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Graphical abstract:  

Novelty of work:  

We introduce a generic constraint-based model of cancer metabolism, which is able to successfully 

predict the metabolic phenotypes of cancer cells. 
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Abstract 

A promising strategy for finding new cancer drugs is to use metabolic network models to 

investigate the essential reactions or genes in cancer cells. In this study, we present a generic 

constraint-based model of cancer metabolism, which is able to successfully predict the 

metabolic phenotypes of cancer cells. This model is reconstructed by collecting the available 

data on tumor suppressor genes. Notably, we show that the activation of oncogene related 

reactions can be explained by the inactivation of tumor suppressor genes. We show that in a 

simulated growth medium similar to the body fluids, our model outperforms the previously 

proposed model of cancer metabolism in predicting expressed genes.  
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1. Introduction 

Because of the increased incidence of cancer, it is 

becoming increasingly important to find ways to prevent 

and cure this disease. A promising strategy for finding 

cancer drug targets is to use metabolic networks to 

investigate the essential reactions or genes in cancer cells 

and to find cancer drugs with minimal side effects1-4.  

The Metabolism of cancer cells differs from that of 

healthy cells. For example, cancerous cells require more 

oxygen, resulting in decreased oxygen levels in their 

microenvironments. Consequently, angiogenesis occurs to 

supply the required oxygen and nutrients5. 

According to Warburg effect, while healthy cells supply 

90% of their energy requirements by oxidative 

phosphorylation, cancer cells do so for only 50%. The 

remaining 50% of energy is obtained by anaerobic 

glycolysis. Reduction in the oxygen uptake rate and 

malfunctions in the citric acid cycle forces the cancer cells 

to get their energy by glycolysis6. However, even if the 

required oxygen is provided by angiogenesis, cancer cells 

still obtain their energy by glycolysis because of the 

problems in the citric acid cycle. In contrast, healthy cells 

avoid the use of glycolysis to generate energy, as this 

pathway produces large amounts of lactic acid, which is 

lethal for healthy cells. Cancer cells, on the other hand, 

pump out lactic acid to their microenvironment which 

causes damage to healthy cells7. In general, glycolysis is 

preferred when rapid cell proliferation is needed. 

Therefore, cancerous cells use glycolysis, to maintain the 

high level of glycolytic intermediates which are necessary 

for proliferating cells8. 

 A number of metabolic differences distinguish 

normal and cancerous cells. Unlike normal cells, cancerous 

cells effectively uptake glutamine and convert it to 

glutamate, which is eventually used for lipid synthesis and 

amino acid production9. The activity of lactate 

dehydrogenase (LDH) and phosphoglycerate 

dehydrogenase (PHGDH) is increased in cancer cells9, 10. 

LDH converts pyruvate to lactate. The increased activity of 

LDH in cancer cells is required for the increased glycolytic 

rates and glucose uptake, as well as cancer cell growth9. 

Biosynthesis of serine and glycine from 3-

phosphoglycerate is initiated by PHGDH. This pathway is 

increased in cancer cells and PHGDH is over-expressed in 

some tumors10, 11. Other differences between healthy and 

cancer cells include the increased lipid metabolism in 

cancer cells, which has an important role in growth and 

malignancy of cancer cells; and increased activity of Acyl-

CoA synthetase, associated with the increased activity of 

this pathway12. 

There are further reports on the increased activity of 

other metabolic pathways in cancer cells compared to 

healthy cells. Some of these pathways include fatty acid 

metabolism 13, nucleotide metabolism14, inositol phosphate 

metabolism15-17, NAD metabolism18, glycine, serine, and 

threonine metabolism19, cholesterol metabolism20, 

glycerophospholipid metabolism21, arginine and proline 

metabolism22 and eicosanoid metabolism 23. Furthermore, 
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cancer cells, in general, have higher nutrient uptake rates in 

comparison to healthy cells24. 

A generic metabolic network of cancer cells has been 

previously reconstructed 4 to investigate the differences 

between healthy cells and cancer cells. This network will 

be referred to as “S2011” in this text. The reconstruction 

was based on the inclusion of reactions which are known to 

be active in the metabolism of cancer cells in RPMI-1640 

medium. Then, a minimum number of reactions were added 

to the model so that the biomass components could be 

produced. 

A number of issues may limit the usefulness of the 

above-mentioned strategy for model reconstruction. These 

issues arise due to the differences between the metabolisms 

of cancer cells in the synthetic medium vs. biological 

growth conditions. For example, we mentioned that cancer 

cells uptake large amounts of glutamine, while RPMI-1640 

medium provides only limited amounts of glutamine9. 

Another example is the inconsistency between biological 

and predicted LDH and PHGDH activity levels. The S2011 

model predicted much less LDH and PGDH activities 

compared to the healthy cell model, which is inconsistent 

with experimental data. 

In the present study, we use a different approach to 

reconstruct the metabolic network of cancer cells. First, we 

collect a list of oncogenes and tumor suppressor genes. 

Next, we reconstruct the generic metabolic model of cancer 

by mapping tumor suppressor gene data on a human 

metabolic network model, Recon14, 25. We show that our 

model, which will be called “B2014” throughout the text, 

better predicts the experimentally observed properties of 

cancer cells compared to S2011. 
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2. Experimental 

2.1. Modeling cell metabolism and growth 

Constraint-based modeling of metabolic networks 26 

has been previously used as the modeling framework to 

analyze metabolic fluxes in healthy and cancer cells 2-4, 25, 

27. We used COBRA Toolbox v2.0 28 for constraint-based 

modeling of metabolic networks, with GLPK as the linear 

programming solver (http://www.gnu.org/software/glpk). 

Briefly, metabolic fluxes are assumed to be under certain 

constraints. A stoichiometric matrix S is defined such that 

element Sij represents the stoichiometric coefficient of 

metabolite i in reaction j. A biomass-producing reaction is 

often added to the network to model the biomass 

production rate. In flux balance analysis (FBA) 26, it is 

assumed that the biomass-production rate (vbiomass) is 

maximized, subject to the stoichiometric constraint (S·v= 

0) and capacity constraints (with the general form of ai≤ vi≤ 

bi for all reactions i). The stoichiometric constraint forces 

the system to stay in steady-state conditions, i.e., net 

production or consumption of metabolites is not allowed. 

Capacity constraints are related to maximum and minimum 

theoretical values known for reactions. For example, 

irreversible reactions always have non-negative fluxes (0≤ 

vi), the uptake flux of metabolites which are absent in the 

growth medium is zero (vi=0), and the oxygen uptake rate 

in aerobic conditions is between zero and a maximum 

possible value, say d, which is controlled by the diffusion 

rate (0≤ voxygen≤ d). 

2.2. Using body fluid as the growth medium of S2011 

The S2011 model 4 had been reconstructed assuming 

that the cells are grown in RPMI-1640 medium. Instead, we 

used the growth medium by which Recon1 has been 

evaluated (representing body fluid25). In this medium, input 

and output reactions allow unlimited production or 

consumption of metabolites. This is in accordance to cancer 

cell biology, as they induce angiogenesis to get as much 

nutrients as needed. The constituents of this medium are 

represented in supplementary file S1. 

The growth medium for S2011 was changed so that 

both models are tested in the same medium. This allowed 

us to directly compare the correctness of model predictions 

in S2011 and B2014.  

2.3. Gene deletion and reaction deletion studies 

In addition to changing the biological or growth 

medium conditions of S2011, we did gene deletion and 

reaction deletion analysis to see if changing the growth 

medium affected the essentiality of any of the reactions or 

genes in the model.  

To model the deletion of the reaction r (or deletion of 

the gene responsible for reaction r), we added another 

constraint, vr= 0, to the previous set of constraints. Then, 

the maximum biomass-production rate was recomputed. In 

our study, modeling gene deletion and reaction deletion 

were performed by “deleteModelGenes” and 

“removeRxns” functions in the COBRA Toolbox28. 

2.4. Comparing the behavior of S2011 in RPMI-1640 

medium and body fluid 
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We performed single gene deletion and single reaction 

deletion analysis on the S2011 model in RPMI-1640 

medium and body fluid growth conditions. Additionally, 

we investigated the effects of 811 drugs4, 29 on the growth 

phenotypes predicted by the model in the two growth 

media. The complete list of drugs and their target genes are 

given in Supplementary file S2. A biomass reaction with a 

previously defined composition4, 27 was added to the model. 

Although it is not easy to determine the objective of human 

cells, biomass production can be used as a proxy cellular 

objective, reflecting the cell requirement to replenish 

metabolites continuously30. Therefore, biomass production 

rate (i.e., growth rate) was considered as the objective 

function in FBA during the simulations.  

We used a special scoring scheme for quantifying the effect 

of perturbation (i.e., gene deletion, reaction deletion or 

imposing drug inhibition) on S2011 model:  

• Cytostatic score in cancer model (CS): ratio of 

growth rate after perturbation to the growth rate 

before perturbation. 

• Side effect score in Recon1 (SE): ratio of growth 

rate after perturbation to the growth rate before 

perturbation. 

This scoring scheme is shown in Table 1. We used these 

scores to computationally study the behavior of the S2011 

model when grown in RPMI-1640 medium compared to the 

body fluid. 

2.5. Reconstruction of B2014, a generic metabolic 

network for cancer cells 

In the first step of the reconstruction of the cancer 

metabolic model, a comprehensive list of tumor suppressor 

genes and oncogenes were collected from four high-

throughput datasets 31-35 and a number of relevant 

publications. The complete list of tumor suppressor genes 

and oncogenes are presented in Supplementary File S3 (81 

tumor suppressor genes and 141 oncogenes). We compared 

the genes in our oncogene and tumor-suppressor set to the 

generic model of human metabolism, Recon125 , to identify 

oncogene-related and tumor suppressor-related reactions. 

Reactions which are related to tumor suppressor genes (TS-

reactions) and reactions which are related to oncogenes (O-

reactions) were found.  Supplementary File S4 includes the 

complete list of TS-reactions and O-reactions (288 O-

reactions, 46 TS-reactions). Next, we used F2C2 software 

36 to determine the blocked reactions of Recon1. The set of 

blocked reactions were omitted from the list of TS-

reactions and O-reactions. Finally, to obtain the final cancer 

cell metabolic network we used Recon1 and the complete 

list of TS-reactions were deactivated in Recon1. In 

Supplementary file S5, the B2014 model is presented in 

SBML format. This model includes 2766 metabolites and 

3788 reactions, which represent 1905 genes. Following the 

reconstruction of the cancer cell metabolic network, we 

investigated whether model predictions of S2011 and 

B2014 models were consistent with biological 

observations.  

2.6. Investigating the accuracy of predictions by flux 

variability analysis 
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Flux variability analysis (FVA) 37 is a method to find 

those reactions which have variable fluxes when growth 

rate has its maximum value. Before FVA, we should first 

find the optimal growth rate, say vmax, by FBA. Then, for 

FVA of a reaction r, we maximize and minimize the flux 

through this reaction, vr, subject to stoichiometric and 

capacity constraints, and the additional constraint vbiomass= 

vmax. 

The purpose of comparing the FVA results for the 

three models (Recon1, S2011 and B2014) is to investigate 

which O-reactions show increased activity in cancer cells 

compared to healthy cells and how many of the TS-

reactions show decreased activity in cancer cells compared 

to healthy cells. Based on FVA, decreased activities are 

categorized either as “high confidence decrease” or 

“decrease”, while increased activities are categorized either 

as “high confidence increase” or “increase” (Figure 1).  

2.7. Uniform random sampling to compare the accuracy 

of predictions 

We performed uniform random sampling analysis of 

the flux space for Recon1, S2011 and B2014 when biomass 

production rate is fixed to the maximum value (computed 

by FBA). The flux sampling results for O-reactions in 

cancer models were then compared with the fluxes of the 

same reactions in Recon1. One-sided Mann-Withney test 

was used to evaluate the statistical significance of the 

differences between fluxes. 

2.8. Evaluation of the model with gene expression data  

We used the uniform random sampling results of the 

three metabolic models to identify reactions which show 

increased activities in cancer cells compared to normal 

cells. The results are compared with the gene expression 

data of 428 cancer tissues reported in Oncomine database38 

(available from: www.oncomine.org). The fold change 

score is the log2 transformation of gene expression in 

cancerous tissues over gene expression in healthy tissues. 

Briefly, fold change scores above 0.5 were deemed as 

significantly increased expression, between -0.5 to 0.5 as 

constant expression, and below -0.5 as significantly 

decreased expression.  

3. Results 

3.1. Different behaviors of S2011 in RPMI-1640 

medium and body fluid: 

We first analyzed the predictions of the S2011 model 

in two growth media, namely, simulated body fluid and 

RPMI-1640. Then, we studied the effects of gene deletion, 

reaction deletion, and imposing drug inhibitions on the 

predictions of the model.  

Figure 2A presents the CS scores for gene deletion 

analysis of genes with SE scores 1 or 2. Figure 2B and 2C 

show these scores for reaction deletion analysis and drug 

inhibition analysis, respectively. We should explain that the 

SE score which is presented in table1, shows how much the 

gene deletion, reaction deletion, or drug inhibition can 

affect the growth rate of healthy cells. Obviously, this 

effect is not desirable and we prefer those genes, reactions 

or drugs which have little side effect on healthy cells. Such 
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SE scores are either in categories 1 or 2. On the other hand, 

the CS score shows how much gene deletion, reaction 

deletion, or drug inhibition can affect the growth of 

cancerous cells (B2014, S2011). Clearly, reactions, genes 

and drugs with higher CS values are preferred, which 

means categories 3 or 4, so in Figure 2, CS values (and not 

SE values) are shown, but for those drugs, genes and 

reactions with SE score = 1 or 2.  From these figures, one 

can observe that the frequency of genes, reactions or drugs 

in each category strongly depends on the applied medium. 

Therefore, predicting the phenotypes of S2011 in the 

simulated body fluid could potentially give rise to different 

results compared to the phenotypes of the simulations in 

RPMI-1640 medium. On the other hand, it was observed 

that some genes which are deleted from S2011 (Figure 2A) 

have a cytostatic score of 1 in the simulated body fluid, but 

when the model is analyzed in RPMI-1640 these genes 

have a cytostatic score of 2 or higher. Comparable trends 

were observed in the case of reaction deletion and drug 

inhibition analysis. In general, one may conclude by 

network perturbation that the cytostatic score is generally 

greater when simulations are performed in nutrition-limited 

medium (RPMI-1640) compared to the rich medium (body 

fluid). Presumably, this observation is due to the fact that 

some uptake reactions are inactive in RPMI-1640. 

Consequently, small perturbations in cell metabolism may 

unrealistically stop growth in the cell model, as the 

alternative reactions/pathways, which can normally 

compensate for the perturbations, are inactive in the model. 

For this reason, we suggest that it is critical to simulate 

cancer metabolism in body fluid.  

3.2. FVA of O-reactions  

Figure 3 shows that the number of O-reactions which show 

elevated flux values in B2014 is considerably higher than 

this number in S2011. This is a notable result, because 

B2014 was constructed by simple inactivation of TS-

reactions in Recon1. This means that the procedure of 

inactivating TS-reactions (without imposing further 

constraints on O-reactions) can result in a redistribution of 

metabolic fluxes such that O-reactions carry higher flux 

values. This observation suggests that the activation of 

oncogene-related reactions may be explained by 

inactivation of tumor suppressor genes. 

Figure 3 shows that about 65.6% of O-reactions in 

S2011 can carry no flux. In contrast, this value drops to 

only 12.5% in B2014. On the other hand, more than 52% of 

O-reactions show increased activity in B2014 compared to 

Recon1, while this value is only about 10% in S2011. 

Moreover, we observe decreased activity (i.e., false 

prediction) for about 3.8% of reactions in S2011, while this 

value drops to 1.7% in B2014. Altogether, in comparison 

with S2011, we show that B2014 better predicts the 

activation of O-reactions. Supplementary file S6 presents 

the list of O-reactions in addition to the results of FVA of 

these reactions in Recon1, S2011 and B2014. From these 

results, one can observe that those reactions and enzymes 

that are mentioned in the Introduction of the present article 

(e.g., lactate dehydrogenase, phosphoglycerate 

dehydrogenase and acyl-CoA synthetase) show higher 

activities in B2014 in comparison to S2011. Supplementary 

file S6 also lists the subsystems or pathways in which these 
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reactions are categorized. These pathways are known to be 

more active in cancer cells, including include fatty acid 

metabolism 13, nucleotide metabolism14, inositol phosphate 

metabolism15-17, NAD metabolism18, glycine, serine, and 

threonine metabolism19, cholesterol metabolism20, 

glycerophospholipid metabolism21, arginine and proline 

metabolism22 and eicosanoid metabolism 23 and transporter 

reactions. 

3.3. FVA of TS-reactions  

In Figure 4, the behaviors of TS-reactions in S2011 

and B2014 are compared. Decreased activity of TS-

reactions is expected in cancerous models in relation to 

Recon1. Since TS- reactions are deactivated in B2014 by 

design, these reactions may only belong to two categories: 

either blocked in both healthy and cancer cell models, or 

showing high-confidence decrease due to the inactivation 

in the cancer model, but not the healthy model. On the 

other hand, in S2011 about 9% of TS-reactions show 

increased activity (i.e., false prediction), while about 17.5% 

are unchanged or uncategorized. In conclusion, B2014 

outperforms S2011 in predicting both activated and 

inactivated reactions in cancerous cells. 

3.4. Increase and decrease of fluxes based on uniform 

random sampling  

We used uniform random sampling of the flux space 

for analyzing the fluxes of the O- and TS-reactions in 

healthy cell model, as well as S2011 and B2014 models. 

The results of this analysis are summarized in Figure 5. 

Similar to FVA results, one can observe that the predictions 

of B2014 are better than S2011. About 56.6% of O-

reactions in Figure 5A show increased activity in B2014, 

while this value is only about 13.9% in S2011. On the other 

hand, about 36.5 % of O-reactions in S2011 show 

decreased activity, which represents false predictions. This 

value drops to 25.35% in B2014. In Figure 5B, it can be 

seen that about 9% of TS-reactions in S2011 incorrectly 

show increased activity. In contrast, as a result of the 

reconstruction approach used in B2014, we see that no false 

increased activity can occur in B2014. The O-reactions 

which show higher activities in B2014 in comparison to 

S2011 are listed in Supplementary file S7.The subsystems 

and pathways in which these reactions are active are listed 

in supplementary file S7. These subsystems and pathways 

are in accordance with the above-mentioned pathways. The 

inositol phosphate metabolism15-17 is one of the pathways 

showing increased flux in cancer cells compared to healthy 

cells. Therefore, the reactions of this pathway are expected 

to be more active in the cancer model compared to Recon1. 

Some of the reactions of this pathway that are O-reactions 

are highlighted in the Figure 6.  These reactions have no 

flux in S2011 but they are active in B2014, which is in 

agreement with the biological data. 

3.5. Comparing the flux sampling results with gene 

expression data 

To evaluate the usefulness of our model in predicting 

gene expression data in cancer cells, we compared our flux 

sampling results with gene expression data from Oncomine 

database38. Figure 7 shows the frequency of true 

predictions in each model based on the gene expression 
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dataset. The frequency of true predictions of B2014 is 

significantly greater than S2011 (p-value= 1.8×10-141). We 

also compared the predictions of cancer models (S2011 and 

B2014) independently with different cancer gene 

expression data (Supplementary file S8). The results clearly 

show that compared to S2011, predictions of B2014 are 

much more consistent with gene expression of different 

cancer tissues (p-value< 0.05 in all cases). While the true 

predictions of B2014 are generally highly significant 

(especially in case of breast, colon, brain and lung cancers), 

in a few cancer subtypes such as adrenal and uterus cancers 

the significance level is not as high. We hope that further 

improvement of the model improves the prediction of these 

cancer subtypes. 

4. Discussion 

In this study, we present a generic metabolic network 

model of cancer cells. Based on our findings, we suggested 

that simulated body fluid should be used instead of RPMI-

1640 for metabolic modeling to obtain biomedically 

relevant results. We propose that focusing on the core 

metabolism of cancer cells may result in overlooking 

alternative reactions that can potentially be activated. 

Therefore, it is not surprising to see that S2011, when 

grown in RPMI-1640, leads to potential drug candidates 

that target the core metabolism4. This may explain the in 

vivo failure of some drugs, which can successfully inhibit 

cancer cells in vitro. 

On the other hand, in this paper, we present a new 

strategy to reconstruct the generic metabolic networks of 

cancer. The resulting cancer model, B2014, is essentially a 

subnetwork of the healthy cell model, Recon1. In this 

network, reactions which are related to tumor suppressor 

genes are deactivated. Strikingly, we observed that simple 

inactivation of these genes led to the increase of flux values 

through the oncogene-related reactions. This observation 

may shed light on a new mechanism of gene regulation in 

cancer. 

By using flux variability analysis and uniform random 

sampling of the flux space, we compared the reaction 

fluxes in cancer models vs. healthy model. We showed that 

our cancer model (B2014) significantly outperforms the 

previous cancer model (S2011) in predicting activity of 

reactions and gene expression data. In addition to gene 

expression profile, most of the pathways which should be 

more active in cancer cells in comparison to healthy cells 

(including include fatty acid metabolism 13, nucleotide 

metabolism14, inositol phosphate metabolism15-17, NAD 

metabolism18, glycine, serine, and threonine metabolism19, 

cholesterol metabolism20, glycerophospholipid 

metabolism21, arginine and proline metabolism22 and 

eicosanoid metabolism 23) are far better predicted by B2014 

in comparison to S2011.  This improvement is presumably 

related, at least partly, to the high-quality and complete 

generic model of human cells, Recon1, which was used as 

the starting point for our model reconstruction. In 

conclusion, we believe that our model has the potential to 

be used for suggesting novel cancer drugs. 
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† Electronic supplementary information (ESI) available: 

Supplementary file S1: The maximum allowable uptake flux of the 

components which are used in the model as “body fluid” medium. 

The first column shows the metabolites name and the second one is 

Maximum Uptake which its unit is mmol / gDW / hour. 

Supplementary file S2: The complete list of drugs and their target 

genes which are used in the present study to investigate the effect 

of changing the medium composition on the drugs effect. The first 

column includes the drug IDs which are extracted from DrugBank 

database, the second column is the generic name of these drugs, 

the third column represents the Entrez IDs of metabolic targets of 

the drugs, and the fourth column shows whether the drug is an 

anticancer drug or not.  

Supplementary file S3: The complete list of tumor suppressor 

genes and oncogenes are presented in two sheets. First sheet 

includes tumor suppressor genes, and the second sheet includes 

oncogenes. The first column of each sheet shows the gene IDs in 

the model, while the second column represents the Entrez IDs of 

the genes. 

Supplementary file S4: The complete list of TS-reactions which 

have been deactivated to reconstruct B2014 and O-reactions which 

have been used to compare the percent of correct predictions 

between S2011 and B2014. The first column specifies if the 

reaction is O-reaction or TS-reaction, the second column shows the 

reaction numbers in the models, the third column shows the 

reaction names, and the fourth column represents the references in 

which these reactions are introduced. 

Supplementary file S5: This file is the cancer metabolic network 

model (B2014). The metabolic network is in the standard SBML 

format. 

Supplementary file S6: The list of O-reactions in B2014 which 

shows true predictions based on FVA results. The first column 

shows the reaction numbers in the models, the second column 

shows the reaction IDs, the third column represents the complete 

reaction names, the fourth column is the subsystem or pathway to 

which each reaction belongs to. The fifth and the sixth columns 

show the minimunm and maximum fluxes of each of these 

reactions in B2014 obtained by flux variability analysis (FVA). 

Similarly, the seventh and the eighth columns show the minimunm 

and maximum fluxes of S2011, while the ninth and the tenth 

columns show the minimunm and maximum fluxes of Recon1.  

Supplementary file S7: The list of O-reactions in B2014 which 

shows true prediction based on uniform random sampling results.  

Supplementary file S8: Accuracy of the predictions of S2011 and 

B2014 based on cancer gene expression. Each graph shows, for a 

certain type of cancer, the percentage of true predictions of S2011 

and B2014. The p-values represent the significance level of the 

comparison of the two distributions using one-sided Mann-

Whitney U test.  

References: 

1. O. Resendis-Antonio, C. Gonzalez-

Torres, G. Jaime-Munoz, C. E. 

Hernandez-Patino and C. F. Salgado-

Munoz, Seminars in cancer biology, 

2014. 

2. A. Mardinoglu, F. Gatto and J. Nielsen, 

Biotechnology journal, 2013, 8, 985-

996. 

3. N. E. Lewis and A. M. Abdel-Haleem, 

Frontiers in physiology, 2013, 4, 237. 

Page 11 of 23 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular Biosystems ARTICLE 

This journal is © The Royal Society of Chemistry 2013 Mol.Biosyst.| 11  

 

4. O. Folger, L. Jerby, C. Frezza, E. Gottlieb, 

E. Ruppin and T. Shlomi, Molecular 

systems biology, 2011, 7, 501. 

5. V. Gogvadze, S. Orrenius and B. 

Zhivotovsky, Trends in cell biology, 

2008, 18, 165-173. 

6. S. M. Jeon, N. S. Chandel and N. Hay, 

Nature, 2012, 485, 661-665. 

7. R. A. Gatenby and R. J. Gillies, Nature 

reviews. Cancer, 2004, 4, 891-899. 

8. S. Y. Lunt and M. G. Vander Heiden, 

Annual review of cell and 

developmental biology, 2011, 27, 441-

464. 

9. N. Hammoudi, K. B. Ahmed, C. Garcia-

Prieto and P. Huang, Chinese journal of 

cancer, 2011, 30, 508-525. 

10. K. Hiller and C. M. Metallo, Current 

opinion in biotechnology, 2013, 24, 60-

68. 

11. J. W. Locasale, A. R. Grassian, T. 

Melman, C. A. Lyssiotis, K. R. Mattaini, 

A. J. Bass, G. Heffron, C. M. Metallo, T. 

Muranen, H. Sharfi, A. T. Sasaki, D. 

Anastasiou, E. Mullarky, N. I. Vokes, M. 

Sasaki, R. Beroukhim, G. 

Stephanopoulos, A. H. Ligon, M. 

Meyerson, A. L. Richardson, L. Chin, G. 

Wagner, J. M. Asara, J. S. Brugge, L. C. 

Cantley and M. G. Vander Heiden, 

Nature genetics, 2011, 43, 869-874. 

12. T. Mashima, S. Sato, S. Okabe, S. 

Miyata, M. Matsuura, Y. Sugimoto, T. 

Tsuruo and H. Seimiya, Cancer science, 

2009, 100, 1556-1562. 

13. F. P. Kuhajda, Cancer research, 2006, 

66, 5977-5980. 

14. Y. C. Liu, F. Li, J. Handler, C. R. Huang, Y. 

Xiang, N. Neretti, J. M. Sedivy, K. I. 

Zeller and C. V. Dang, PloS one, 2008, 3, 

e2722. 

15. E. Lee and S. H. Yuspa, Carcinogenesis, 

1991, 12, 1651-1658. 

16. T. W. Miller, B. N. Rexer, J. T. Garrett 

and C. L. Arteaga, Breast cancer 

research : BCR, 2011, 13, 224. 

17. G. Schramm, E. M. Surmann, S. 

Wiesberg, M. Oswald, G. Reinelt, R. Eils 

and R. Konig, BMC medical genomics, 

2010, 3, 39. 

18. C. C. Chini, A. M. Guerrico, V. Nin, J. 

Camacho-Pereira, C. Escande, M. T. 

Barbosa and E. N. Chini, Clinical cancer 

research : an official journal of the 

American Association for Cancer 

Research, 2014, 20, 120-130. 

19. J. W. Locasale, Nature reviews. Cancer, 

2013, 13, 572-583. 

20. C. Munoz-Pinedo, N. El Mjiyad and J. E. 

Ricci, Cell death & disease, 2012, 3, 

e248. 

21. V. Dolce, A. R. Cappello, R. Lappano and 

M. Maggiolini, Current molecular 

pharmacology, 2011, 4, 167-175. 

22. B. Perroud, J. Lee, N. Valkova, A. 

Dhirapong, P. Y. Lin, O. Fiehn, D. Kultz 

and R. H. Weiss, Molecular cancer, 

2006, 5, 64. 

23. D. Wang and R. N. Dubois, Nature 

reviews. Cancer, 2010, 10, 181-193. 

24. R. G. Jones and C. B. Thompson, Genes 

& development, 2009, 23, 537-548. 

25. N. C. Duarte, S. A. Becker, N. Jamshidi, I. 

Thiele, M. L. Mo, T. D. Vo, R. Srivas and 

B. O. Palsson, Proceedings of the 

National Academy of Sciences of the 

United States of America, 2007, 104, 

1777-1782. 

26. J. D. Orth, I. Thiele and B. O. Palsson, 

Nature biotechnology, 2010, 28, 245-

248. 

27. C. Frezza, L. Zheng, O. Folger, K. N. 

Rajagopalan, E. D. MacKenzie, L. Jerby, 

M. Micaroni, B. Chaneton, J. Adam, A. 

Hedley, G. Kalna, I. P. Tomlinson, P. J. 

Pollard, D. G. Watson, R. J. 

Deberardinis, T. Shlomi, E. Ruppin and 

E. Gottlieb, Nature, 2011, 477, 225-228. 

28. J. Schellenberger, R. Que, R. M. Fleming, 

I. Thiele, J. D. Orth, A. M. Feist, D. C. 

Zielinski, A. Bordbar, N. E. Lewis, S. 

Rahmanian, J. Kang, D. R. Hyduke and B. 

O. Palsson, Nature protocols, 2011, 6, 

1290-1307. 

29. D. S. Wishart, C. Knox, A. C. Guo, D. 

Cheng, S. Shrivastava, D. Tzur, B. 

Page 12 of 23Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular Biosystems ARTICLE 

This journal is © The Royal Society of Chemistry 2013 Mol.Biosyst.| 12  

 

Gautam and M. Hassanali, Nucleic acids 

research, 2008, 36, D901-906. 

30. A. Wagner, R. Zarecki, L. Reshef, C. 

Gochev, R. Sorek, U. Gophna and E. 

Ruppin, Proceedings of the National 

Academy of Sciences of the United 

States of America, 2013, 110, 19166-

19171. 

31. M. Zhao, J. Sun and Z. Zhao, Nucleic 

acids research, 2013, 41, D970-976. 

32. T. Santarius, J. Shipley, D. Brewer, M. R. 

Stratton and C. S. Cooper, Nature 

reviews. Cancer, 2010, 10, 59-64. 

33. R. Possemato, K. M. Marks, Y. D. Shaul, 

M. E. Pacold, D. Kim, K. Birsoy, S. 

Sethumadhavan, H. K. Woo, H. G. Jang, 

A. K. Jha, W. W. Chen, F. G. Barrett, N. 

Stransky, Z. Y. Tsun, G. S. Cowley, J. 

Barretina, N. Y. Kalaany, P. P. Hsu, K. 

Ottina, A. M. Chan, B. Yuan, L. A. 

Garraway, D. E. Root, M. Mino-

Kenudson, E. F. Brachtel, E. M. Driggers 

and D. M. Sabatini, Nature, 2011, 476, 

346-350. 

34. M. E. Higgins, M. Claremont, J. E. Major, 

C. Sander and A. E. Lash, Nucleic acids 

research, 2007, 35, D721-726. 

35. K. Xu, J. Cui, V. Olman, Q. Yang, D. Puett 

and Y. Xu, PloS one, 2010, 5, e13696. 

36. A. Larhlimi, L. David, J. Selbig and A. 

Bockmayr, BMC bioinformatics, 2012, 

13, 57. 

37. J. L. Reed and B. O. Palsson, Genome 

research, 2004, 14, 1797-1805. 

38. D. R. Rhodes, J. Yu, K. Shanker, N. 

Deshpande, R. Varambally, D. Ghosh, T. 

Barrette, A. Pandey and A. M. 

Chinnaiyan, Neoplasia, 2004, 6, 1-6. 

39. M. Kanehisa, S. Goto, Y. Sato, M. 

Kawashima, M. Furumichi and M. 

Tanabe, Nucleic acids research, 2014, 

42, D199-205. 

40. M. Kanehisa and S. Goto, Nucleic acids 

research, 2000, 28, 27-30. 

 

 

 

Page 13 of 23 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular Biosystems ARTICLE 

This journal is © The Royal Society of Chemistry 2013 Mol.Biosyst.| 13  

 

Figure legends: 

Figure 1. The four reaction categories which show flux 

decrease or increase in cancer models in comparison with 

Recon1. The solid arrows show the flux range in cancer 

models while dashed arrows show the flux range in 

Recon1. 

Figure 2. (A) Gene deletion analysis of the S2011 model in 

two different growth media (RPMI-1640 and body fluid) 

when side effect score is 1 or 2, i.e., little side effect is 

observed in healthy cells; (B) Reaction deletion analysis of 

the S2011 model in the two different growth media when 

side effect score is 1 or 2; (C) Drugs inhibition analysis in 

S2011 in two different media when side effect score is 1 or 

2. 

Figure 3. Number of O-reactions which show 

increased/decreased fluxes in cancer models (S2011 and 

B2014) compared to their fluxes in the healthy cell model 

(Recon1) using FVA.  

Figure 4. Number of TS-reactions which show 

increased/decreased fluxes in cancer models (S2011 and 

B2014) compared to their fluxes in the healthy cell model 

(Recon1) using FVA. It should be emphasized here that our 

reconstruction approach is based on the deactivation of TS-

reactions, and therefore, it is obvious that B2014 must be 

fully consistent with the biological data.  

Figure 5. (A) Number of O-reactions which show 

increased/decreased fluxes in cancer models (S2011 and 

B2014) compared to their fluxes in the healthy cell model 

(Recon1) using uniform random sampling of the flux space; 

(B) Number of TS-reactions which show 

increased/decreased fluxes in cancer models (S2011 and 

B2014) compared to their fluxes in the healthy cell model 

(Recon1) using uniform random sampling of the flux space. 

It should be noted here that because of our reconstruction 

strategy (by deactivation of TS-reactions) no false 

prediction can occur in case of B2014. 

Figure 6. Inositol phosphate metabolism pathway shows 

increased activity in cancer cells compared to healthy cells. 

Highlighted reactions are those reactions for which 

increased activity is expected, but S2011 (in contrast to 

B2014) fails to predict this behavior. This figure is taken 

from KEGG database39, 40. 

Figure 7. Accuracy of prediction of reactions with 

increased flux values in S2011 and B2014 based on 

different gene expression datasets. 
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 Table 1. Definition of different categories. Here, x represents either cytostatic score (CS) 

or side effect score (SE). CS is a score that show how much a perturbation (reaction 

deletion, gene deletion or drug inhibition) decreases the growth rate of cancer cells. SE 

score means how much such a perturbation 

affects the growth rate of healthy cells. 

Therefore, SE scores in categories 1 or 2 and 

CS scores in categories 3 or 4 are preferred. 

 

Category number Range of x 

1 x ≥ 0.9 

2 0.5 ≤ x < 0.9 

3 0.05  ≤ x < 0.5 

4 0  ≤ x < 0.05 
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High confidence decrease High confidence increase 

Decrease Increase 
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