comparison of semi-quantified metabolites between blood and S. pombe

1	Some compounds exhibited similar abundance in blood and <i>S. pombe</i> cells
2	(Table 1). ATP (H), ADP (M), AMP (M) and GTP (M) were similar in both, whereas
3	UTP was abundant in S. pombe (H), but not in blood (L). Except for UTP, these
4	nucleotides are enriched in RBC; thus RBCs evidently have a low requirement for
5	UTP, since RNA synthesis does not occur in RBCs. Diphospho-glycerate, an
6	allosteric regulator of hemoglobin present at mM concentrations in RBCs ⁵² , was
7	highly abundant (H) in blood, but not in S. pombe (L). Pentose-phosphate and
8	sedoheptulose-7-phosphate were more abundant in S. pombe (M) than in blood (L),
9	indicating that growing and dividing yeast cells require greater amounts of pentose
10	phosphate pathway intermediates.
11	Seventeen regular and seven acetylated amino acids were commonly present
12	in blood and yeast. Fourteen methylated amino acids were significantly different
13	between blood and S. pombe, while seven methylated amino acids (betaine, dimethyl-
14	arginine, dimethyl-lysine, methyl-histidine, methyl-lysine, trimethyl-histidine,
15	trimethyl-lysine) were commonly present in both, and seven others (butyro-betaine,
16	dimethyl-proline, S-methyl-ergothioneine, trimethyl-phenylalanine, -tryptophan, -
17	tyrosine) were detected only in human samples. Three anti-oxidants, glutathione,
18	ergothioneine, and ophthalmic acid, were present both human and yeast samples.
19	
20	Eighteen S. pombe compounds not detected in human blood
21	Eighteen compounds present in S. pombe were not detected in RBCs or in
22	plasma (Supplemental Table 1). Compounds that control fast cell division and
23	growth, such as cyclic AMP (an activator of protein kinase A ⁵³), AICAR (5'-
24	phosphoribosyl-5-amino-4-imidazolecarboxamide; an activator of AMP-dependent

protein kinase, AMPK⁵⁴) and SAICAR (succinylaminoimidazolecarboxamide ribose-

5'-phosphate, an activator of pyruvate kinase PKM2 ⁵⁵), PRPP (phospho	oribosyl
---	----------

- 2 pyrophosphate, involved in nucleotide metabolism⁵⁶) are present in *S. pombe*, but not
- 3 in blood. Acetyl-CoA, biotin, Coenzyme A, FAD (flavine adenine dinucleotide),
- 4 HMG-CoA may be required for rapid cell division. Ferrichrome is a cyclic
- 5 hexapeptide present in lower eukaryotes, such as Schizosaccharomyces and Ustilago,
- 6 which forms a complex with iron⁵⁷. Trehalose is a disaccharide having an $\alpha, \alpha-1, 1$ -
- 7 glucosidic bond implicated in anhydrobiotic (anti-desiccant) and anti-oxidant
- 8 mechanisms⁵⁸. Trehalose is not synthesized in the human body. Trehalose-6-
- 9 phosphate has been implicated in plant flowering⁵⁹, but no function in fission yeast
- has been proposed. Saccharopine is an intermediate of lysine metabolism⁶⁰.

12

13

16

17

18

19

20

21

22

Compounds detected in WBCs in comparison with those from RBCs and

S. pombe

We then examined metabolites of WBCs isolated by Ficoll gradient

centrifugation (Supplemental Table 2). While the metabolic profile of WBCs was

similar to that of RBCs, seven metabolites, 3'-5'-cAMP, acetyl-CoA, CMP, CoA,

FAD (flavin adenine dinucleotide), HMG-CoA, and PRPP, were detected only in

WBCs (Supplemental Table 1). Differences between the two are mainly the types of

vitamins and coenzymes. 4-aminobenzoate was detected in blood and RBCs, but not

in WBCs. Acetyl-CoA, biotin, FAD, and HMG-CoA, described above, belong to the

coenzyme category. Seven compounds, which seem to be mainly involved in cell

growth and division in eukaryotes, were found in both WBCs and S. pombe

23 (Supplemental Table 1).

24

25

Summary and categorization of detected blood compounds

1	Human blood metabolites identified in this study are summarized in Fig. 3.
2	Three nucleosides, adenosine, guanosine and inosine, may be restricted to plasma, as
3	RBC:plasma ratios are close to zero (Table 1). cis-Aconitate (0.3), citrate (0.3),
4	indoxyl-sulfate (0.4), kynurenine (0.4), N-acetyl-arginine (0.3), and quinolinic acid
5	(0.4) appear to be found primarily in plasma. In contrast, NADP ⁺ , S-adenosyl-
6	homocysteine, phosphoenolpyruvate, glutathione disulfide (GSSG), diphospho-
7	glycerate, fructose-1,6-diphosphate were highly enriched in RBC fractions. Their
8	RBC:plasma ratios are rather large (>1,000). RBC compounds of intermediate
9	abundance (ratio >50 - <1,000) included 6-phosphogluconate, ADP, AMP, ATP,
10	ergothioneine, GTP, IMP, NAD+, NADPH, ophthalmic acid, phosphoglycerate, S-
11	methyl-ergothioneine, tetradecanoyl-carnitine, and trimethyl-histidine. All other
12	compounds are presumably present in both RBCs and plasma.
13	
14	Energy and anti-oxidant metabolites abundant in human blood and fission yeast
15	Some compounds (ATP, glutathione and glutamine) were highly abundant
16	in both RBCs and S. pombe (Fig. 4). Most compounds in the High and Medium
17	categories are implicated in energy metabolism, anti-oxidation, or amino acid
18	metabolism. In the WBC metabolome (Supplemental Table 2), ATP, glutathione, and
19	glycerophosphocholine (instead of glutamine) were abundant. Some medium-level
20	compounds (e.g. NAD ⁺ and UDP-glucose) are required for production of high-energy
21	compounds such as ATP, GTP, and UTP. Ergothioneine and ophthalmic acid are

thought to be anti-oxidants. It thus appears that energy metabolites, anti-oxidants, and

amino acid metabolites may be the most highly conserved in eukaryotes.

Discussion

22

23

24

1	In the present study we performed LC-MS-based metabolomic analysis of
2	human blood, plasma, and RBCs in comparison with previously published
3	metabolomic results from the fission yeast, S. pombe ^{8, 34} . Analysis of the S. pombe
4	metabolome was performed simultaneously, and results were consistent with those of
5	previous reports. This comparative study enabled us to learn which metabolomic
6	features are conserved between these distantly related cellular systems. The LC
7	column we employed can separate hydrophilic compounds with high resolution, but is
8	not appropriate for separating hydrophobic compounds; therefore, our data contain
9	limited information on lipids, except for two choline derivatives, CDP-choline and
10	glycerophosphocholine. For this reason, conclusions regarding metabolite
11	conservation should be restricted to hydrophilic compounds.
12	Thirty-two compounds were found in blood, but not in <i>S. pombe</i> (Fig. 3).
13	Metabolite compositions of blood and fission yeast are unexpectedly similar, with
14	75% of identified compounds present in both. The WBC metabolome is also highly
15	similar to those of RBCs and yeast. However, metabolites mostly belonging to three
16	categories (ten carnitines, six methylated amino acids, eight other amino acid
17	derivatives) were not detected in S. pombe (Table 1). If we compare metabolites in
18	the remaining 11 categories, only 8 of 89 compounds were not present in S. pombe
19	(caffeine, dimethyl-xanthine, urate, 4-aminobenzoate and UDP-glucuronate, 1,5-
20	anhydroglucitol, chenodeoxycholic acid, and glyceric acid), therefore the overall
21	similarity between the two metabolomes is 90% (81/89×100). Differences are mostly
22	restricted to carnitines and amino acid derivatives.
23	Among the fifteen high abundance blood compounds, however, S. pombe
24	lacks six (40%) metabolites (acetyl-carnitine, carnitine, creatine, dimethyl-proline,
25	trimethyl-tryptophan and urate), indicating that the most abundant compounds in

1	blood are quite different from those of <i>S. pombe</i> . Conversely, among the 14 high
2	abundance S. pombe compounds, only 2 (trehalose, ferrichrome) were not present in
3	human blood, indicating that 86% are also found in human blood. We presume that
4	the high abundance metabolites of <i>S. pombe</i> may be more 'fundamental' than those of
5	blood, since S. pombe is a single-celled eukaryote. Blood contains a multitude of
6	specialized metabolites. Carnitine is not strictly a metazoan compound, as it is also
7	synthesized from lysine in Neurospora ⁶¹ . However, a great variety of carnitine
8	derivatives (9) carrying different fatty acids might be a higher eukaryotic feature.
9	The high similarity of these two metabolomes raises the possibility that
10	S. pombe genetics might be useful to understand the role of certain metabolites, such
11	as small anti-oxidants (ophthalmic acid, ergothioneine, and glutathione), which are
12	enzymatically synthesized in S. pombe. S-adenosyl-homocysteine (SAH) and S-
13	adenosyl-methionine (SAM), coenzymes involved in the methionine cycle, were also
14	enriched in RBCs. S-adenosyl-methionine synthase has been reported in RBCs ⁶² . In
15	RBCs, SAM has been shown to act as a coenzyme for protein carboxyl methylation ⁶³ ,
16	synthesis of phosphatidylcholine ⁶⁴ , and N-, O- and S-methyltransferase activities
17	(reviewed by Weinshilboum et al. ⁶⁵). It remains to be determined how SAH and
18	SAM in RBCs are involved in the production of methylated compounds. We are
19	particularly interested in determining whether levels of free methylated amino acids
20	are controlled by SAM and SAH. To this end, we isolated a number of S. pombe
21	mutants of methionine cycle enzymes and are examining their metabolic profiles
22	(T. Hayashi et al., unpublished results).
23	We found 14 novel human blood compounds, eight of which were
24	methylated or N-acetylated amino acids. To our knowledge, there has been no report
25	describing these as blood components. Blood data presented in this report came from

1	four healthy volunteers. We further extended our analysis to more than 30 people
2	(Chaleckis et al., manuscript in preparation), and these compounds were universally
3	present, suggesting that their occurrence is neither accidental nor specific to certain
4	dietary customs. Interestingly, eight of these compounds (UDP-acetyl-glucosamine,
5	citramalate, dimethyl-lysine, trimethyl-histidine, N -acetyl-glutamate, N_2 -acetyl-lysine,
6	N_6 -aceltyl-glutamate and glutamate methyl ester) were also present in S . pombe.
7	Their physiological roles can thus be further investigated using <i>S. pombe</i> as a model.
8	Seven of the eight compounds are RBC-enriched. RBCs may require UDP-acetyl-
9	glucosamine, a nucleotide sugar and a coenzyme, as a signaling molecule of sugar
10	metabolism, like in other eukaryotic cells, including <i>S. pombe</i> ⁶⁶ . UDP-glucuronic
11	acid is synthesized in liver, binds to hormones or toxic compounds, and is also used
12	for the synthesis of glucuronic acid-containing polysaccharides ^{67, 68} . It is not present
13	in lower eukaryotes. Citramalate is an intermediate in bacterial glutamate
14	degradation ⁶⁹ . Citramalate and glutamate methyl-ester are also present in <i>S. pombe</i> ,
15	but their physiological role is not understood. Two acetylated amino acids N_2 -acetyl
16	and N_6 -acetyl-lysine, are present in plasma and RBCs, as well as in S . pombe, but
17	their biological role is little understood. N-acetyl-glutamate is involved in the
18	removal of waste from the body in the urine as it is an allosteric cofactor of carbamyl
19	phosphate synthetase I, the first enzyme in the urea cycle ⁷⁰ .
20	Five novel blood compounds are methylated amino acids, four (histidine,
21	phenylalanine, tryptophan, tyrosine) of which are trimethylated and enriched in
22	RBCs. Trimethyl-histidine (hercynine) is a precursor of ergothioneine, but humans
23	do not synthesize ergothioneine; therefore this compound might be of dietary origin or
24	possibly a degradation product of ergothioneine ⁷¹ , whereas <i>S. pombe</i> can produce
25	them ^{34, 35} . Trimethyl-tryptophan (hypaphorine) was highly abundant in RBCs. It has

			72			72
1	been reported that this	1 1	· c /2 1	4· 1 ·	CC 4 .	• /3
	neen renorted that this d	compolina nas sor	orific and a	nti-otycemic	errecrs in	mice
_	occir reported that this t	compound mus sof	Joinin and a	iiti giyeeiiiie	CITCCES III	micc .

- Hypaphorine was reported in human milk following maternal consumption of
- 3 legumes⁷⁴.

8

9

10

11

12

14

15

17

18

4 ATP and glutathione were selectively enriched in RBCs (scarcely present in

5 plasma), while glutamine was found in both plasma and RBCs in roughly equal

6 amounts. Eleven sugar phosphate compounds required for sugar and energy

7 metabolism were all found in RBC-enriched fractions and also in *S. pombe*.

Similarly, all twelve nucleotides, four nucleotide-sugar derivatives, and five

coenzyme NAD-related compounds were selectively enriched in RBCs. Fifty-six

percent of RBC-enriched compounds are energy-related; these compounds are also

found in S. pombe. Three anti-oxidant compounds, glutathione, ergothioneine, and

ophthalmic acid, were enriched in RBCs and abundant in S. pombe. Glutathione and

ophthalmic acid may be synthesized in RBCs, as the synthetic enzymes encoded by

the human genes are present in RBCs⁷⁵. Aspartate and glutamate were selectively

enriched in RBCs. Both are excitatory neurotransmitters. Inhibitory transmitters,

16 GABA and glycine, are difficult to measure using our method. Glutamate may be

partly utilized for the synthesis of glutathione⁷⁶. These energy and anti-oxidant

compounds are most likely essential for maintaining RBCs during their relatively long

19 lifespan of 120 days, and these compounds are also common to *S. pombe*.

20

21

Acknowledgements

We thank Dr. Masayuki Kobayashi for help with WBC isolation and Eri Shibata for

providing excellent technical assistance. We are most grateful to Dr. Steve Aird for

editing and helpful discussion during preparation of the present paper.

Funding

1

- 2 This work was supported by grants from the Okinawa Intellectual Cluster Program (to
- 3 MY, HK), from the Ministry of Education, Culture, Sports, Science, and Technology
- 4 of Japan, and from Japan Science and Technology Agency (to HK). We acknowledge
- 5 a generous support from the Okinawa Institute of Science and Technology Graduate
- 6 University. RC was supported by Japanese government pre-doctoral scholarship
- 7 (Monbukagakusho). IM was supported by a postdoctoral fellowship from the
- 8 Okinawa Intellectual Cluster Program. Funding agencies had no role in study design,
- 9 data collection and analysis, the decision to publish, or preparation of the manuscript.

11 Disclosure statement

12 The authors declare that they have no competing interests.

13

14

15

10

Materials and Methods

Chemicals and reagents

- 16 Standards for metabolite confirmation were obtained from various vendors
- 17 (Supplemental Table 3), depending on the compound. Ergothioneine and S-methyl-
- ergothioneine were a kind gift from Tetrahedron, France.

19

20

Human subject characteristics

- 21 Three healthy male and one female volunteer (23-33 years old) participated in this
- study. Blood samples for metabolomic analysis were taken in the morning and
- subjects were asked not to eat breakfast to ensure at least 12 h of fasting prior to
- 24 sampling.

1	Ethics	statement

)	Writton	informad	l consent was	ahtainad	1 from a	11 danara	in accordance	xxxith the
۷.	written	informed	i consent was	obtained	i irom a	n aonors	n accordance	with the

- 3 Declaration of Helsinki. All experiments were performed in compliance with relevant
- 4 Japanese laws and institutional guidelines. All protocols were approved by the
- 5 Ethical Committee on Human Research of Kyoto University Hospital and by the
- 6 Human Subjects Research Review Committee of the Okinawa Institute of Science and
- 7 Technology Graduate University (OIST).

9

Blood sample preparation for metabolomic analysis

- 10 Blood samples for metabolomic analysis were drawn by venipuncture into 5 mL
- heparinized tubes (Terumo). Immediately, 0.2 mL blood (8-12×10⁸ RBC) were
- 12 quenched in 1.8 mL -40° C 55% methanol. The remainder of each blood sample was
- centrifuged at 120 x g for 15 min at room temperature to separate plasma and RBCs.
- 14 After centrifugation, 0.2 mL of separated plasma and RBCs (14-20×10⁸ RBC),
- respectively, were quenched in 1.8 mL -40°C 55% methanol. Ten nmol each of
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and PIPES, piperazine-
- 17 N,N'-bis(2-ethanesulfonic acid) were added to each sample to serve as standards.
- After brief vortexing, samples were transferred to Amicon Ultra 10 kDa cut-off filters
- 19 (Millipore, Billerica, MA, USA) to remove proteins and cell debris. Following
- sample concentration by vacuum evaporation, each sample was re-suspended in $40 \mu L$
- of 50% acetonitrile and 1 µL (equivalent to 5 µL of initial sample) was used for each
- 22 injection into the LC-MS system.

23

24

Isolation of leucocytes by Ficoll gradient

1	For isolation of leucocytes we employed Ficoll gradient centrifugation. Blood of two
2	donors, 20 mL each, was collected into heparinized tubes (Terumo) and subsequently
3	diluted with the same volume of PBS buffer. Diluted blood was carefully layered
4	onto the same volume of Lympholite-H (Cosmo Bio, Tokyo, Japan) and centrifuged
5	at room temperature for 20 min at 800 x g. Separated leucocytes were washed 3x in
6	PBS (1 min, 350 x g, 4° C). After dilution, 0.2 mL of leucocytes (\sim 5×10 ⁷ cells) were
7	quenched in 1.8 mL -40° C 55% methanol. After addition HEPES and PIPES,
8	samples were processed as described above. Metabolites were isolated from 10 μL of
9	leukocyte cell volume (assuming an individual leukocyte cell volume of 200 fL^{77} and
10	an estimated 5×10^7 cells per sample). One μL of the metabolome sample was injected
11	into the LC-MS system, corresponding to ${\sim}0.25~\mu\text{L}$ leukocyte intracellular volume.
12	
13	Fission yeast growth conditions and preparation for metabolomics analysis
13 14	Fission yeast growth conditions and preparation for metabolomics analysis The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for
14	The wild-type heterothallic haploid 972 h ⁻ S. pombe strain ⁷⁸ was used for
14 15	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic
141516	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were
14151617	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were prepared by mixing regular EMM2 (2% glucose) medium with EMM2-G (0%
1415161718	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were prepared by mixing regular EMM2 (2% glucose) medium with EMM2-G (0% glucose) in an appropriate ratio. Preparation of fission yeast samples was done as
141516171819	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were prepared by mixing regular EMM2 (2% glucose) medium with EMM2-G (0% glucose) in an appropriate ratio. Preparation of fission yeast samples was done as described previously ⁸ . Metabolites were isolated from 30 μL of total <i>S. pombe</i> cell
14 15 16 17 18 19 20	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were prepared by mixing regular EMM2 (2% glucose) medium with EMM2-G (0% glucose) in an appropriate ratio. Preparation of fission yeast samples was done as described previously ⁸ . Metabolites were isolated from 30 μL of total <i>S. pombe</i> cell volume (<i>S. pombe</i> cell diameter 3.5 μm ⁸⁰ ; cells grown at 5.6 mM glucose have lengths
14 15 16 17 18 19 20 21	The wild-type heterothallic haploid 972 h ⁻ <i>S. pombe</i> strain ⁷⁸ was used for metabolomic experiments. Cells were cultivated at 26° C in minimal synthetic medium EMM2 ⁷⁹ with 0.1% glucose (5.6 mM) content. Limited glucose media were prepared by mixing regular EMM2 (2% glucose) medium with EMM2-G (0% glucose) in an appropriate ratio. Preparation of fission yeast samples was done as described previously ⁸ . Metabolites were isolated from 30 μL of total <i>S. pombe</i> cell volume (<i>S. pombe</i> cell diameter 3.5 μm ⁸⁰ ; cells grown at 5.6 mM glucose have lengths of 13 μm ³⁴ , thus using a formula from Mitchison ⁸⁰ , mean cell volume is 120 fL; total

LC-MS analysis

21

1	LC-MS data were obtained using a Paradigm MS4 HPLC system (Michrom
2	Bioresources, Auburn, CA, USA) coupled to an LTQ Orbitrap mass spectrometer
3	(Thermo Fisher Scientific, Waltham, MA, USA) as previously described ⁸ . Briefly,
4	LC separation was performed on a ZIC-pHILIC column (Merck SeQuant, Umeå ,
5	Sweden; 150 mm \times 2.1 mm, 5 μm particle size). Acetonitrile (A) and 10 mM
6	ammonium carbonate buffer, pH 9.3 (B) were used as the mobile phase, with gradient
7	elution from 80% A to 20% A in 30 min, at a flow rate of 100 μL mL ⁻¹ . Peak areas
8	for metabolites of interest were integrated using MZmine 2 software version 2.10 ³⁸ .
9	Detailed data analytical procedures and parameters were described previously ⁸ .
10	Metabolites were initially identified by searching their m/z values in on-line databases
11	(see text) or by predicting chemical formulae from mass spectra ⁸¹ . Identified peaks
12	were verified by analyzing pure standards (STD category) to confirm their retention
13	times, or in cases where pure standards were not available, by analyzing their
14	fragmentation patterns (MS/MS category).
15	
16	Supplemental Material
17	Raw LC-MS data in mzML format were submitted to the MetaboLights repository
18	(URL: http://www.ebi.ac.uk/metabolights). The accession number for the fission
19	veast and human blood metabolome comparison is MTBLS87, while that for

metabolomic samples of a single individual's blood donated 4 times within 24 hr to

determine RBC:plasma metabolite distribution is MTBLS88.

1	Legends	for	Figures

T7. 4	D				4 1		
Ηίσ Ι	Preparation	and ana	VCIC AT	. PIVVI	metaho	Inmic	camples
115.1.	1 i cpai auon	and ana	Ly SIS UI	DIOUU	metabo	UIIIIC	sampics

- 3 A. Metabolic compounds were extracted in 50% MeOH at -40° C from whole blood,
- 4 plasma, and RBCs (Materials and Methods). Extracted metabolites were isolated with
- 5 a 10-kDa cut-off filter, concentrated by a rotary evaporator, and analyzed on an LC-
- 6 MS system, as illustrated. **B**. Blood cells stained with Giemsa solution under a
- 7 microscope. Arrows indicate WBC. C. Raw LC-MS data 3D plots of plasma fraction
- 8 (top) and RBC fraction (bottom) obtained in positive ionization mode are shown: X-
- 9 axis, retention time (RT, min); Y-axis, m/z; Z-axis, signal intensity. Twenty
- identified peaks are shown as examples. Peaks 1-10 are detected in both plasma and
- 11 RBCs. These are amino acids, creatine, carnitine, dietary metabolites (caffeine,
- dimethyl-xanthine), and compounds introduced during sample preparation (HEPES as
- internal standard, NH₄Cl formed in the LC-MS system). Peaks 11-20 are enriched in
- 14 RBC samples. Many compounds are involved in energy production, anti-oxidation,
- and amino acid metabolism (see text).

16

17

Fig. 2. Quantification of peak area reproducibility examined by scatter plot

- 18 Blood was donated twice by the same person in 1h, and the two blood samples were
- processed separately (samples #1 and #2). A. Scatter plot of all peaks detected in
- both blood samples (positive and negative ionization modes combined). 87 % of
- 21 peaks differed less than 2-fold. Less than 15% of these peaks could be assigned to a
- known compound (assigned peaks marked yellow). **B**. A scatter plot of 129 identified
- compounds detected in blood samples #1 and #2. Approximately 97% of these peaks
- were found within 2-fold change. C. Multiple peaks are produced by abundant
- compounds such as ATP. In addition to the primary single-charged ions (indicated by

1	arrows), compounds produce multiply charged ions, fragments of the molecule,
2	adducts with salts, and complexes with other compounds eluting at similar retention
3	times. We were able to identify 18 peaks related to ATP, listed in the inset table. D .
4	RBC and plasma samples were prepared from the same person, and the peak areas
5	were determined for identified compounds, and compared in a scatter plot.
6	
7	Fig. 3 Human blood compounds identified and characterized in the present study
8	Compounds that were either RBC-enriched (57) or not (76), based on whether the
9	ratios of their RBC:plasma peak areas, were either >2 or <2, respectively (Table 1).
10	Abundance of compounds classified by peak area size, indicated by color, red (high),
11	green (medium) and blue (low). Compounds with the statue symbol are not present in
12	S. pombe. See text for detail.
13	
14	Fig. 4 Relatively high-abundance compounds in human blood and fission yeast
15	Compound abundance in human blood and S. pombe. For example, "High-High"
16	indicates that ATP, glutathione, and glutamine are highly abundant in both blood and
17	S. pombe. See text.
18	
19	Supplemental Fig. 1
20	MS/MS analysis of peaks identified as methyl-lysine (A), N-trimethyl-
21	phenylalanine (B) and N-trimethyl-tyrosine (C)
22	Identification of any peak by MS/MS analysis in the absence of a standard requires
23	the m/z value, fragmentation pattern, and retention time (RT). Similar RTs were
24	found in cases of amino acids and their methylated counterparts confirmed by
25	standard compounds (e.g. <i>N</i> -trimethyl-tryptophan 6.0 min and tryptophan 8.7 min).

1	A . A peak with an m/z value of 161.128 Da in positive ionization mode matched the
2	calculated value for the methyl-lysine positive ion with a hydrogen adduct
3	(161.129 Da). The RT is 20.3 min while that of lysine is 23.3 min. The MS/MS
4	fragmentation pattern matches the methyl-lysine structure; the 130.086 Da fragment
5	corresponds to loss of $NH_2(CH_3)$ (31.043 Da), the 84.080 Da fragment to loss of
6	$NH_2(CH_3)$ (31.043) and CO_2H_2 (46.005 Da). While lysine has two amino-groups, we
7	could not determine which of the amino groups is methylated; thus, we tentatively
8	identified the compound as methyl-lysine. B . A peak with an m/z value of
9	208.133 Da in positive ionization mode matched the calculated value for the
10	trimethyl-phenylalanine positive ion with a hydrogen adduct (208.133 Da). The RT is
11	5.3 min while that of phenylalanine is 7.3 min. The MS/MS fragmentation pattern
12	matches the N-trimethyl-phenylalanine structure; the 149.059 Da fragment
13	corresponds to loss of of $N(CH_3)_3$ (59.074 Da), the 131.049 Da fragment to loss of
14	$N(CH_3)_3$ (59.074 Da) and H_2O (18.010 Da), and the 103.054 Da fragment to loss of
15	$N(CH_3)_3$ (59.074 Da) and CO_2H_2 (46.005 Da). Therefore we tentatively identified the
16	peak as <i>N</i> -trimethyl-phenylalanine. C. A peak with an m/z value of 224.128 Da in
17	positive ionization mode matched the calculated value for the trimethyl-tyrosine
18	positive ion with a hydrogen adduct (224.128 Da). The RT is 8.0 min while that of
19	tyrosine is 10.3 min. MS/MS fragmentation pattern matches the <i>N</i> -trimethyl-tyrosine
20	structure; the 165.054 Da fragment corresponds to loss of $N(CH_3)_3$ (59.074 Da), the
21	147.044 Da fragment to loss of $N(CH_3)_3$ (59.074 Da) and H_2O (18.010 Da). We thus
22	tentatively identified the peak as <i>N</i> -trimethyl-tyrosine.

24

Supplemental Fig. 2

1 Quantification of plasma and RBC metabolites and ergothioneine derivative

2 peak areas

- 3 Blood samples were obtained as described in Fig. 2. A. A scatter plot comparison of
- 4 plasma and RBC samples #1 and #2, as described in Fig. 2A. 85 % of peaks were
- 5 within a 2-fold change in both plasma and RBC samples. **B**. Scatter plot comparison
- 6 of identified compounds in plasma and RBC samples as described in Fig. 2B. In both
- 7 plasma and RBC samples, approximately 96% of the peaks were within a 2-fold
- 8 range. C. Multiple peaks are ergothioneine derivatives. Arrows indicate primary
- 9 peaks. We were able to identify 19 peaks derived from ergothioneine.

10

11

Supplemental Fig. 3

12 Scatter plot comparison of compounds quantified in both RBCs and plasma

- Peak areas of each compound identified in RBCs and plasma, plotted in a scatter plot.
- Each compound is indicated with the number with the compound name in the table
- inset. Purple number and name represent the compounds enriched in RBC (the ratio
- 16 RBC:plasma is more than 2-fold).

17

18

Tables

19 Table 1. List of 133 identified metabolites in blood^a

Category / Compound	Status	In fission yeast	New blood component	RBC enriched ^b	Ratio RBC:pla standard devia		Peak area ^d Blood	Peak area ^d Fission yeast			
Nucleotides											
ADP	STD	0		R	64.0 ±	15.0	M	M			
AMP	STD	0		R	52.0 ±	6.8	M	M			
ATP	STD	0		R	81.0 ±	13.0	Н	Н			
CDP	STD	0		R	4.6 ±	2.1	L	L			
СТР	STD	0		R	2.2 ±	0.48	L	M			
GDP	STD	0		R	32.0 ±	5.5	L	M			
GMP	STD	0		R	3.5 ±	0.29	L	L			
GTP	STD	0		R	84.0 ±	14.0	M	M			

IMP	STD	0		R	180.0	±	48.0	L	L	
UDP	STD	0		R	2.3	±	0.5	L	M	
UMP	STD	0		R	19.0	±	3.6	L	L	
UTP	STD	0		R	4.1	±	1.6	L	Н	
Nucleosides, nucleobases and derivatives										
1-Methyl-adenosine	STD	0			1.3	±	0.14	M	M	
1-Methyl-guanosine	STD	0			1.1	±	0.36	L	L	
Adenine	STD	0			3.4	±	0.055	L	M	
Adenosine	STD	0			0.045	±	0.012	L	L	
Caffeine	STD				0.77	±	0.057	M	ND	
Cytidine	STD	0			2.1	±	0.22	L	L	
Dimethyl-guanosine	STD	0			0.77	±	0.1	L	L	
Dimethyl-xanthine	STD				0.88	±	0.044	M	ND	
Guanosine	STD	0			0.12	±	0.077	L	L	
Hypoxanthine	STD	0			1.4	±	0.22	L	L	
Inosine	STD	0			0.059	±	0.12	L	L	
Uracil	STD	0			1.0	±	0.041	L	L	
Urate	STD				0.69	±	0.22	M	ND	
Uridine	STD	0			1.0	±	0.027	L	L	
Vitamins, Coenzymes	•	•							•	
4-Aminobenzoate	STD				2.5	±	0.86	L	ND	
NAD^{+}	STD	0		R	130.0	±	30.0	M	Н	
NADH	STD	0		R	80.0	±	68.0	L	M	
NADP ⁺	STD	0		R	7200.0	±	3000.0	L	L	
NADPH	STD	0		R	340.0	±	220.0	L	L	
Nicotinamide	STD	0		R	26.0	±	5.7	M	M	
Pantothenate	STD	0			3.3	±	1.1	L	M	
Nucleotide-sugar derivatives										
GDP-glucose	STD	0	0	R	20.0	±	3.6	L	M	
UDP-acetyl-glucosamine	STD	0	0	R	11.0	±	1.4	L	M	
UDP-glucose	STD	0		R	35.0	±	6.6	M	Н	
UDP-glucuronate	STD		0	R	37.0	±	6.2	L	ND	
Sugar phosphates										
6-Phosphogluconate	STD	0		R	150.0	±	25.0	L	L	
Diphospho-glycerate	STD	0		R	1700.0	±	350.0	Н	L	
Fructose-1,6-diphosphate	STD	0		R	1400.0	±	360.0	M	M	
Fructose-6-phosphate	STD	0		R	23.0	±	2.2	L	M	
Glucose-6-phosphate	STD	0		R	32.0	±	4.1	M	M	
Glyceraldehyde-3-phosphate	STD	0		R	910.0	±	1100.0	L	L	
Glycerol-2-phosphate	STD	0		R	3.7	±	1.1	L	M	
Pentose-phosphate	STD	0		R	39.0	±	12.0	L	M	
Phosphoenolpyruvate	STD	0		R	1000.0	±	780.0	L	M	
Phosphoglycerate	STD	0		R	150.0	±	17.0	M	M	
Sedoheptulose-7-phosphate	STD	0		R	3.6	±	0.76	L	M	

GTD		Ī	<u> </u>	0.05		0.14		ND
	_		_					ND
			R					L
								L
	0						M	L
STD	0			1.3	±	0.39	L	L
STD	0		R	35.0	±	1.4	M	L
STD	0			2.1	±	2.0	L	M
1	ı	ı	ı	ı				ı
STD	0			0.94	±	0.16	L	L
STD				0.49	±	0.14	M	ND
STD	0			0.33	±	0.11	L	L
STD	0	0	R	3.2	±	0.87	L	M
STD	0			0.28	±	0.069	M	M
STD	0		R	5.6	±	0.9	L	L
STD	0			0.94	±	0.072	L	L
STD				0.69	±	0.18	L	ND
STD	0		R	4.6	±	0.6	L	L
STD	0			0.92	±	0.21	L	L
•	•	•	•			'		•
STD	0			0.57	±	0.072	Н	Н
STD	0			1.6	±	0.18	L	L
STD	0		R	6.3	±	0.91	L	M
STD	0		R	3.4	±	0.74	M	Н
STD	0			0.56	±	0.053	Н	Н
STD	0			0.93	±	0.054	M	Н
STD	0			0.95	±	0.14	M	L
STD	0			1.1	±	0.098	M	L
STD	0			0.91	±	0.15	L	L
STD	0			0.76	±	0.099	M	L
STD	0			0.93	±	0.16	Н	M
STD	0			0.92	±	0.054	Н	L
STD	0			1.1	±	0.19	L	L
STD	0			1.1	±	0.12	М	M
STD	0			0.47	±	0.054	M	M
STD	0			1.1	±	0.083	M	M
STD	0			0.87	±	0.07	M	L
1	l	I	l	I				l
STD	0			1.2	±	0.11	Н	L
STD			R	5.3	±	0.52	M	ND
STD	0			0.95	±	0.12	L	L
STD	0	0		0.51	±	0.09	L	L
	1	ļ		1				
STD			R	4.9	\pm	0.66	H	ND
	STD STD	STD O STD	STD O STD	STD O R STD O	STD O R 16.0 STD O 0.89 STD O 0.87 STD O R 35.0 STD O R 3.2 STD O R 3.2 STD O R 3.2 STD O R 3.2 STD O R 3.6 STD O R 4.6 STD O R 4.6 STD O R 4.6 STD O R 6.3 STD O R 6.3 STD O R 6.3 STD O 0.95 STD O 0.99 STD	STD O R 16.0 ± STD O 0.89 ± STD O 0.87 ± STD O R 35.0 ± STD O 0.49 ± STD O R 3.2 ± STD O R 3.2 ± STD O R 3.2 ± STD O R 3.6 ± STD O R 4.6 ± STD O R 4.6 ± STD O R 6.3 ± STD O R 3.4 ± STD O 0.93 ± </td <td>STD Q R 16.0 ± 1.8 STD Q 0.89 ± 0.13 STD Q 0.87 ± 0.12 STD Q R 35.0 ± 1.4 STD Q R 35.0 ± 1.4 STD Q 0.94 ± 0.14 STD Q 0.49 ± 0.14 STD Q 0.33 ± 0.11 STD Q 0.28 ± 0.069 STD Q 0.28 ± 0.069 STD Q 0.94 ± 0.072 STD Q 0.94 ± 0.072 STD Q 0.94 ± 0.072 STD Q 0.69 ± 0.18 STD Q 0.57 ± 0.072 STD Q 0.57 ± 0.072 STD</td> <td>STD O R 160 ± 1.8 M STD O 0.89 ± 0.13 M STD O 0.87 ± 0.12 M STD O R 35.0 ± 1.4 M STD O 0.94 ± 0.14 M STD O R 3.2 ± 0.87 L STD O R 3.2 ± 0.87 L STD O R 5.6 ± 0.99 L STD O R 5.6 ± 0.99 L STD O R 4.6 ± 0.60 L STD</td>	STD Q R 16.0 ± 1.8 STD Q 0.89 ± 0.13 STD Q 0.87 ± 0.12 STD Q R 35.0 ± 1.4 STD Q R 35.0 ± 1.4 STD Q 0.94 ± 0.14 STD Q 0.49 ± 0.14 STD Q 0.33 ± 0.11 STD Q 0.28 ± 0.069 STD Q 0.28 ± 0.069 STD Q 0.94 ± 0.072 STD Q 0.94 ± 0.072 STD Q 0.94 ± 0.072 STD Q 0.69 ± 0.18 STD Q 0.57 ± 0.072 STD Q 0.57 ± 0.072 STD	STD O R 160 ± 1.8 M STD O 0.89 ± 0.13 M STD O 0.87 ± 0.12 M STD O R 35.0 ± 1.4 M STD O 0.94 ± 0.14 M STD O R 3.2 ± 0.87 L STD O R 3.2 ± 0.87 L STD O R 5.6 ± 0.99 L STD O R 5.6 ± 0.99 L STD O R 4.6 ± 0.60 L STD

Methyl-lysine	MS/MS	0			0.67	±	0.11	M	L
S-Methyl-ergothioneine	STD			R	1500.0	±	2300.0	L	ND
Trimethyl-histidine (hercynine)	MS/MS	0	0	R	110.0	±	140.0	L	М
Trimethyl-lysine	STD	0		R	6.3	±	1.5	M	L
Trimethyl-phenylalanine	MS/MS		0	R	14.0	±	9.0	L	ND
Trimethyl-tryptophan (hypaphorine)	STD		0	R	6.1	±	1.7	Н	ND
Trimethyl-tyrosine	MS/MS		0	R	ND*			L	ND
Acetylated amino acids			I.	I	1				l
N-Acetyl-(iso)leucine	STD	0	0		1.8	±	0.39	L	L
N-Acetyl-arginine	STD	0			0.34	±	0.047	L	M
N-Acetyl-aspartate	STD	0			0.84	±	0.2	L	L
N-Acetyl-glutamate	STD	0	0		0.82	±	0.18	L	M
N-Acetyl-ornithine	STD	0			2.6	±	1.2	L	L
N ₂ -Acetyl-lysine	STD	0	0		2.1	±	0.3	L	L
N ₆ -Acetyl-lysine	STD	0	0		0.88	±	0.26	L	M
Other amino acid derivatives			<u>I</u>	1					l
2-Aminoadipate	STD	0			0.91	±	0.073	L	L
Arginino-succinate	STD	0			0.69	±	0.46	L	М
Citrulline	STD	0			0.97	±	0.19	M	M
Creatine	STD			R	7.0	±	1.6	Н	ND
Creatinine	STD				0.97	±	0.079	Н	ND
Glutamate methyl ester	STD	0	0		1.5	±	0.28	L	L
Hippurate	STD				0.54	±	0.083	M	ND
Histamine	STD	0			1.0	±	0.5	L	L
Indoxyl-sulfate	STD				0.43	±	0.092	M	ND
Kynurenine	STD				0.41	±	0.081	L	ND
Ornithine	STD	0			1.2	±	0.16	L	M
Phosphocreatine	STD			R	3.0	±	0.95	L	ND
Quinolinic acid	STD				0.35	±	0.04	L	ND
S-Adenosyl-homocysteine	STD	0		R	2100.0	±	1600.0	L	M
S-Adenosyl-methionine	STD	0		R	57.0	±	62.0	L	L
Taurine	STD				0.92	±	0.18	M	ND
Carnitines				•	u.				•
Acetyl-carnitine	STD			R	4.0	±	0.58	Н	ND
Butyryl-carnitine	STD				0.95	±	0.2	M	ND
Carnitine	STD				0.85	±	0.1	Н	ND
Decanoyl-carnitine	STD				0.42	±	0.11	M	ND
Dodecanoyl-carnitine	STD				0.51	±	0.072	L	ND
Hexanoyl-carnitine	STD				0.68	±	0.087	L	ND
Isovaleryl-carnitine	STD				0.94	±	0.25	L	ND
Octanoyl-carnitine	STD				0.45	±	0.086	M	ND
Propionyl-carnitine	STD			R	5.3	±	0.82	M	ND
Tetradecanoyl-carnitine	STD			R	11.0	±	15.0	L	ND
Choline derivatives				•	•				•

CDP-choline	STD	0			0.98	±	0.37	L	L
Glycerophosphocholine	STD	0			1.5	±	0.24	M	Н
Antioxidant									
Ergothioneine	STD	0		R	100.0	±	4.8	Н	M
Glutathione disulfide (GSSG)	STD	0		R	1900.0	±	430.0	Н	Н
Ophthalmic acid	STD	0		R	310.0	±	150.0	L	M

- 1 a One hundred thirty-three identified metabolic compounds detected in human blood
- 2 metabolome samples by LC-MS. Status of the compounds was either confirmed by
- 3 comercially available standard standard (STD) or MS/MS analysis (MS/MS).
- 4 Compounds not detected in fission yeast (32 compounds) and compounds not
- 5 reported as blood metabolites (14 compounds) are marked by **O** in respective
- 6 columns.
- 7 b on average in multiple persons.
- 9 donated by the same person within 24 hours. Values and standard deviations rounded
- to 2 significant numbers. ND not detected. Values >2 shown in bold.
- 11 d Peak areas defined as H, high (> 10^8 AU); M, medium (10^7 - 10^8 AU); L, low (< 10^7
- 12 AU); ND not detected. In case of blood, equivalent of ~5μl of blood was injected
- into the LC-MS system, for fission yeast ~0.75µl of internal cell volume (see
- 14 Materials and Methods).

16

- Table S1. List of 18 identified metabolites detected in fission yeast, but not in
- 17 blood.

18

19 Table S2. Compounds detected in fission yeast and blood

20

21 Table S3. List of analyzed standard compounds

References

2

- 3 1. A. R. Fernie, R. N. Trethewey, A. J. Krotzky and L. Willmitzer, *Nat Rev Mol*
- 4 *Cell Biol*, 2004, 5, 763-769.
- 5 2. D. B. Kell, Curr Opin Microbiol, 2004, 7, 296-307.
- 6 3. R. Goodacre, S. Vaidyanathan, W. B. Dunn, G. G. Harrigan and D. B. Kell,
- 7 *Trends Biotechnol*, 2004, 22, 245-252.
- 8 4. J. K. Nicholson and J. C. Lindon, *Nature*, 2008, 455, 1054-1056.
- 9 5. G. J. Patti, O. Yanes and G. Siuzdak, Nat Rev Mol Cell Biol, 2012, 13, 263-
- 10 269.
- 11 6. M. Y. Hirai, M. Yano, D. B. Goodenowe, S. Kanaya, T. Kimura, M.
- Awazuhara, M. Arita, T. Fujiwara and K. Saito, *Proc Natl Acad Sci U S A*,
- 13 2004, 101, 10205-10210.
- 14 7. M. J. Brauer, J. Yuan, B. D. Bennett, W. Lu, E. Kimball, D. Botstein and J. D.
- 15 Rabinowitz, *Proc Natl Acad Sci U S A*, 2006, 103, 19302-19307.
- 16 8. T. Pluskal, T. Nakamura, A. Villar-Briones and M. Yanagida, *Mol Biosyst*,
- 2010, 6, 182-198.
- 18 9. T. Soga, Y. Ohashi, Y. Ueno, H. Naraoka, M. Tomita and T. Nishioka, J
- 19 *Proteome Res*, 2003, 2, 488-494.
- 20 10. A. C. Allison, *Nature*, 1960, 188, 37-40.
- 21 11. J. R. Harris, 1990, 537.
- 22 12. R. van Wijk and W. W. van Solinge, *Blood*, 2005, 106, 4034-4042.
- 23 13. R. S. Franco, Am J Hematol, 2009, 84, 109-114.
- 24 14. J. A, J. Trygg, J. Gullberg, A. I. Johansson, P. Jonsson, H. Antti, S. L.
- 25 Marklund and T. Moritz, *Anal Chem*, 2005, 77, 8086-8094.
- 26 15. K. A. Lawton, A. Berger, M. Mitchell, K. E. Milgram, A. M. Evans, L. Guo,
- 27 R. W. Hanson, S. C. Kalhan, J. A. Ryals and M. V. Milburn,
- 28 *Pharmacogenomics*, 2008, 9, 383-397.
- 29 16. S. J. Bruce, I. Tavazzi, V. Parisod, S. Rezzi, S. Kochhar and P. A. Guy, Anal
- 30 *Chem*, 2009, 81, 3285-3296.
- 31 17. T. Kimura, Y. Noguchi, N. Shikata and M. Takahashi, Curr Opin Clin Nutr
- 32 *Metab Care*, 2009, 12, 49-53.

- 1 18. N. J. Serkova, T. J. Standiford and K. A. Stringer, Am J Respir Crit Care Med,
- 2 2011, 184, 647-655.
- 3 19. N. Psychogios, D. D. Hau, J. Peng, A. C. Guo, R. Mandal, S. Bouatra, I.
- 4 Sinelnikov, R. Krishnamurthy, R. Eisner, B. Gautam, N. Young, J. Xia, C.
- 5 Knox, E. Dong, P. Huang, Z. Hollander, T. L. Pedersen, S. R. Smith, F.
- 6 Bamforth, R. Greiner, B. McManus, J. W. Newman, T. Goodfriend and D. S.
- Wishart, *PLoS One*, 2011, 6, e16957.
- 8 20. A. D'Alessandro, G. M. D'Amici, S. Vaglio and L. Zolla, *Haematologica*,
- 9 2012, 97, 107-115.
- 10 21. A. D'Alessandro, F. Gevi and L. Zolla, *Mol Biosyst*, 2013, 9, 1196-1209.
- 11 22. T. Nishino, A. Yachie-Kinoshita, A. Hirayama, T. Soga, M. Suematsu and M.
- Tomita, *PLoS One*, 2013, 8, e71060.
- 13 23. T. Nishino, A. Yachie-Kinoshita, A. Hirayama, T. Soga, M. Suematsu and M.
- Tomita, *J Biotechnol*, 2009, 144, 212-223.
- 15 24. D. Darghouth, B. Koehl, J. F. Heilier, G. Madalinski, P. Bovee, G. Bosman, J.
- Delaunay, C. Junot and P. H. Romeo, *Haematologica*, 2011, 96, 1861-1865.
- 17 25. D. Darghouth, B. Koehl, G. Madalinski, J. F. Heilier, P. Bovee, Y. Xu, M. F.
- Olivier, P. Bartolucci, M. Benkerrou, S. Pissard, Y. Colin, F. Galacteros, G.
- Bosman, C. Junot and P. H. Romeo, *Blood*, 2011, 117, e57-66.
- 20 26. U. Catalan, M. A. Rodriguez, M. R. Ras, A. Macia, R. Mallol, M. Vinaixa, S.
- Fernandez-Castillejo, R. M. Valls, A. Pedret, J. L. Griffin, R. Salek, X.
- 22 Correig, M. J. Motilva and R. Sola, *Mol Biosyst*, 2013, 9, 1411-1422.
- 23 27. D. Y. Sze and O. Jardetzky, *Biochim Biophys Acta*, 1990, 1054, 181-197.
- 24 28. R. Lee and P. Britz-McKibbin, *Anal Chem*, 2009, 81, 7047-7056.
- 25 29. V. Wood, R. Gwilliam, M. A. Rajandream, M. Lyne, R. Lyne, A. Stewart, J.
- Sgouros, N. Peat, J. Hayles, S. Baker, D. Basham, S. Bowman, K. Brooks, D.
- Brown, S. Brown, T. Chillingworth, C. Churcher, M. Collins, R. Connor, A.
- Cronin, P. Davis, T. Feltwell, A. Fraser, S. Gentles, A. Goble, N. Hamlin, D.
- Harris, J. Hidalgo, G. Hodgson, S. Holroyd, T. Hornsby, S. Howarth, E. J.
- Huckle, S. Hunt, K. Jagels, K. James, L. Jones, M. Jones, S. Leather, S.
- 31 McDonald, J. McLean, P. Mooney, S. Moule, K. Mungall, L. Murphy, D.
- Niblett, C. Odell, K. Oliver, S. O'Neil, D. Pearson, M. A. Quail, E.
- Rabbinowitsch, K. Rutherford, S. Rutter, D. Saunders, K. Seeger, S. Sharp, J.
- 34 Skelton, M. Simmonds, R. Squares, S. Squares, K. Stevens, K. Taylor, R. G.

- Taylor, A. Tivey, S. Walsh, T. Warren, S. Whitehead, J. Woodward, G.
- Volckaert, R. Aert, J. Robben, B. Grymonprez, I. Weltjens, E. Vanstreels, M.
- Rieger, M. Schafer, S. Muller-Auer, C. Gabel, M. Fuchs, A. Dusterhoft, C.
- 4 Fritze, E. Holzer, D. Moestl, H. Hilbert, K. Borzym, I. Langer, A. Beck, H.
- 5 Lehrach, R. Reinhardt, T. M. Pohl, P. Eger, W. Zimmermann, H. Wedler, R.
- Wambutt, B. Purnelle, A. Goffeau, E. Cadieu, S. Dreano, S. Gloux, V.
- 7 Lelaure, S. Mottier, F. Galibert, S. J. Aves, Z. Xiang, C. Hunt, K. Moore, S.
- 8 M. Hurst, M. Lucas, M. Rochet, C. Gaillardin, V. A. Tallada, A. Garzon, G.
- 9 Thode, R. R. Daga, L. Cruzado, J. Jimenez, M. Sanchez, F. del Rey, J. Benito,
- A. Dominguez, J. L. Revuelta, S. Moreno, J. Armstrong, S. L. Forsburg, L.
- 11 Cerutti, T. Lowe, W. R. McCombie, I. Paulsen, J. Potashkin, G. V.
- Shpakovski, D. Ussery, B. G. Barrell and P. Nurse, *Nature*, 2002, 415, 871-
- 13 880.
- 14 30. V. Wood, M. A. Harris, M. D. McDowall, K. Rutherford, B. W. Vaughan, D.
- 15 M. Staines, M. Aslett, A. Lock, J. Bahler, P. J. Kersey and S. G. Oliver,
- 16 *Nucleic acids research*, 2012, 40, D695-699.
- 17 31. M. Yanagida, N. Ikai, M. Shimanuki and K. Sajiki, *Philos Trans R Soc Lond B*
- 18 *Biol Sci*, 2011, 366, 3508-3520.
- 19 32. K. Takeda, T. Yoshida, S. Kikuchi, K. Nagao, A. Kokubu, T. Pluskal, A.
- Villar-Briones, T. Nakamura and M. Yanagida, *Proc Natl Acad Sci U S A*,
- 21 2010, 107, 3540-3545.
- 22 33. T. Nakamura, T. Pluskal, Y. Nakaseko and M. Yanagida, *Open Biol*, 2012, 2,
- 23 120117.
- 24 34. T. Pluskal, T. Hayashi, S. Saitoh, A. Fujisawa and M. Yanagida, *FEBS J*,
- 25 2011, 278, 1299-1315.
- 26 35. K. Sajiki, T. Pluskal, M. Shimanuki and M. Yanagida, Metabolites, 2013, 3,
- 27 1118-1129.
- 28 36. M. Shimanuki, L. Uehara, T. Pluskal, T. Yoshida, A. Kokubu, Y. Kawasaki
- and M. Yanagida, *PLoS One*, 2013, 8, e78545.
- 30 37. Y. Guo and S. Gaiki, *J Chromatogr A*, 2005, 1074, 71-80.
- 31 38. T. Pluskal, S. Castillo, A. Villar-Briones and M. Oresic, *BMC Bioinformatics*,
- 32 2010, 11, 395.
- 33 39. D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, Y. Liu, Y.
- Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt,

- J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen,
- V. Neveu, R. Greiner and A. Scalbert, *Nucleic Acids Res*, 2013, 41, D801-807.
- 3 40. M. Kanehisa and S. Goto, *Nucleic Acids Res*, 2000, 28, 27-30.
- 4 41. H. E. Pence and A. Williams, Journal of Chemical Education, 2010, 87, 1123-
- 5 1124.
- 6 42. R. J. Snow and R. M. Murphy, *Mol Cell Biochem*, 2001, 224, 169-181.
- 7 43. A. M. Evans and G. Fornasini, Clin Pharmacokinet, 2003, 42, 941-967.
- 8 44. B. N. Ames, R. Cathcart, E. Schwiers and P. Hochstein, *Proc Natl Acad Sci U*
- 9 *S A*, 1981, 78, 6858-6862.
- 10 45. J. J. Barone and H. R. Roberts, *Food Chem Toxicol*, 1996, 34, 119-129.
- 11 46. N. L. Benowitz, *Annu Rev Med*, 1990, 41, 277-288.
- 12 47. H. Ohkura, Y. Adachi, N. Kinoshita, O. Niwa, T. Toda and M. Yanagida,
- 13 *EMBO J*, 1988, 7, 1465-1473.
- 48. K. Kumada, M. Yanagida and T. Toda, *Mol Gen Genet*, 1996, 250, 59-68.
- 15 49. S. M. Rappaport, D. K. Barupal, D. Wishart, P. Vineis and A. Scalbert,
- *Environ Health Perspect*, 2014, DOI: 10.1289/ehp.1308015.
- 17 50. M. B. Cooper, C. A. Forte and D. A. Jones, Biochim Biophys Acta, 1988, 959,
- 18 100-105.
- 19 51. M. Mizobuchi, M. Miyake, A. Sano and Y. Kakimoto, *Biochim Biophys Acta*,
- 20 1990, 1033, 119-123.
- 21 52. A. Joshi and B. O. Palsson, *J Theor Biol*, 1990, 142, 69-85.
- 22 53. Y. M. Yamashita, Y. Nakaseko, I. Samejima, K. Kumada, H. Yamada, D.
- 23 Michaelson and M. Yanagida, *Nature*, 1996, 384, 276-279.
- 24 54. J. M. Corton, J. G. Gillespie, S. A. Hawley and D. G. Hardie, Eur J Biochem,
- 25 1995, 229, 558-565.
- 26 55. K. E. Keller, I. S. Tan and Y. S. Lee, *Science*, 2012, 338, 1069-1072.
- 27 56. A. W. Murray, *Annu Rev Biochem*, 1971, 40, 811-826.
- 28 57. M. Schrettl, G. Winkelmann and H. Haas, *Biometals*, 2004, 17, 647-654.
- 29 58. A. D. Elbein, Y. T. Pan, I. Pastuszak and D. Carroll, Glycobiology, 2003, 13,
- 30 17R-27R.
- 31 59. V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R.
- 32 Feil, J. E. Lunn, M. Stitt and M. Schmid, *Science*, 2013, 339, 704-707.
- 33 60. H. Xu, B. Andi, J. Qian, A. H. West and P. F. Cook, Cell Biochem Biophys,
- 34 2006, 46, 43-64.

- 1 61. C. J. Rebouche and H. P. Broquist, *J Bacteriol*, 1976, 126, 1207-1214.
- 2 62. K. L. Oden and S. Clarke, *Biochemistry*, 1983, 22, 2978-2986.
- 3 63. A. F. Perna, D. Ingrosso, V. Zappia, P. Galletti, G. Capasso and N. G. De
- 4 Santo, J Clin Invest, 1993, 91, 2497-2503.
- 5 64. F. Hirata and J. Axelrod, *Proc Natl Acad Sci U S A*, 1978, 75, 2348-2352.
- 6 65. R. M. Weinshilboum, D. M. Otterness and C. L. Szumlanski, Annu Rev
- 7 *Pharmacol Toxicol*, 1999, 39, 19-52.
- 8 66. K. E. Wellen and C. B. Thompson, *Nat Rev Mol Cell Biol*, 2012, 13, 270-276.
- 9 67. R. H. Tukey and C. P. Strassburg, Annu Rev Pharmacol Toxicol, 2000, 40,
- 10 581-616.
- 11 68. B. Mulloy and M. J. Forster, *Glycobiology*, 2000, 10, 1147-1156.
- 12 69. H. A. Barker, Annu Rev Biochem, 1981, 50, 23-40.
- 13 70. L. Caldovic and M. Tuchman, *Biochem J*, 2003, 372, 279-290.
- 14 71. I. K. Cheah and B. Halliwell, *Biochim Biophys Acta*, 2012, 1822, 784-793.
- 15 72. M. Ozawa, K. Honda, I. Nakai, A. Kishida and A. Ohsaki, *Bioorg Med Chem*
- 16 Lett, 2008, 18, 3992-3994.
- 17 73. K. Chand, Akanksha, N. Rahuja, D. P. Mishra, A. K. Srivastava and R.
- Maurya, Medicinal Chemistry Research, 2011, 20, 1505-1508.
- 19 74. B. O. Keller, B. T. Wu, S. S. Li, V. Monga and S. M. Innis, *J Agric Food*
- 20 Chem, 2013, 61, 7654-7660.
- 21 75. A. Hirono, H. Iyori, I. Sekine, J. Ueyama, H. Chiba, H. Kanno, H. Fujii and S.
- 22 Miwa, *Blood*, 1996, 87, 2071-2074.
- 23 76. S. Whillier, B. Garcia, B. E. Chapman, P. W. Kuchel and J. E. Raftos, *FEBS J*,
- 24 2011, 278, 3152-3163.
- 25 77. G. B. Segel, G. R. Cokelet and M. A. Lichtman, *Blood*, 1981, 57, 894-899.
- 26 78. H. Gutz, H. Heslot, U. Leupold and N. Loprieno, in *Handbook of Genetics*, ed.
- 27 R. King, 1974, pp. 395-446.
- 28 79. S. L. Forsburg and N. Rhind, *Yeast*, 2006, 23, 173-183.
- 29 80. J. M. Mitchison, *Exp Cell Res*, 1957, 13, 244-262.
- 30 81. T. Pluskal, T. Uehara and M. Yanagida, *Anal Chem*, 2012, 84, 4396-4403.

Fig. 1. Preparation and analysis of blood metabolomic samples

A. Metabolic compounds were extracted in 50% MeOH at -40° C from whole blood, plasma, and RBCs
(Materials and Methods). Extracted metabolites were isolated with a 10-kDa cut-off filter, concentrated by a
rotary evaporator, and analyzed on an LC-MS system, as illustrated. B. Blood cells stained with Giemsa
solution under a microscope. Arrows indicate WBC. C. Raw LC-MS data 3D plots of plasma fraction (top)
and RBC fraction (bottom) obtained in positive ionization mode are shown: X-axis, retention time (RT, min);
Y-axis, m/z; Z-axis, signal intensity. Twenty identified peaks are shown as examples. Peaks 1-10 are
detected in both plasma and RBCs. These are amino acids, creatine, carnitine, dietary metabolites (caffeine,
dimethyl-xanthine), and compounds introduced during sample preparation (HEPES as internal standard,
NH4Cl formed in the LC-MS system). Peaks 11-20 are enriched in RBC samples. Many compounds are
involved in energy production, anti-oxidation, and amino acid metabolism (see text).

171x214mm (300 x 300 DPI)

Fig. 2. Quantification of peak area reproducibility examined by scatter plot
Blood was donated twice by the same person in 1h, and the two blood samples were processed separately
(samples #1 and #2). A. Scatter plot of all peaks detected in both blood samples (positive and negative
ionization modes combined). 87 % of peaks differed less than 2-fold. Less than 15% of these peaks could
be assigned to a known compound (assigned peaks marked yellow). B. A scatter plot of 129 identified
compounds detected in blood samples #1 and #2. Approximately 97% of these peaks were found within 2fold change. C. Multiple peaks are produced by abundant compounds such as ATP. In addition to the
primary single-charged ions (indicated by arrows), compounds produce multiply charged ions, fragments of
the molecule, adducts with salts, and complexes with other compounds eluting at similar retention
times. We were able to identify 18 peaks related to ATP, listed in the inset table. D. RBC and plasma
samples were prepared from the same person, and the peak areas were determined for identified
compounds, and compared in a scatter plot.

155x233mm (300 x 300 DPI)

Plasma-RBC **RBC** enriched **Nucleotides** Standard amino acids Sugar phosphates **Arginine Antioxidant** AMP 6-Phosphogluconate Asparagine Ergothioneine ATP Diphospho-glycerate Glutamine Glutathione CDP Fructose-1,6-diphosphate Histidine Ophthalmic acid CTP Fructose-6-phosphate Isoleucine Standard amino acids **GDP** Glucose-6-phosphate Leucine Aspartate **GMP** Glyceraldehyde 3-phosphate Lysine GTP Glycerol-2-phosphate Glutamate Methionine IMP Pentose-phosphate Phenylalanine Methylated amino acids UDP Phosphoenolpyruvate Proline Butyrobetaine * **UMP** Phosphoglycerate Serine Dimethyl-proline UTP Sedoheptulose-7-phosphate Threonine S-Methyl-ergothioneine Tryptophan Carnitines Nucleotide-sugar Trimethyl-histidine Tyrosine Acetyl-carnitine ! Trimethyl-lysine derivatives Valine Propionyl-carnitine ! GDP-glucose Trimethyl-phenylalanine ! Tetradecanoyl Methylated amino acids UDP-acetyl-glucosamine Trimethyl-tryptophan 1 carnitine ! UDP-alucose Retaine Trimethyl-tyrosine ! UDP-glucuronate ! Dimethyl-arginine Organic acids Dimethyl-lysine Other amino acid Citramalate Vitamins. Methyl-histidine derivatives **Fumarate** coenzymes Methyl-lysine Creatine 1 Malate NAD+ Phosphocreatine * Sugars and derivatives NADH Acetylated amino acids S-Adenosyl-homocysteine Gluconate NADP+ N-acetyl-arginine S-Adenosyl-methioneine N-Acetyl-D-glucosamine NADPH N-acetyl-aspartate Nicotinamide N-acetyl-glutamate N-acetyl-isoleucine Nucleosides, Choline derivatives N-acetyl-ornithine Organic acids No-acetyl-lysine nucleobases and **CDP-choline** 2-Oxoglutarate derivatives Glycerophosphocholine N₆-acetyl-lysine Chenodeoxycholate ! 1-Methyl-adenosine **Carnitines** cis-Aconitate Other amino acid 1-Methyl-guanosine Butyryl-carnitine ! Citrate derivatives Adenine Carnitine * Glutarate 2-Aminoadipate Adenosine Decanoyl-carnitine ! Glycerate * Arginino-succinate Caffeine * Succinate Dodecanoyl-carnitine ! Citrulline Cytidine Hexanoyl-carnitine Creatinine ! Vitamins, Coenzymes Dimethyl-guanosine Isovaleryl-carnitine Glutamate methyl ester Dimethyl-xanthine § 4-Aminobenzoate 1 Octanoyl-carnitine Hippurate ! Pantothenate Guanosine Histamine Sugar and derivatives Hypoxanthine Indoxyl-sulfate ! Inosine 1,5-Anhydroglucitol ! Kynurenine * Glucosamine Uracil Ornithine Glucose Urate * Quinolinic acid * myo-Inositol Uridine Taurine ! Quinic acid Abundance: high, medium, low * - compounds not detected in fission yeast

Fig. 3 Human blood compounds identified and characterized in the present study Compounds that were either RBC-enriched (57) or not (76), based on whether the ratios of their RBC:plasma peak areas, were either >2 or <2, respectively (Table 1). Abundance of compounds classified by peak area size, indicated by color, red (high), green (medium) and blue (low). Compounds with the statue symbol are not present in S. pombe. See text for detail.

171x228mm (300 x 300 DPI)

RBC - S. pombe

High-High ATP Glutathione Glutamine

High-Medium & Medium-High

Ergothioneine Glycerophosphocholine NAD⁺ UDP-glucose

Arginine
Glutamate
Histidine
Phenylalanine

Medium-Medium

ADP Fructose-1,6-diphosphate Tryptophan
AMP Phosphoglycerate Nicotinamide Tyrosine
GTP Glucose-6-phosphate Ophthalmic acid Citruline

High-Low

Betaine Diphospho-glycerate Proline

Low-High UTP

Threonine

High-None

Acetyl-carnitine
Carnitine
Creatine
Creatinine
Dimethyl-proline
Trimethyl-tryptophan
Urate

None-High

Trehalose Ferrichrome

Fig. 4 Relatively high-abundance compounds in human blood and fission yeast Compound abundance in human blood and S. pombe. For example, "High-High" indicates that ATP, glutathione, and glutamine are highly abundant in both blood and S. pombe. See text. $171 \times 217 \text{mm} \ (300 \times 300 \ \text{DPI})$