
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Molecular
 BioSystems

www.rsc.org/molecularbiosystems

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


  

 

 

 

39x27mm (300 x 300 DPI)  

 

 

Page 1 of 18 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular Biosystems RSCPublishing 

ARTICLE	
  

This	
  journal	
  is	
  ©	
  The	
  Royal	
  Society	
  of	
  Chemistry	
  2013	
   J.	
  Name.,	
  2013,	
  00,	
  1-­‐3	
  |	
  1 	
  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Proteome-wide analysis of human disease mutations 
in short linear motifs: neglected players in cancer? 

Bora Uyar,a,† Robert J. Weatheritt,b,c Holger Dinkel,a Norman E. Davey,a,d and 
Toby J.Gibsona,† 

Disease mutations are traditionally thought to impair protein functionality by disrupting the 
folded globular structure of the proteins. However, 22% of human disease mutations occur in 
natively unstructured segments of proteins known as intrinsically disordered regions (IDRs). 
This therefore implicates defective IDR functionality in various human diseases including 
cancer. The functionality of IDRs is partly attributable to short linear motifs (SLiMs), but it 
remains an open question how much defects in SLiMs contribute to human diseases. A 
proteome-wide comparison of the distribution of missense mutations from disease and non-
disease mutation datasets revealed that, in IDRs, disease mutations are more likely to occur 
within SLiMs than neutral missense mutations. Moreover, compared to neutral missense 
mutations, disease mutations more frequently impact functionally important residues of SLiMs, 
cause changes in the physicochemical properties of SLiMs, and disrupt more SLiM-mediated 
interactions. Analysis of these mutations resulted in a comprehensive list of experimentally 
validated or predicted SLiMs disrupted in disease. Furthermore, this in-depth analysis suggests 
that ‘prostate cancer pathway’ is particularly enriched for proteins with disease-related SLiMs. 
The contribution of mutations in SLiMs to disease may currently appear small when compared 
to mutations in globular domains. However, our analysis of mutations in predicted SLiMs 
suggests that this contribution might be more substantial. Therefore, when analysing the 
functional impact of mutations on proteins, SLiMs in proteins should not be neglected. Our 
results suggest that an increased focus on SLiMs in the coming decades will improve our 
understanding of human diseases and aid in the development of targeted treatments. 
 
 

Introduction 

Alterations of the human genome are the source of many 
diseases including cancer. Such alterations can be rare at 
microscopic levels (e.g. aneuploidies, chromosomal 
rearrangements), frequent at sub-microscopic levels (e.g. 
insertions, deletions, inversions, duplications, copy number 
variations) and most typical as single nucleotide substitutions.1 
Single nucleotide substitutions within the protein coding 
regions of the genome can hit splice sites, shift the reading 
frame of a gene, or introduce stop codons. Substitutions that 
change amino acids of the protein product, known as ‘missense 
mutations’, can have adverse effects on protein structure and 
function. Most of the disease-related missense mutations 
(~78%) are found within ordered/globular, structured regions of 
proteins,2 in particular, regions of low solvent accessibility.3 
Such mutations in the globular domains may impact the 
stability and folding of the domains,4 impair active sites5 or  
alter binding pockets.6 

Many proteins contain functionally important regions that lack 
stable tertiary structures in solution, known as intrinsically 
disordered regions (IDRs).7-12 Although disease-related 
missense mutations are enriched in ordered regions,13 they can 
also have an impact on the functionally important regions of 
IDRs.2, 14 For instance, proteome-wide analyses of disease-
related mutations have shown that gain or loss of post-
translational modification sites, which are generally found in 
IDRs, contribute to human diseases.15-17 Moreover, IDRs are 
enriched in proteins implicated in human diseases,18 for 
instance, 80% of human cancer-associated proteins contain 
extensive IDRs.19  
IDRs are frequently observed in the human proteome. A 
significant proportion of the human proteome is disordered 
(~22% of all the residues) and ~35% of the proteins contain at 
least one disordered segment longer than 30 residues.20 IDR-
containing proteins, often referred to as intrinsically disordered 
proteins (IDPs), are core components of the cellular machinery 
and particularly associated with transcription, translation, signal
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transduction, and the cell cycle.21 Depending on the interaction 
partner and the intra-cellular context, IDPs can take various 
conformations. Thus, IDPs are able to mediate multiple 
signaling events21-24 and serve as hubs in protein-protein 
interaction networks.25 
A key class of protein interaction modules predominantly found 
within IDRs is the short linear motifs (SLiMs),26 which are 
short (3-10 amino acids long) peptide segments of proteins.27 
SLiMs can serve as sites of proteolytic cleavage, post-
translational modification, ligand binding or ligand docking, or 
as signals for sub-cellular targeting or proteasomal 
degradation.28 This wide functional spectrum is achieved by 
recognition of SLiMs by various classes of protein globular 
domains. As opposed to globular domains, SLiMs take up a 
very small sequence space. Consequently, IDRs can be densely 
packed with multiple SLiMs, which can sometimes overlap and 
act as regulatory switches.29, 30  
With the exception of post-translational modification sites,15-17 
the impact of disease-related mutations on SLiMs and the 
association of SLiMs with human diseases have not been 
studied at a proteome-wide scale with a specific focus on 
SLiMs. One of the previous notable studies has provided a 
literature review of the disease-related mutations in SLiMs.31 
Another study has investigated whether mutations in IDRs that 
shift the disordered state of a residue into an ordered state 

(called disorder-to-order transition mutations) are enriched in 
experimentally validated SLiMs.2 However, no significant 
enrichment of disorder-to-order transition mutations was 
observed for disease-related mutations compared to neutral 
missense mutations. In this work, we report a proteome-wide 
analysis of disease-related mutations with a specific focus on 
SLiMs. We utilise the growing knowledge of disease and non-
disease mutations generated by high-throughput sequencing and 
compiled by resources such as the “Catalog of Somatic 
Mutations In Cancer” (COSMIC)32 and the “1000 Genomes 
Project” (1000GP).33 We complement our analysis by mutation 
data annotated in UniProt34 for inherited human diseases 
compiled by “Online Mendelian Inheritance in Man” 
(OMIM).35 By comparing the distribution of disease and non-
disease mutation datasets, we show that disease-related 
mutations are enriched in SLiMs in IDRs and they occur more 
frequently at functionally important residues of SLiMs. Also, in 
the context of protein interaction networks, we show that the 
number of interactions mediated by a SLiM correlates with the 
likelihood that a mutation affecting that SLiM will be disease-
related. Based on these analyses, we report a comprehensive list 
of experimentally validated and predicted disease-related 
SLiMs. This list reveals that ‘KEGG Human prostate cancer 
pathway’ is the pathway most enriched for proteins containing 
cancer-related SLiMs (See the analysis pipeline in Figure 1A).

Results

Comparison of the Mutation Datasets 

In this study, we compare the distribution of inherited disease-
related missense mutations from the OMIM dataset (19,630 
mutated sites in 1,941 proteins) and cancer-associated somatic 
missense mutations from the COSMIC dataset (440,266 
mutated sites in 13,941 proteins) with missense mutations from 
the 1000GP dataset (207,720 mutated sites in 12,755 proteins) 
that are assumed to have a “neutral” impact on protein structure 
and function (See Methods) (Supplementary tables 1-3). The 
majority of the proteins from the disease-related mutation 
datasets contain at least one neutral mutation (81.5% of OMIM 
proteins and 70.8% of COSMIC proteins are shared with 
1000GP dataset) (Figure 1B). Conversely, the overlap between 
the mutated sites from disease-related mutation datasets and 
neutral mutation dataset is low (5.6% of mutated sites from the 
OMIM dataset and 4.0% of mutated sites from the COSMIC 
dataset are shared with the 1000GP dataset) (Figure 1C) (Table 
1). This suggests that there are important differences to be 
observed between the positional distributions of the mutations 
within the proteins shared by different datasets.  

Mutations in Experimentally Validated SLiMs 

The Eukaryotic Linear Motif (ELM) resource28 is a collection 
of experimentally validated SLiMs manually curated from the 
literature for eukaryotic species. The ELM resource, as of 
October 2013, contained a compilation of 1,262 human SLiM 
instances for 726 proteins (Supplementary table 4) classified 

Table 1  - Disease-related mutation datasets (OMIM and COSMIC) and their 
overlap with the neutral mutation dataset (1000GP)  

 Overlap with 1000GP 

Dataset Proteins Mutated 
Sites Proteins Mutated Sites 

1000GP 12755 207720 - - 
OMIM 1941 19630 1580 (81.5%) 1100 (5.6%) 

COSMIC 13941 440266 9873 (70.8%) 17705 (4.0%) 
into 161 classes and 6 functional types. In total, 1,262 SLiMs 
contain 8,470 amino acid residues (average SLiM length is ~6.7 
amino acids). The database of UniProt protein sequences (see 
Methods) contained 19,991 proteins and had a total length of 
11,140,525 amino acids (Supplementary table 5). Thus, 
experimentally validated SLiM instances are found in ~3.6% of 
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the human proteins and they take up ~0.08% of the residues 
within human protein sequences. Thus, the probability of a 
mutation to occur in an experimentally validated SLiM is low. 
After mapping the mutations from the 1000GP, the OMIM, and 
the COSMIC datasets onto the experimentally validated SLiMs, 
we observed that a small proportion of the mutations overlap 
SLiMs. 152 (or 0.073%) of the mutated sites from the 1000GP 
dataset, 53 (or 0.270%) of the mutated sites from the OMIM 
dataset, and 405 (or 0.092%) of the mutated sites from the 
COSMIC dataset overlap the experimentally validated SLiMs. 

Of note, disease-related missense mutation datasets show a 
slightly higher overlap with SLiMs than the neutral missense 
mutation dataset. In order to observe if there is a significant 
difference in the amount of overlap with SLiMs between 
disease-related and neutral missense mutation datasets, a 
pairwise comparison of the datasets (OMIM vs 1000GP and 
COSMIC vs 1000GP) was carried out (Figure 2A). Both the 
mutated sites and the SLiM instances were split into two 
separate bins according to whether they are in ordered or 
disordered regions. When comparing each individual disease-

Figure 1 - Analysis of Mutations in Short Linear Motifs  

A) Pipeline for the analysis of mutations in SLiMs. B) Proteins shared by mutation datasets (OMIM: Inherited Disease Mutations from UniProt, COSMIC: Catalog of 
Somatic Mutations in Cancer, 1000GP: Missense mutations from the 1000 Genomes Project) C) Mutated sites shared by mutation datasets. 

Table 2 – Annotated SLiMs in the ELM resource  

SLiM type Instance Count % 

LIG 582 46.1 
MOD 322 25.5 
DOC 140 11.1 
TRG 115 9.1 
DEG 63 5.0 
CLV 40 3.2 
Total 1262 100.0 

Number of SLiM instances classified into SLiM types. LIG: Ligand binding 
sites; MOD: Post-translational modification sites; DOC: Docking sites; TRG: 
Subcellular targeting signals; DEG: proteosomal degradation motifs; CLV: 
Proteolytic cleavage sites. 

 

related mutation dataset with the 1000GP dataset, only proteins 
that exist in both the respective disease-related mutation dataset 
and the 1000GP dataset were considered. The reason to only 
consider shared proteins was to avoid potential biases in terms 
of the order/disorder content of the non-shared proteins 
between the compared datasets. When considering the ordered 
regions of the proteome, the percentage of the mutated sites 
overlapping the experimentally validated SLiMs was less, 
although not significantly, for both the COSMIC dataset 
(Fisher’s Exact Test, p=0.098) and the OMIM dataset (Fisher’s 
Exact Test, p=0.146) than the 1000GP dataset. This result 
suggests that, in the ordered regions, disease-related mutations 
are not enriched in experimentally validated SLiMs and even 
show a trend towards depletion compared to neutral missense 
mutations, probably because the mutations in the ordered 
regions are more detrimental to the protein when they hit a 
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globular domain than a SLiM that is found in an ordered region. 
On the other hand, when considering only the disordered 
regions, a significant enrichment of disease-related mutated 
sites overlapping the experimentally validated SLiMs was 
observed for both the OMIM (Fisher’s Exact Test, p=4.461x10-

9) and the COSMIC datasets (Fisher’s Exact Test, p=0.008) 
compared to the 1000GP dataset. Thus, a mutation in a 
disordered region is more likely to be disease-associated than to 
have no impact if the amino acid is part of a functional SLiM. It 
is important to note that inherited disease mutations from the 
OMIM dataset show a more direct causality in terms of 
impairing the SLiMs compared to mutations from the COSMIC 
dataset. This may be the consequence of higher quality 

annotation of OMIM mutations, which are experimentally 
validated to contribute to disease. Additionally, the OMIM 
dataset may display an acquisition bias as it contains disease-
related mutations that have led to the discovery of a functional 
SLiM. Conversely, mutations from the COSMIC dataset should 
not suffer from an acquisition bias because a large portion of 
the COSMIC dataset is generated via whole genome 
sequencing of tumour samples.32 Furthermore, the majority of 
mutations in the COSMIC dataset lack experimental evidence 
for a role as cancer-drivers. Consequently, many of these will 
be passenger mutations that don’t contribute to cancer but 
instead accumulate during cell proliferation. 

 Figure 2 – Analysis of Missense Mutations in Experimentally Validated SLiMs  

A) A site-based analysis of the enrichment of disease-related missense mutations (OMIM and COSMIC) compared to neutral missense mutations (1000GP) in ordered 
and disordered regions. For each comparison, SLiMs and mutated sites in the shared proteins between the compared datasets are divided into two groups as ‘disordered’ 
and ‘ordered’. The percentages of mutated sites overlapping the SLiMs in the respective regions are compared between OMIM and 1000GP (first panel) and COSMIC 
and 1000GP (second panel). B) Classification of unique mutations overlapping the SLiMs as ‘only motif-breaking’ (MB), ‘only motif-conserving’ (MC), or ‘both MB 
and MC’ (See Methods).                             
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Motif-Breaking and Motif-Conserving Mutations 

Different positions within a SLiM instance have different 
contributions to the strength of the affinity of binding. The 
complementarity of the SLiM residues to the binding pocket on 
the interaction partner is the major constraint for the definition 
of the motif patterns. These patterns are represented as regular 
expressions that reflect the conservation pattern of each 
position of a motif in both the convergently evolved instances 
in unrelated proteins and evolutionarily conserved instances in 
the orthologous proteins. Thus, the functional impact of a 
mutation in a SLiM depends on the position of the mutated site 
within the SLiM and different positions of SLiMs are 
permissive to mutations at different levels.27 For example, a 
RGD motif (recognised by integrins) is defined exclusively by 
the amino acids Arginine, Glycine, and Aspartic acid in its 
three positions. Any mutation in this sequence can lead to mis-
recognition of the motif by the integrins. Such a mutation, 
which hereby is called a ‘motif-breaking’ mutation, impairs the 
motif functionality. On the other hand, a STAT5 Src Homology 
2 (SH2) domain binding motif (pY[VLTFIC]xx, where ‘x’ can 
be any amino-acid), contains one degenerately defined position 
([VLTFIC] in second position of the motif), where mutations 
between any of the amino-acids including Valine, Leucine, 
Threonine, Phenyl Alanine, Isoleucine, and Cysteine are 
permitted and would not impair the motif functionality. This 
motif also contains two wild-card positions (third and fourth 
position of the motif), where any mutation is permitted. Such 
mutations that either occur at a wild-card position or occur at a 
degenerately defined position within the restriction of the 
permitted amino acids for that position are hereby called 
‘motif-conserving’ mutations. Additionally, a mutation may be 
classified as both ‘motif-breaking’ and ‘motif-conserving’ in 
the cases when the mutation affects overlapping SLiM 
instances (See Methods). In order to observe if mutations that 
hit the experimentally validated SLiMs are differently 
distributed within the SLiMs, the functional impact of the 
mutations were classified and compared. For each mutation 
dataset, the mutations that overlap experimentally validated 
SLiMs were classified as ‘only motif-breaking’, ‘only motif-
conserving’, or ‘both motif-breaking and motif-conserving’ 
(See Table 3). The ratio of mutations exclusively classified as 
‘motif-breaking’ from the 1000GP dataset (33.3%) was smaller 
than both the OMIM dataset (55.2%) and the COSMIC dataset 
(40.2%)(Figure 2B)(Supplementary tables 6-8). The difference 
was significant between the OMIM dataset and the 1000GP 
dataset (Fisher’s Exact Test, p = 0.003), while the difference 
between the COSMIC dataset and the 1000GP dataset was not 
significant (Fisher’s Exact Test, p = 0.299). This result suggests 

that disease-related missense mutations tend to impact 
functionally important residues of experimentally validated 
SLiMs more often than neutral missense mutations. Moreover, 
inherited disease mutations from the OMIM dataset were 
significantly more frequently classified as ‘motif-breaking’ 
compared to the mutations from the COSMIC dataset (Fisher’s 
Exact Test, p = 0.023). This result further emphasises the 
differences between the quality of the OMIM dataset and the 
COSMIC dataset in terms of the direct causality of the 
annotated mutations in human diseases. 

Impact of mutations on the amino-acid properties of SLiMs 

In molecular recognition, physicochemical properties of amino 
acids (e.g. charge, hydropathy, polarity, volume, chemical 
characteristics, hydrogen donor/acceptor availability) at the 
interaction interfaces are important determinants of the nature 
of the interaction. The physicochemical properties of amino 
acids in the SLiMs are reflected in the defined patterns of 
SLiMs.27 For instance, while most of the residues of nuclear 
localization signals favour positively charged amino acids (such 
as Arginine and Lysine), some motif classes such as degrons or 
14-3-3 binding motifs require amino acids that have hydroxyl 
groups in the side chains (such as Serine and Threonine) so that 
the motif can be regulated via phosphorylation. Amino acid 
substitutions due to missense mutations may cause changes in 
the physicochemical properties of a SLiM and lead to defects in 
molecular recognition.  For instance, R105A and R106S 
mutations in the nuclear localization signal of Ceramide kinase-
like protein cause a shift from positively charged Arginine 
residues to uncharged Alanine and Serine residues, 
respectively. These mutations cause defects in the nuclear 
import of the protein and are implicated in Retinitis pigmentosa 
type 26.36, 37 In order to observe what changes in the 
physicochemical properties of SLiM residues are unfavourable, 
frequency of changes of these properties caused by mutations 
were compared between disease-related missense mutations and 
neutral missense mutations (See Methods) (Supplementary 
figure 1). Compared to the neutral missense mutations from the 
1000GP dataset, inherited disease mutations (OMIM dataset) 
changed the amino acid properties of SLiMs more frequently, 
consistently across all types of properties in comparison 
(charge, hydropathy, polarity, volume, chemical characteristics, 
hydrogen donor/acceptor availability). For three of the six 
properties in comparison, OMIM mutations caused changes in 
the physicochemical properties of SLiM residues significantly 
more frequently than the 1000GP mutations: hydropathy (76% 
of OMIM mutations; 53% of 1000GP mutations; p = 0.024); 
hydrogen donor/acceptor availability (76% of OMIM 
mutations; 62% of 1000GP mutations; p = 0.039); and side 
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chain chemistry (85% of OMIM mutations and 70% of 1000GP 
mutations; p = 0.015). On the other hand, no significant 
differences were observed between the COSMIC dataset and 
the 1000GP dataset in terms of the frequency of transitions in 
the physicochemical properties of SLiM residues.  This result 
suggests that inherited disease mutations from the OMIM 
dataset have a more evident impact on the physicochemical 
properties of SLiM residues than cancer related mutations from 
the COSMIC dataset.  
 
To further elucidate the specific kinds of unfavourable changes 
of the physicochemical properties of SLiM residues, the 
frequencies of each type of transitions were compared between 
the disease-related and neutral mutation datasets. For each class 
of physicochemical property (charge, hydropathy, polarity, 
volume, chemical characteristics, hydrogen donor/acceptor 
availability), amino acids were grouped according to subclasses 
of each property (for example, based on the hydropathy 
properties, amino acids were grouped into three subclasses: 
hydrophobic, hydrophilic, and neutral) (See Methods). Between 
the OMIM and the 1000GP datasets, none of the transitions 
among hydropathy properties (hydrophobic, hydrophilic, 
neutral) and none of the transitions among polarity properties 
(non-polar and polar) were significantly different. In terms of 
transitions among charge properties (positively charged, 
negatively charged, uncharged), OMIM mutations significantly 
more frequently substituted uncharged residues to positively 
charged residues (p = 0.008). When amino acids were grouped 
based on their volumes, OMIM mutations changed very small 
residues in SLiMs to very large residues significantly more 
often than the 1000GP mutations (p = 0.002). Interestingly, the 
OMIM mutations substituted the wild type residues with mutant 
residues that have a larger volume more often than the 1000GP 
mutations (57% of the OMIM mutations and 41% of the 
1000GP mutations caused an increase in the volume of the 
SLiM residues; p=0.035).  Furthermore, the OMIM dataset was 
enriched for mutations that changed SLiM residues which had 
neither hydrogen donor nor hydrogen acceptor atoms to 
residues with hydrogen donor atoms (p = 0.009). Finally, the 
OMIM dataset was enriched for transitions in the side chain 
chemistry such as hydroxyl to aromatic (p = 0.009), basic to 
hydroxyl (p = 0.025), and aliphatic to basic (p = 0.022) 
(Supplementary figure 2). Between the COSMIC dataset and 
the 1000GP dataset, as observed for the comparison of the 
OMIM dataset and the 1000GP dataset, significant differences 
were observed for transitions from very small to very large 
residues (p = 0.025) and from hydroxyl to aromatic side chain 
chemistries (p = 0.04). However, for the rest of the transitions, 
no significantly different transitions of physicochemical 
properties of SLiM residues were observed between the 
COSMIC dataset and the 1000GP dataset (Supplementary 
figure 3).  

Recurrently Mutated SLiMs in Human Diseases 

According to the available disease-related missense mutation 
datasets, the most recurrently mutated experimentally validated 
SLiM is the conserved proteasomal degradation motif 
(“degron”) in the highly disordered N-terminal region of β-
Catenin (Figure 3A). This motif (DEG_SCF_TRCP1_1, 
32DPSGIHPS37) mediates binding to the WD40 repeat domain of 
the beta-TRCP subunit of the SCF-betaTRCP E3 ubiquitin 
ligase complex (Figure 3B). In the COSMIC dataset, there are 
1,709 mutation entries for this motif derived from 1,692 unique 
samples based on 256 different publications. Each of the six 
positions of the motif contains at least one mutation (a total of 
33 unique mutations). These 1,692 samples are from 27 
primary tumour sites (454 samples from the liver and 271 
samples from the central nervous system as the top two primary 
sites) with a diverse set of 26 primary histology descriptions 
(908 of the samples classified as carcinoma and 269 of them 
classified as medulloblastoma as the top two primary histology 
types) (Figure 3C). Of note, all of the most commonly 
occurring mutations of this SLiM (D32Y, S33F, S33C, G34R, 
S37F, S37C) occur on functionally important residues and are 
categorised as ‘motif-breaking’ mutations. Other examples of 
recurrently mutated experimentally validated SLiMs include 
Cellular Tumour Antigen p53’s nuclear localisation signal 
(305KRALPNNTSSSPQPKKKPL323),38 the 14-3-3 binding 
motif of Raf1 (256RSTpSTP261),39 and the VHL degron motif of 
Endothelial PAS domain containing protein 1 (HIF2α) 
(529LAPYIOHPMDGEDFQR542)40 (Supplementary table 9).  

Mutations in the Predicted SLiMs 

The human proteome has the capacity to contain millions of 
SLiM instances41. Manual annotation of SLiMs is an accurate 
but slow process, and therefore, should be supported by 
computational prediction tools. SLiM prediction is a 
computationally challenging problem because they are short 
and often degenerately defined (allowing physico-chemically 
similar substitutions at certain positions). So, particularly for 
the SLiM classes that have high occurrence probability, a 
regular expression search in the proteome results in many false-
positive motif instances. However, predictions can be improved 
by filtering hits in inaccessible regions and by retaining only 
well conserved instances, which are strategies utilised by the 
SLiMSearch42 and SlimPrints43 motif discovery tools.  
Based on our prior results, if a candidate SLiM in a disordered 
region is truly functional, a mutation in the SLiM is more likely 
to be disease-associated. Likewise, if a mutation in a predicted 
SLiM contributes to disease, the SLiM is more likely to be 
functional than a random peptide that matches the SLiM 
pattern. A disease-related mutation in a SLiM may disrupt a 
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Table 3  - Motif-breaking and motif-conserving mutations in experimentally validated SLiM instances 

 Only Motif-breaking  Only Motif-Conserving  Both 
Dataset SLiMs with 

Mutations 
Mutations in 

SLiMs 
N % N % N % 

1000GP 144 156 52 33.3% 100 64.1% 4 2.6% 
OMIM 30 67 37 55.2% 27 40.3% 3 4.5% 

COSMIC 299 498 200 40.2% 285 57.2% 13 2.6% 

protein-protein interaction, which may be important for 
signaling and regulation. Based on this logic, we hypothesised, 
if a given list of predicted SLiMs contains a reasonable number 
of truly functional motifs, we should observe an enrichment of 
disease-related mutations in those SLiMs compared to the 

background. For this purpose, we predicted SLiMs in 
disordered segments (IUPred score > 0.5) of the human 
proteome and compared the level of enrichment/depletion of 
disease-related mutations against the background (Figure 4A, 
4B).	
  

 Figure 3 - Phospho-degron motif of β-Catenin  

A) Structure (PDB:1P22) of the β-TrCP1-Skp1-β-Catenin complex44 generated with Chimera.45 Green: Skp1; Orange: beta-TrCP1; Black: β-Catenin phospho-degron 
motif (DSGx{2,3}[ST], 32DpSGIHpS37). The degron motif binds the WD40 repeat domain of β-TrCP1. B,C,D) Classification of 1,709 entries in the COSMIC dataset 
that reports 33 unique missense mutations (B) derived from 1,692 different samples taken from 27 unique primary sites (C) with 26 unique primary histology 
descriptions (D).  
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Missense mutations from the 1000GP dataset were significantly 
more frequently found in predicted SLiMs that had poor 
relative conservation scores (RLC score < 0). On the other 
hand, a significant enrichment of disease-related mutations was 
observed for the predicted SLiMs that had positive relative 
local conservation scores (RLC > 0). This result adds support to 
our previous findings that disease-related missense mutations 
occur more frequently in SLiMs in the IDRs than neutral 
missense mutations. Furthermore, in this set of predicted SLiM 
instances using stringent disorder and RLC scores (See 

Methods) (Supplementary table 10), compared to 
experimentally validated SLiMs, there were ~63 fold more 
candidate SLiM instances with mutations from the COSMIC 
dataset (18,990 predicted SLiM instances with mutations) and 
~13 fold more candidate SLiM instances with mutations from 
the OMIM dataset (403 predicted SLiM instances with 
mutations). These predicted SLiM instances containing disease-
related mutations can serve as a strong list of candidates, which 
may be of interest to other researchers for follow-up studies 
(Supplementary table 11). 

 Figure 4 – Mutation Enrichment Analysis in Predicted SLiM instances  

Frequencies of mutated sites within predicted SLiM instances (IUPred = 0.5) at different Relative Local Conservation score intervals are compared. RLC scores range 
from -2.5 to 2. SLiMs that are relatively more conserved than the surrounding regions have a RLC score above zero. A) Comparison between OMIM and 1000GP 
(Green stars represent enrichment of 1000GP mutations; Red stars represent enrichment of OMIM mutations) and B) COSMIC and 1000GP (Green stars represent 
enrichment of 1000GP mutations; Red stars represent enrichment of COSMIC mutations). 

Mutated SLiMs in Protein-Protein Interaction (PPI) networks 

In scale-free networks such as PPI networks, defects in the hubs 
have more deleterious effects to the network compared to 
defects in non-hubs.46 A study has demonstrated that, for yeast, 
deletion of hub proteins imposes a higher risk of lethality to the 
organism.47 Thus, the more interactions a protein has, the worse 
the consequences for the network will be when the protein loses 
its interactions with the surrounding proteins. SLiMs are 
important mediators of protein-protein interactions and SLiM 
mediated interactions can be lost due to mutations in the 
SLiMs. For instance, mutations in the 14-3-3-binding motif of 
Raf1 abrogate its interaction with 14-3-3 proteins in Noonan 
and Leopard Syndromes.48 Although examples exist of diseases 
caused by the known loss of protein-protein interactions due to 
mutations in the SLiMs, we wanted to observe whether there is 

a trend at a proteome-wide scale such that the more interactions 
a SLiM mediates, the higher is their likelihood to be associated 
to disease. If so, disease-related mutations should impact more 
SLiM mediated interactions than should neutral mutations. In 
order to make a comparison, using the predicted list of SLiMs, 
a motif-mediated PPI network was constructed (See Methods) 
(Figure 5A) (Supplementary table 12). Then, for each mutated 
site in the disordered regions of the proteome (IUPred  = 0.5), 
the total number of protein-protein interactions mediated by the 
predicted SLiMs that overlap the mutated site was counted. The 
number of interactions for the mutated sites, which don’t 
overlap any of the predicted SLiMs involved in the interaction 
network, was counted as zero (Supplementary tables 13-15). 
The number of SLiM-mediated interactions impacted by 
disease-related mutations was higher than that of neutral 
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mutations (Figure 5B) for both COSMIC (p < 1.276e-12, 
Wilcoxon Rank-sum Test) and OMIM  (p < 1.628e-07, 
Wilcoxon Rank-sum Test). This result suggests that the number 
of interactions a SLiM mediates influences the likelihood that a 
mutation in a SLiM is disease-related. 

Pathways enriched with disease-related SLiM-containing 
proteins 

Some cellular pathways may be more dependent on motif 
functionality than others. In order to observe such differences 
between pathways, we looked for the pathways that are most 
enriched with predicted SLiMs that contain motif-breaking 
mutations from the COSMIC dataset (Table 4). Proteins 
containing disease-related SLiMs were most enriched in the 
‘KEGG human prostate cancer pathway’ (Figure 6A). In this 
pathway, 26 proteins had at least one predicted SLiM with a 
motif-breaking mutation (Supplementary table 16). A manual 
literature search revealed that, of these 26 proteins, seven 
proteins had at least one predicted disease-related SLiM that 
was experimentally validated and already annotated in the ELM 

resource; nine proteins had at least one predicted disease-
related SLiM with experimental validation, but was not  
annotated in the ELM resource; five proteins had at least one 
predicted SLiM that neither had experimental validation nor 
was annotated in the ELM resource but showed promising 
evidence of functionality; and five of them lacked mutated 
predicted SLiMs with any experimental validation or promising 
evidence that suggested functionality of the SLiM (See 
Methods). 

Table 4 – DAVID-KEGG Pathway enrichment Analysis Results (FDR < 0.05

 
Figure 5 - Analysis of Mutations in Predicted SLiM-Domain Interaction Network  

A) Pipeline of SLiM-Domain interaction network construction. B) Distribution of the number of interactions (x axis) versus number of mutated sites (normalized per 
10,000 mutated sites – y axis) (See Methods). The relative frequency distributions (number of interactions per 10,000 mutated sites) of each mutation dataset are plotted 
using a blue dashed line (the OMIM dataset), a green dashed line (the COSMIC dataset), and a straight red line (the 1000GP dataset). 

For some of the predicted SLiMs with motif-breaking 
mutations in the ‘KEGG human prostate cancer pathway’, 
supporting experimental evidence of function can already be 
found in the literature and annotated in the ELM resource. For 
instance, the stability of IκBα, an inhibitor of NFκB, is 
regulated via a phospho-degron motif (31DpSGLDpS36). 
Regulation of NFκB activation via modification of the stability 
of IκBα is crucial as NFκB signals the transcription of genes 
involved in a variety of cellular processes including immune 
response, inflammation, differentiation, and apoptosis.49 In 
patients with anhidrotic ectodermal dysplasia with T cell 

immunodeficiency, a S32I mutation in IκBα protein has been 
found.50 This mutation disrupts the phosphorylation of the IκBα 
degron motif, thus the protein cannot be degraded and 
ultimately NFκB cannot be activated. Another motif-breaking 
mutation (D31N) was found in a breast cancer sample 
(COSMIC). This mutation may impair regulation of NFκB, and 
may thus be detrimental to a variety of cellular processes.  For 
some of the SLiMs that were not annotated in the ELM 
resource, we could still find experimental validation in the 
literature for their functionality. For instance, human TCF3, a 
transcription factor that acts as an activator of Wnt signaling in 

KEGG Pathway Number of 
Proteins 

p-value FDR 

hsa05215: Prostate cancer 26 2.54E-06 0.003 

hsa05213: Endometrial cancer 18 1.17E-05 0.014 

hsa04510: Focal adhesion 42 1.68E-05 0.020 

hsa03040: Spliceosome 30 2.98E-05 0.036 
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the presence of β-Catenin, contains a C-terminal-binding 
protein 1 (CtBP)-binding motif (502PLSLT506). In the absence 
of β-Catenin, TCF3 binds to CtBP co-repressor and it acts as a 
transcriptional repressor.51, 52 A motif-breaking S504P 

mutation, found in a large intestine carcinoma sample 
(COSMIC) may be responsible for the loss of regulation 
imposed by CtBP for the repressor activity of TCF3. 

Figure 6 - Analysis of predicted SLiMs with motif-breaking mutations in the KEGG Human Prostate Cancer Pathway 

A) KEGG Human Prostate Cancer Pathway (KEGG id: hsa0521553). Proteins highlighted with orange in the pathway contain at least one predicted SLiM that has a 
motif-breaking mutation (COSMIC). B) Sequence features of Retinoblastoma-associated protein-1 (RB1) (Phosphorylation sites from Phospho.ELM,54 domain 
predictions from SMART55 and PFAM,56 and order/disorder profile predictions from GlobPlot57 and IUPred58). A potentially functional SH2-binding motif 
(606pYLSP609) with a multiple sequence alignment of orthologs from representative model organisms is highlighted in black. The alignment is generated by ClustalW59 
and visualized by JalView.60 

Some mutated SLiMs in this pathway are potentially functional, 
but require further experiments to characterise the motif’s 

functionality and the functional impact of a mutation to the 
motif. For instance, Retinoblastoma-associated protein (RB1) 
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has a predicted SH2 domain-binding site (606pYLSP609), which 
is conserved in a disordered region of the RB1 protein (Figure 
6B). There are two cancer-associated motif-breaking mutations 
in this motif: Y606C and L607P (COSMIC). As a 
complementary evidence for the functionality of this putative 
motif, RB1’s Y606 is a known phosphorylation site both in 
humans61 and mice (corresponding phosphorylation site 
Y599).62 
Moreover, there are several known SH2 domain-containing 
binding partners of RB1: tyrosine-protein kinase ABL1,63, 64 
tyrosine-protein kinase FRK,65 and Signal Transducer and 
Activator of Transcription 3 (STAT3).66 Among these proteins, 
STAT3 is known to directly bind to RB1 on DNA.66 
Cumulatively, the available evidence suggests that this motif is 
a promising SH2-binding site that might be important for the 
regulatory functions of the RB1 protein.  
Taken together, analysis of disease-related motif-breaking 
mutations in predicted SLiMs can lead us to potentially 
functional SLiMs. This in turn can improve our understanding 
of a protein’s functionality in disease pathways. Of note, our 
analysis of mutated SLiMs in ‘KEGG human prostate cancer 
pathway’ suggests that the combinatorial impact of SLiM 
mutations could be extensive if they simultaneously 
malfunctioned. This finding underlies the necessity to 
understand the defects in SLiM functionality to better 
understand disease pathways. 

Discussion 

Structure-centric analysis of mutations 

The now obsolete dogma of structural biology, ‘structure 
determines the function of a protein’, has historically biased the 
analyses of the impact of disease-related mutations on proteins 
toward folded globular domains. Researchers have tried to 
explain how mutations impact the properties of proteins that 
contribute to structural order of proteins. Similarly, algorithms 
that are designed to classify mutations based on their impact 
also have carried this bias for structured proteins14, 67. In 
molecular recognition, while ordered proteins are used mostly 
for catalysis and associated enzymatic processes, disordered 
proteins are mainly used for signaling and regulation.11, 68 
Cancer arises from alterations preferentially in the cellular 
signaling pathways.69 Such alterations can occur due to mis-
recognition- or mis-signaling-based defects in IDPs.23, 70 It has 
been postulated that point mutations in IDRs may disrupt 
SLiMs and contribute to mis-recognition- or mis-signaling-
based diseases.31, 71 In fact, the diverse functionality conferred 
by SLiMs onto IDRs is concomitantly impaired in a diverse set 
of human diseases as a result of mutations. For instance, the 
most well studied SLiM with cancer-associated mutations, the 
phospho-degron DSGxxS motif of β-Catenin (32DpSGIHpS37), 
is required for the regulation of the stability of β-Catenin, 
which is a key protein of the Wnt signaling pathway and is 
responsible for activation of Wnt-responsive genes for 
regulation of cell adhesion.72 Mutations in this phospho-degron 

motif lead to accumulation of β-Catenin, resulting in 
constitutive activation of Wnt-responsive genes, which can 
drive various types of cancers.73, 74 Other ways in which SLiM 
mutations contribute to disease include: altering the sub-cellular 
localisation of the protein (e.g. the ciliary trafficking motif of 
Rhodopsin is mutated in Autosomal Dominant Retinitis 
Pigmentosa75-77); defective proteolytic cleavage (e.g. furin 
cleavage site of the Insulin receptor is mutated in insulin 
resistant diabetes78); and/or impairing post-translational 
modification sites (e.g. mutation of the sumoylation site of 
Microphthalmia-associated transcription factor (MITF) causes a 
five-fold increase in the risk of developing melanoma and renal 
cell carcinoma79, 80) (See Supplementary file 22 for more 
examples of SLiM functionality disrupted in diseases). Thus, 
bioinformatics tools that classify the functional impact of 
mutations should take into account the fact that mutations may 
impair functions of proteins without impairing their structural 
properties such as folding. The proteome-wide analysis of 
mutated SLiMs presented in this study stresses that these 
occurrences are not isolated events and, as has been 
demonstrated before for post-translational modification sites,15, 

16 loss of SLiM functionality due to mutations can be a 
prevalent molecular mechanism that may be used to explain the 
underlying causes of human diseases.  

Implications for SLiM prediction 

As argued above, the tools that predict the functional impact of 
mutations can/should benefit from understanding linear motif 
biology. In the same way, SLiM prediction tools can benefit 
from analyses of mutations in motifs. SLiM prediction 
algorithms have utilised a variety of parameters to improve 
prediction accuracy. These parameters include intrinsic 
disorder,26 evolutionary conservation,43 surface accessibility,81 
protein-protein interactions,82 and GO term enrichment.83 In 
this study, when compared to neutral mutations, an enrichment 
of disease-related mutations was observed for the 
experimentally validated SLiMs in disordered regions. Similar 
results could be reproduced for SLiMs predicted in relatively 
conserved segments of disordered regions. These results 
suggest that analyses of mutations in the IDRs could suggest 
the presence of potentially functional SLiMs. Therefore, 
mutation analysis should be incorporated into prediction 
pipelines in order to improve confidence in the predictions. 
Moreover, we have observed that the inherited disease-related 
mutations tend to occur on functionally important residues and 
break the defined pattern of experimentally validated SLiMs 
more often than neutral mutations. This finding suggests that, 
as a complementary evidence to evolutionary conservation, the 
distribution of the disease-causing and neutral missense 
mutations within SLiMs could be used to re-define, fine-tune, 
and improve the existing regular expressions that are used to 
define SLiM classes.  

Implications for drug design and treatment strategies 

SLiMs have been studied in the context of deregulated 
expression of IDPs84 and in the context of infectious diseases 
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caused by pathogens abusing SLiMs.31, 85 Moreover, molecular 
compounds and drugs designed to target SLiM-mediated 
interactions have shown promising results for targeted 
treatment strategies.31, 86-89 In this work, by analysing the 
impact of disease-related mutations on SLiMs, we have 
explored an additional important aspect that emphasises the 
therapeutic importance of SLiMs.  
SLiMs can be deleterious to cells if used aberrantly, for 
instance, in the context of deregulated expression of IDPs.84 
Amplified human oncoproteins are enriched with SLiMs and 
IDRs, and they are often involved in protein-protein 
interactions.90 As an illustration, over-expression of the murine 
double minute 2 (MDM2) protein, an E3 ubiquitin ligase, 
causes a decrease in the apoptotic activities of p53 and 
promotes tumourigenesis,91 because binding of MDM2 to a 
FxxxWxxL motif in p53 promotes the proteasomal degradation 
of p53.92 Another aspect of SLiMs that has highlighted their 
therapeutic relevance is the fact that SLiM-binding pockets are 
targets of bacterial, fungal, or viral pathogens.31, 85 Through 
SLiM mimicry, pathogens gain access to cellular signaling and 
regulation pathways of the host, thus, exploit SLiM 
functionality to invade the host organism and create an 
environment that allows the pathogens to replicate and 
proliferate.31, 85 For instance, a variety of DNA viruses replicate 
their genomes by utilising the Retinoblastoma-associated 
protein-binding motifs (LxCxE) to force the host cell cycle to 
enter the S phase and activate the DNA replication machinery.93 
In short, imbalanced expression of IDPs containing SLiMs and 
pathogenic mimicry of the SLiMs of the host cell illustrate two 
important aspects of the therapeutic relevance of SLiMs.  
In this work, with an analysis of disease-related mutations in 
the experimentally validated and predicted SLiMs, we have 
explored a third aspect of SLiMs that emphasises their 
therapeutic importance. SLiM-mediated interaction interfaces 
have already begun to serve as non-classical targets for drug 
development efforts.31 Currently, two of the most promising 
drugs designed to target SLiM-mediated interactions are 
Nutlins (competing for binding to p53-binding site on MDM2) 
and Cilengitide (mimicking integrin-binding RGD peptides). 
Nutlins are already in clinical trials for retinoblastoma86 and 
liposarcoma,87 and Cilengitide has entered Phase III clinical 
trials for glioblastomas.88 Considering the successfully 
developed drugs that specifically target SLiM-mediated 
interactions, this may be a potentially high-promising avenue of 
investigation. Our analysis of mutations in SLiMs in the context 
of PPI networks suggests that there are many more potential 
targets within the proteome. Treatment strategies involving 
drugs that can target such interactions will possibly show an 
increase in the near future.  

Conclusions 

We observed significant differences in the distribution of 
mutations in SLiMs between datasets of disease-related and 
neutral mutations. In particular, an enrichment of disease-
related mutations in SLiMs compared to the background for 

both experimentally validated and predicted SLiMs was 
observed. These studies have allowed us to compile the most 
comprehensive list of disease-related SLiMs. When analysing 
the functional impact of mutations on proteins, the presence of 
SLiMs in the protein sequence should not be neglected. As 
more and more SLiMs are discovered and more genomes are 
sequenced, we’ll have a clearer picture of the roles of SLiMs in 
human diseases. In the next decade, an increase is expected in 
the number of studies that will reveal different mechanisms of 
how SLiMs are associated with human diseases and different 
treatment strategies. 

Methods 

Datasets 

Protein Sequences. UniProt Reference human proteome was 
downloaded (July, 2012). Using the protocol described for 
SLiMSearch motif prediction tool,42 19,991 protein sequences, 
for which enough number of orthologs could be detected to 
calculate a multiple alignment, were kept (Supplementary table 
5). 
Experimentally validated SLiMs. The Eukaryotic Linear 
Motif (ELM) resource28 is a collection of manually annotated, 
experimentally validated SLiMs curated from the literature for 
eukaryotic species. SLiM instances and classes annotated by 
the ELM resource were downloaded (October, 2013). Only 
instances that are experimentally proven to be functional 
(annotated as ‘True Positive’) for Homo sapiens were kept. 
This set of SLiM instances comprised of 1,262 individual 
instances categorised into 161 classes of SLiMs in a total of 
726 proteins (Supplementary table 4). 
 
Mutation Datasets. Inherited disease mutations in humans are 
from UniProt annotations34 of Online Mendelian Inheritance in 
Man (OMIM)35 mutations with 1,941 proteins containing at 
least one disease-associated mutation at 19,630 unique sites 
(Supplementary table 1). This dataset consists of 
experimentally validated missense mutations that contribute to 
inherited diseases, so it serves as a high quality dataset. 
Inherited disease mutations were downloaded from UniProt 
(http://www.uniprot.org/docs/humsavar.txt). Only mutations 
that were associated to ‘Disease’ were kept. ‘Unclassified’ 
mutations or ‘Polymorphisms’ were excluded.  
The second disease-related missense mutation dataset is 
downloaded from the Catalog of Somatic Mutations in Cancer 
(COSMIC).32 Missense mutations in the COSMIC dataset are 
all derived from tumour samples. However, mutations found in 
tumour samples are not always proven to contribute to cancer.94 
So, the COSMIC dataset is larger, but, in terms of experimental 
evidence for each reported mutation, has lower quality than the 
OMIM dataset. Somatic cancer-associated missense mutations 
of the COSMIC database version 66 were exported using 
COSMICMart  (http://cancer.sanger.ac.uk/biomart/martview/), 
for genes that were mapped to UniProt accession numbers. The 
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COSMIC dataset consists of 13,941 proteins with 440,266 
unique mutated sites (Supplementary table 2). 
We used the 1000GP dataset as the control dataset to 
understand the background distribution of neutral missense 
mutations in the proteome. This dataset consisted of 207,720 
mutated sites in 12,755 proteins (Supplementary table 3). The 
functional impact of the missense mutations from the 1000GP 
dataset is individually weak, but the collective effect of 
multiple mutations may have a bigger impact.95 Still, the 
majority of 1000GP mutations are polymorphisms with an 
allele frequency of more than 1%.33 Thus the majority, if not 
all, of the mutations from the 1000GP dataset are presumably 
commonly found variants in the population. On the other hand, 
mutations reported from disease-related mutation datasets are 
either known to be causal for disease or are found in disease 
samples (e.g. tumour tissue sequencing data from the COSMIC 
database). Therefore, as the 1000GP dataset is more likely to 
contain neutral mutations, it serves as a good control dataset to 
compare with disease-related mutation datasets. Neutral 
missense mutations, i.e. polymorphisms, published by the 1000 
Genome Project Consortium were used based on the ID 
mapping to UniProt accession numbers in the SQL dump file 
generated by the SNPdbe database.96 
 
PPI Dataset. The non-redundant set of human protein-protein 
interactions were downloaded from iRefWeb (November, 
2013),97 a meta-database of protein-protein interactions that 
combine data from various PPI databases such as BIND,98 
BioGRID,99 CORUM,100 DIP,101 IntAct,102 HPRD,103 MINT,104 
MPact,105 MPPI,106 OPHID.107 Only binary interactions of those 
proteins that had UniProt accession numbers were kept 
(Supplementary table 17).  

Predictions 

Disorder Score Prediction. Residue-based disorder tendencies 
of proteins were predicted using IUPred binaries58, 108 using 
default profile ‘LONG’ considering sequential neighbourhood 
of 100 residues (Supplementary table 18). IUPred disorder 
scores above 0.5 denote regions of the proteins that have 95% 
likelihood to be disordered.  
 
Relative Local Conservation (RLC) Score Prediction. Per-
residue based Relative Local Conservation Scores (RLC) were 
calculated by the SLiMSearch motif discovery tool42 
(Supplementary table 19) RLC scores above zero denote 
regions of the proteins that are more conserved than the 
surrounding regions. RLC scores below zero denote regions of 
the proteins that are less conserved than the surrounding 
regions.  
 
Motif Prediction. SLiM instances for all proteins (19,991 
protein sequences in the sequence dataset) were predicted by 
performing a regular expression search on the protein 
sequences using the motif definitions of 202 SLiM classes. 
Each individual SLiM instance was assigned start and end 
coordinates with respect to the matched sequence segment of 

the protein. Also, each SLiM instance was assigned disorder 
and RLC scores by averaging the corresponding scores of each 
residue of the SLiM instance. For filtering the candidate 
SLiMs, an IUPred disorder score cut-off of 0.5 was applied.58 
As a second filtering score, based on the results of the mutation 
enrichment analysis in experimentally defined SLiMs, a 
stringent RLC score cut-off of 0.5 was chosen. This set of 
predicted SLiMs consists of 101,630 predicted SLiM instances 
from 177 SLiM classes in 10,243 proteins (Supplementary table 
10). These SLiMs take up 575,197 residues (5.2%) of the 
proteome, which is ~68 fold more than the experimentally 
validated SLiMs.  
 
Protein Domain Prediction. Protein domains were detected by 
scanning the protein sequences using the HMMER (v3.0) 
toolset109 with the PFAM profile Hidden Markov Models 
(HMMs)56 (Supplementary table 20).   
 
SLiM-mediated Interactome Construction. Known pairs of 
PFAM domains and SLiM classes that can bind to each other 
were downloaded from ELM resource 
(http://elm.eu.org/infos/browse_elm_interactiondomains.html) 
(Supplementary table 21). All protein sequences were scanned 
for PFAM domains and SLiMs as described above. Each binary 
protein interaction in the PPI dataset was queried for known 
interacting PFAM domains and SLiM classes. An edge in the 
SLiM-mediated interactome was created for each pair of 
interacting proteins if one of the proteins contained a SLiM 
instance that can be recognised by a PFAM domain in its 
partner (Figure 5A).  

Statistics 

All the scripts for the analyses were written in Python 2.7.3 
(http://www.python.org) and the statistics were calculated using 
R (http://www.r-project.org/).110 The plots in Figure 2, Figure 
4, Figure 5B, and Supplementary figures 1-3 were drawn using 
ggplot2 library (http://ggplot2.org/).111  
 
Enrichment Analysis of Mutated Sites in Experimentally 
Validated SLiMs. A pairwise comparison of the distribution of 
the missense mutations was carried out between a) the OMIM 
dataset and the 1000GP dataset b) the COSMIC dataset and the 
1000GP dataset. For each pairwise comparison, proteins that 
are not shared by the compared datasets were excluded. 
Moreover, proteins that don’t contain any experimentally 
validated SLiM instances were also excluded. In order to avoid 
biases for well-studied SLiM instances, a mutated site was 
counted only once whether or not multiple mutations are 
reported for that site. The mutated sites and SLiM instances in 
the compared datasets were divided into two bins as 
‘disordered’ or ‘ordered’. The classification was done based on 
the average IUPred disorder score of the SLiMs, and the 
individual IUPred score of the mutated sites. SLiMs or mutated 
sites that have an IUPred score above 0.5 were categorised as 
‘disordered’ and the rest were categorised as ‘ordered’. Mutated 
sites in ‘ordered’ or ‘disordered’ categories were further 
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divided into two more categories as ‘within motif’ if the 
mutated site overlaps any of the SLiM instances, and ‘outside 
motif’ if the mutated site does not overlap any of the SLiM 
instances. For each category of ‘disordered’ or ‘ordered’ 
regions, a 2x2 contingency table (two rows for the mutation 
datasets and two columns for the category of overlap with 
SLiMs, either ‘within motif’ or ‘outside motif’) was created. To 
test if there is a significant difference in the percentage of the 
mutated sites overlapping the SLiMs in the corresponding 
categories, a Fisher’s Exact Test was applied using the 
contingency tables created specifically for the pairwise 
comparison of the mutation datasets.   
 
Enrichment Analysis of Mutated Sites in Predicted SLiMs. 
A pairwise comparison of the distribution of the missense 
mutations was carried out between a) the OMIM dataset and the 
1000GP dataset b) the COSMIC dataset and the 1000GP 
dataset by considering only the shared proteins between the 
compared datasets as described for the ‘Enrichment Analysis of 
Mutated Sites in Experimentally Validated SLiMs’. Again, 
each mutated site was counted only once regardless of the 
number of unique mutations in that mutated site. The predicted 
SLiMs (See Methods – ‘Motif Prediction’) and the mutated 
sites were grouped based on their Relative Local Conservation 
(RLC) scores. For each of these groups, a 2x2 contingency 
table was created (two rows for the categorisation of mutated 
sites as ‘within motif’ and ‘outside motif’ and two columns for 
the two datasets that were compared) and a Fisher’s Exact Test 
was applied to see if there is any significant difference between 
the compared datasets in terms of the frequency of the mutated 
sites overlapping the SLiMs.  
 
Classification of Unique Mutations overlapping 
experimentally validated SLiMs. Each unique mutation 
overlapping the SLiMs from each mutation dataset are 
classified as ‘only motif-breaking’, ‘only motif-conserving’, 
and ‘both motif-breaking and motif-conserving’. A mutation is 
classified as ‘motif-breaking’ if the mutation changes the 
sequence of a SLiM instance in such a way that the regular 
expression pattern that defines the SLiM no longer matches the 
mutated sequence. On the other hand, if the mutated sequence 
still matches the regular expression pattern of the SLiM, the 
mutation is classified as ‘motif-conserving’. As the SLiM 
instances may be overlapping each other, some mutations may 
overlap multiple SLiM instances. Depending on the pattern of 
the different overlapping SLiMs, a mutation that overlaps both 
SLiMs may be classified as ‘motif-breaking’ for one SLiM 
instance or ‘motif-conserving’ for another SLiM instance. Such 
mutations are classified as ‘both motif-breaking and motif-
conserving’. In order to test if there is a significant difference in 
the frequency of mutations to be classified as ‘motif-breaking’ 
in different mutation datasets, a pairwise comparison of 
mutation datasets was carried out. For each comparison (e.g. 
COSMIC vs 1000GP), a 3x2 contingency table was created. 
The table consisted of two rows for the compared mutation 
datasets and three columns for the sizes of the mutually 

exclusive categories of mutations as described above. Fisher’s 
Exact test was applied to see if there was a significant 
difference between the datasets in terms of the frequency of 
mutations in different categories.  
 
Analysis of the impact of mutations on the amino-acid 
properties of SLiMs. The twenty main amino acids found in 
the human proteome were classified for each of the six main 
physicochemical properties including charge, hydropathy, 
polarity, volume, chemical characteristics, and hydrogen 
donor/acceptor availability.112 For the ‘charge’ property, amino 
acids were grouped as positively charged (R, H, K), negatively 
charged (D, E), or uncharged (A, N, C, Q, G, I, L, M, F, P, S, T, 
W, Y, V). For the ‘hydropathy’ property, amino acids were 
grouped as hydrophobic (A, C, I, L, M, F, W, V), neutral (G, H, 
P, S, T, Y), or hydrophilic (R, N, D, Q, E, K). Based on their 
‘polarity’, amino acids were grouped as polar (R, N, D, Q, E, 
H, K, S, T, Y) or non-polar (A, C, G, I, L, M, F, P, W, V). 
Based on their ‘volume’, amino acids were grouped as very 
small (A, G, S), small (N, D, C, P, T), medium (Q, E, H, V), 
large (R, I, L, K, M), or very large (F, W, Y). According to the 
chemical characteristics of the side chains, amino acids were 
grouped as aliphatic (A, G, I, L, P, V), aromatic (F, W, Y), 
sulfur (C, M), hydroxyl (S, T), basic (R, H, K), acidic (D, E), or 
amide (N, Q). Finally, based on the hydrogen donor/acceptor 
availability of atoms, the amino acids were grouped as donor 
(R, K, W), acceptor (D, E), donor and acceptor (N, Q, H, S, T, 
Y), or neither (A, C, G, I, L, M, F, P, V).  
Firstly, the unique missense mutations that overlap the 
experimentally validated SLiMs were found for each missense 
mutation dataset (OMIM, COSMIC, and 1000GP datasets). 
Then, for each mutation, the physicochemical properties of the 
wild type and the mutant residues were determined. Based on 
the transitions between the amino acids and their properties 
from the wild type to the mutant, a (N by N) matrix of 
transition frequencies was calculated for each class of amino 
acid properties (charge, hydropathy, polarity, volume, chemical 
characteristics, and hydrogen donor/acceptor availability), 
where N is the number of sub-classes of the corresponding 
property.  From these matrices, the frequencies of transitions 
were compared between the disease-related missense mutation 
datasets (OMIM and COSMIC) and the neutral mutation 
dataset (1000GP).   
The percentage of mutations that cause a ‘change’ in a 
physicochemical property is calculated by the sum of the values 
outside of the main diagonal in the given matrix (where the row 
and the column are not defined by the same sub-class of the 
property) divided by the total sum of all the values in the 
matrix. Thus, for the comparison between the disease-related 
mutation dataset and the neutral mutation dataset, a 2x2 
contingency table is created, where the rows are denoted by the 
compared mutation datasets and the columns are denoted by the 
frequency of SLiM mutations that change or don’t change the 
corresponding physicochemical property. A Fisher’s Exact Test 
is applied to find out if the disease-related mutation dataset has 
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significantly more mutations that cause a change in the 
physicochemical properties of SLiM residues.  
In order to find out if there are specifically unfavourable 
transitions between the sub-classes of physicochemical 
properties (for example, hydrophobic to hydrophilic transition 
causing a change in hydropathy), the calculated transition 
matrices were used again. This time, a Fisher’s Exact test was 
applied for each transition between every pair of sub-classes of 
each class of physicochemical properties. Let P denote an 
amino-acid property (e.g. hydropathy) and S1, S2,…, Sn denote 
‘n’ different sub-classes of a physicochemical property (e.g. S1 
= hydrophobic, S2 = hydrophilic, S3 = neutral). For each 
transition from Si to Sj (where 1 <= i,j <= n), a p-value was 
calculated to find out if the transition frequency from sub-class 
Si to sub-class Sj is significantly different between different 
mutation datasets. For this, a 2x2 contingency table was created 
where the rows are the compared datasets and the columns 
denote 1) the number of mutations that cause transitions from 
Si to Sj 2) the total number of mutations that cause transitions 
from Si to every other sub-class except Sj. A Fisher’s Exact test 
was applied on this contingency table to find out if there was a 
significant difference between mutation datasets for this type of 
transition of physicochemical properties in SLiM residues.  
 
Analysis of Mutations in SLiM-mediated Interactome. For 
proteins that contain a predicted SLiM instance, a SLiM-
mediated interaction network was constructed as described in 
‘SLiM-mediated Interactome Construction’. Based on this 
interactome, for each mutated site in disordered regions of the 
human proteome, the number of protein-protein interactions 
mediated by SLiMs that overlap the mutated site was counted. 
In order to account for the size differences between the 
mutation datasets, the number of mutated sites (per number of 
interactions) were divided by the dataset size (total number of 
mutated sites in the disordered regions) and multiplied by 
10,000. A pairwise comparison of disease-related missense 
mutation datasets with the neutral missense mutation dataset 
(COSMIC vs 1000GP, OMIM vs 1000GP) was carried out. A 
Wilcoxon rank-sum test was used to find out if there is any 
significant difference in the number of SLiM-mediated 
interactions that are disrupted by disease-related mutations 
compared to neutral mutations.  
 
Pathway Enrichment Analysis. SLiMs were predicted as 
described in ‘Motif Prediction’. COSMIC mutations were 
mapped onto the SLiMs and mutations were classified as 
‘motif-breaking’ or ‘motif-conserving’ mutations. Those 
proteins that contain a SLiM prediction with at least one motif-
breaking mutation were further filtered for SLiM classes that 
have a motif occurrence probability below 0.01. UniProt 
accession numbers of proteins that contained predicted SLiM 
instances with a motif-breaking mutation were uploaded to the 
DAVID bioinformatics tools113 to retrieve the KEGG 
pathways53 that are most enriched for the uploaded proteins.    
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