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Due to the extensive complexity and high genetic heterogeneity of genetic alterations in cancer, 

comprehensively depicting the molecular mechanisms of cancer remains difficult. Characterizing 

personalized pathogenesis in cancer individuals can help to reveal new details of the complex 

mechanisms. In this study, we proposed an integrative method called IndividualizedPath to identify 10 

genetic alterations and their downstream risk pathways from the perspective of individuals through 

combining DNA copy number, gene expression data and topological structures of biological pathways. 

By applying the method to TCGA glioblastoma (GBM) samples, we identified 394 gene-pathway pairs in 

252 GBM individuals. We found that genes with copy number alterations showed high heterogeneity 

across GBM individuals, whereas they affected relatively consistent biological pathways. A global 15 

landscape of gene-pathway pairs showed that EGFR linked with multiple cancer-related biological 

pathways confers the highest risk of GBM. GBM individuals with MET-pathway pairs showed 

significantly shorter survival times than those with only MET amplification. Importantly, we found that 

the same risk pathways were affected by different genes in distinct groups of GBM individuals with a 

significant pattern of mutual exclusivity. Similarly, GBM subtype analysis revealed some subtype-20 

specific gene-pathway pairs. In addition, we found that some rare copy number alterations had a large 

effect on contribution to numerous cancer-related pathways. In summary, our method offers the 

possibility to identify personalized cancer mechanisms, which can be applied to other types of cancer 

through the web server (http://bioinfo.hrbmu.edu.cn/IndividualizedPath/). 

Introduction 25 

Glioblastoma multiforme (GBM) is a common primary brain 

tumor in adults, with a median survival rate of 12–15 months1. A 

large number of studies have demonstrated that somatic genetic 

alterations, such as copy number alterations (CNAs), were the 

fundamental events driving the initiation and progression of 30 

cancer2-4. However, comprehensive genomic characterization of 

cancer genomes reveals the extensive complexity5-9 and highly 

genetic heterogeneity in human cancer10, 11, posing a challenge in 

identifying the causal genetic alterations conferring cancer 

initiation and progression. 35 

With the accumulation of whole-genome measurements of cancer 

genomes5, 12, 13, many studies were dedicated to developing 

computational methods to discover the casual genetic alterations 

in cancerogenesis14-18. Some computational methods were 

proposed to detect driver genetic alterations just based on the 40 

alteration frequencies of genes in cancer populations17, 18. For 

example, GISTIC was developed to predict the genomic regions 

harboring driver genes by calculating the significance of gene 

amplification or deletion based on copy number variations across 

cancer samples18. Recently, several computation methods by 45 

integrating additional information, such as gene expression, were 

proposed19-22. Based on the postulation that the “genomic 

footprint” in gene expression reflects the functional impact of 

driver alterations, Akavia et al. 19 detected the driver genes whose 

CNAs were frequent, and influenced the expression of a group of 50 

genes by regulating their own expression. DriverNet was 

proposed to identify the minimum number of driver alterations 

that can account for most transcriptional changes across cancer 

samples22. These integrative genome analyses identified some 

well-known cancer genes based on the cancer population23. 55 

However, due to the highly genetic heterogeneity, the similar 

phenotypes of cancer individuals may be driven by the different 

combinations of genetic alterations24, which imply that the 

population-based methods cannot capture the pathogenesis of 

cancer individuals. Thus, exploring the driver genetic alterations 60 

and their downstream effects at the individual level will provide 

new insights into the mechanisms of cancer. 

Gene expression can characterize the activity of biological 

pathways that underlie the cancer phenotype25. Differential 

expression of genes in key pathways can thus reflect the 65 

abnormal states of the functional mechanism26. Previous studies 

have reported that CNAs have direct roles on the global 

deregulation of gene expression27, 28. The CNAs of key genes can  
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Figure 1.The workflow of the integrated method IndividualizedPath for identifying cancer-related genes and their affecting risk pathways in cancer 

individuals. 
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cause the abnormal activity of pathways by disturbing expression 

of genes in the pathways29, 30. For example, the amplification of 

N-myc can inhibit the mRNA expression of CDC42 directly or 

indirectly through nm23-mediated inhibition and, in turn, prevent 

the CDC42-mediated differentiation in neuroblastoma31. MET 5 

amplification can maintain the phosphorylation of ERBB3 and 

Akt in the presence of gefitinib, and further activate PI3K/Akt 

signaling pathway32. Significant expression differences were 

observed between samples with distinct CNA patterns in ewing’s 

sarcoma33. Thus, identifying the CNAs that can explain the 10 

abnormal expression of genes in the pathways will further 

enhance the understanding of roles of CNAs underlying cancer 

mechanisms. 

Based on the hypothesis that genetic alterations contribute to the 

carcinogenesis of individuals by dysregulating gene expression in 15 

some key pathways, we developed a novel computational method 

IndividualizedPath to identify the genetic alterations and their 

affecting risk pathways in disease individuals. IndividualizedPath 

integrated DNA copy number and gene expression data, as well 

as the topological information of biological pathways. Applying 20 

our method to GBM individuals, we identified casual genes and 

their associated pathways (gene-pathway pairs) for each GBM 

individual. We found that genetic alterations with inconsistency 

linked with relatively consistent pathways across GBM samples 

and that some well-known GBM-associated genes (e.g. EGFR) 25 

frequently contributed to multiple risk pathways in GBM 

individuals. We also found that different genetic alterations 

mutually exclusively affected the same pathways. In addition, we 

further explored the subtype specificity of gene-pathway pairs, 

and elucidated the important roles of some rare genetic alterations 30 

in GBM development. 

Material and methods 

Datasets 

DNA copy number and gene expression data 

We obtained DNA copy number data and gene expression profile 35 

of GBM individuals from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/). The DNA copy number data (level 3, 

Affymetrix SNP array 6.0) segmented by the circular binary 

segmentation method34 contained 540 GBM samples. The gene 

expression profile referring to 12042 genes (HU_HG_U133A) 40 

involved 528 GBM and 10 normal samples. The 476 common 

GBM samples in these two datasets (together with 10 normal 

samples) were used for subsequent analyses. 

KEGG pathways 

The 300 pathways containing 150 regulatory pathways and 150 45 

metabolic pathways were downloaded from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG, 

http://www.kegg.jp/kegg/)35. We got the corresponding 

undirected graphs of metabolic pathways and regulatory 

pathways using getMetabolicGEGEUEMGraph and 50 

getNonMetabolicGEGEUEMGraph in the R package 

SubpathwayMiner (version 3.0) 36. 

Methods 

We hypothesized that starting from the copy number alterations 

(CNAs) of some driver genes, the dysfunctional information can 55 

be propagated to downstream genes and then influence their 

expression. That is, cancer-related genes with CNAs contributed 

to the carcinogenesis in individuals by dysregulating gene 

expression in some members of some key pathways. Thus, for a 

specific cancer individual, if a gene with CNA can explain most 60 

expression changes of some key pathways, the gene and the 

linked pathways can be identified as important molecular events 

contributing to the carcinogenesis of this individual. Based on 

this hypothesis, we developed an integrated method called 

IndividualizedPath to identify cancer-related genes and their 65 

affecting risk pathways in cancer individuals by combining DNA 

copy number and gene expression data as well as the topological 

information of biological pathways (Figure 1). 

Identifying the genes with CNAs in GBM individuals 

We identified the genes with CNAs by applying GISTIC (version 70 

2)37 to the segmentation data of DNA copy number in 476 GBM 

samples using default parameters. For a GBM individual Si, the 

copy number calls calculated by GISTIC was used to determine 

CNA events including homozygous deletion (-2), heterozygous 

deletion (-1), diploid (0), gain (1), and high-level amplification 75 

(2). Genes with high-level amplification or homozygous deletions 

were identified as genes with CNAs (labeled as DG) for 

subsequent analyses. 

Identifying differentially expressed genes in GBM individuals 

For a GBM individual Si, we identified differentially expressed 80 

genes by comparing gene expression levels between Si and 10 
normal samples. For a gene Gj in the expression profile, we 
calculated a Z-score as the normalized gene expression value of 
Gj

20, 38: 

 
ij j

ij

j

E
Z

µ

σ

−
=   85 

where Eij is the expression level of Gj in Si, and µj and σj are the 

average expression level and standard deviation of Gj in normal 

individuals, respectively. If Zij is greater than or equal to 4, at 

which the significance of differential expression is 6.3e-05 using 

a Z-test, Gj is considered a differentially expressed gene (labeled 90 

as EG) in Si. The difference |Zij -4| represents the extent of the 

differential expression of Gj in Si. 

Identifying the risk pathways in GBM individuals  

For a GBM individual Si, the risk pathways were defined as the 

ones in which most of the genes were likely to be differentially 95 

expressed. We identified the risk pathways that were significantly 

enriched by the differentially expressed genes in Si using 

SubpathwayMiner (P<0.01). 

Extracting candidate gene-pathway pairs in GBM individuals 
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Figure 2.The gene-pathway pairs across GBM individuals. (A) The heatmaps of gene-pathway pairs (top), cancer-related genes (middle) and risk 

pathways (bottom) in 252 GBM samples. Rows represent gene-pathway pairs, genes and pathways, respectively, and columns are samples. (B) The gene-

pathway pairs, cancer-related genes and risk pathways in two GBM individuals including TCGA-02-0071 and TCGA-02-0074. 
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For each gene with CNA DGj in a given GBM individual Si, we 

obtained the annotated pathways of DGj based on KEGG. Then, 

the common pathways between the annotated pathways of DGj 

and risk pathways in Si were determined. These common 

pathways were considered as the candidate pathways affected by 5 

DGj, and candidate gene-pathway pairs formed by DGj and the 

candidate pathways were identified. 

Identifying gene-pathway pairs in GBM individuals 

The problem of information flow within pathways can be 

addressed by utilizing the ‘random walk with restart’ (RWR). 10 

RWR has been used to characterize functional similarity between 

genes in the network for prioritizing the disease-associated genes 

by integrating the global topology of the functional network and 

local functional links of disease genes39, 40. 

For each candidate gene-pathway pair (DGj and pathk) in an 15 

individual Si, we utilized RWR to calculate the impacts of DGj on 

pathk, which were used to explain the differential expression of 

the genes in pathk. We extracted the connected sub-network 

containing DGj in pathway pathk. In this sub-network, the gene 

DGj was considered as the seed node. The dysfunctional 20 

information as a random walker started from DGj, and the flow of 

information randomly transited from current nodes to all neighbor 

nodes with equal probability. Meanwhile, the random walk can 

restart from the seed node with the probability of r in each step of 

information flowing. The RWR 39 can be described as follows: 25 

 1 0(1 ) Wt tP r P r P
+
= − × × + ×   

where P0 is the vector of initial probabilities of genes in the sub-

network, in which the probability of seed node was 1 and others 

0; Pt and Pt+1 are the probabilities of random walker in nodes at 

the tth and (t+1)th steps, respectively; W is the transfer matrix in 30 

which the columns are normalized according to gene degrees; r 

represents the restart probability. The restart probability r was set 

to 0.3. If the maximum difference between Pt+1 and Pt is less than 

10-8, the random walk reaches the steady-state. The probabilities 

of genes in the sub-network under the steady state were obtained, 35 

which characterized the influence of DGj on genes in the risk 

pathway (Supplementary Figure S1). 

Finally, we extracted the probabilities of differentially expressed 

genes in the sub-network and calculated the Pearson correlation 

coefficient (PCCjk) between the probabilities and the extents of 40 

differential expression. The gene DGj
 

was considered 

contributing to the risk pathway pathk in the individual Si if PCCjk 

was positive and significant (Pearson's correlation coefficient test, 

FDR<0.05), and then the gene DGj
 
and the pathway pathk

 
formed 

a gene-pathway pair in the individual Si. 45 

Results 

The gene-pathway pairs across GBM individuals 

We proposed a novel method IndividualizedPath to identify 

cancer-related genes and their downstream risk pathways in 

individuals through integrating the DNA copy number data, gene 50 

expression and KEGG pathways. The method was applied to the 

476 GBM samples, which had an average of about 113 genes 

with CNAs and 88 risk pathways. Finally, among 6625 candidate 

gene-pathway pairs, 394 gene-pathway pairs involving 167 genes 

and 79 risk pathways were identified. Of these pairs, 67.5% 55 

occurred in only one GBM individual. We found that 252 GBM 

individuals presented at least one gene-pathway pair. The number 

of gene-pathway pairs in different individuals ranged from 1 to 

34. 

Comparison with the candidate gene-pathway pairs showed that a 60 

number of candidate gene-pathway pairs (with an average of 

about 57) were eliminated in cancer individuals (Supplementary 

Figure S2A). The ratio of cancer genes recorded in the Cancer 

Gene census (CGC) database in the identified gene-pathway pairs 

was elevated to 19.2% (5.7% in the candidate gene-pathway 65 

pairs). In the HPRD protein interaction network41, the mean 

degree of genes in the identified gene-pathway pairs across GBM 

individuals were significantly higher than those eliminated 

(P<0.01, t-test, Supplementary Figure S2B). As an example, 

among 23 candidate pathways of AKT, 20 were identified. Out of 70 

the three eliminated candidate pathways, two pathways were not 

significantly enriched by differential genes using the AKT 

knockdown data (GSE31534) (Supplementary Figure S2C). 

These results suggest that our method can improve the accuracy 

of dysfunctional gene-pathway discovery. 75 

We observed obvious inconsistency of gene-pathway pairs across 

GBM individuals (Figure 2A, top). Notably, we found that the 

distribution of cancer-related genes in gene-pathway pairs across 

252 GBM individuals showed inconsistency (Figure 2A, middle), 

while the distribution of pathways showed relatively higher 80 

consistency (P=2.026e-10, Kolmogorov-Smirnov Test, Figure 

2A, bottom, and Supplementary Figure S3). These results 

suggested that different genes in different GBM individuals can 

disturb the same pathways. For example, in one GBM patient, 16 

gene-pathway pairs involving 4 genes (including MDM4, EGFR, 85 

CDKN2A, and MDM2) and 14 pathways (Figure 2B) were found, 

while in another patient, we found 2 genes (including PDGFRA, 

and CDK4) that contributed to the dysfunction of 10 pathways. 

There were 8 common deregulated pathways but without 

common genes. 90 

The landscape of gene-pathway from individual contribution 

To globally characterize the landscape of gene-pathway, we 

constructed a weighted network by integrating the gene-pathway 

pairs from GBM individuals (Figure 3A). In this network, the 

weights of nodes (genes and pathways) and edges (gene-pathway 95 

pairs) were calculated as their frequencies in GBM individuals. 

For each gene, we calculated the sum of weights of its connected 

edges as a metric (termed as contribution degree) to characterize 

the extent to which this gene contributed to GBM tumorigenesis.  
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Figure 3. The landscape of gene-pathway from individual contribution. (A) The weighted gene-pathway network of GBM. The diamond and round 

rectangle nodes are genes and pathways, respectively. The node sizes are proportional to the frequency of gene or pathway. The edges represent the gene-

pathway pairs, the widths of which are proportional to the frequencies of gene-pathway pairs. (B) Left: The proportion of CGC genes in the top ranked 

genes according to the contribution degree of genes; Right: The top 20 genes with high contribution degree. (C) The gene-pathway networks for three 5 

GBM individuals with AKT-pathway pairs (TCGA-06-5415, TCGA-06-0148 and TCGA-12-1600). 
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We ranked all genes by contribution degrees in decreasing order 

and compared the top-ranked genes with cancer genes recorded in 

the Cancer Gene census (CGC) database. The 60% of the top 20 

genes were known cancer genes (Figure 3B). In the top 5 genes, 

EGFR, CDK4, PDGFRA, and MDM2 have been reported to be 5 

associated with GBM, and their CNAs affected the pathway of 

Glioma. 

 In addition, some genes that altered with low frequency but had 

high contribution degree were also identified, such as AKT1, 

PIK3CD, and NRAS, suggesting their crucial roles in some GBM 10 

individuals. For example, the amplification of AKT1 was found in 

only 5 of 476 GBM individuals but contributed to 15, 15, and 11 

cancer-associated pathways such as Glioma, apoptosis and VEGF 

signalling pathway in 3 GBM individuals, respectively (Figure 

3C). Interestingly, amplification of EGFR was also found in these 15 

3 GBM individuals and contributed to the dysfunction of multiple 

pathways, most of which were different from those of AKT1; 

thus, combined treatment based on AKT1 and EGFR may be 

effective for personalized therapy. 

 20 

Figure 4. The EGFR-pathway pairs in GBM individuals. (A) The network of EGFR-pathway pairs. (B) The heatmap of EGFR-pathway pairs in 146 GBM 

samples. (C) Kaplan–Meier estimates of overall survival for three GBM groups (I, II and III). (D) The heatmap of differential expression patterns of genes 

in the Glioma pathway in 98 GBM samples with EGFR-Glioma pairs. (E) Kaplan–Meier estimates of overall survival for SOS2, HRAS, PLCG2 and 

CAML2. 

EGFR and MET drive the cancer pathways in GBM 25 

individuals 

Among the genes contributing to dysregulated pathways, EGFR 

was frequently altered and had the highest contribution degree in 

GBM individuals. EGFR was found to connect with 18 pathways, 

most of which were related to cancer, such as Glioma, ErbB 30 

signalling pathway, and MAPK signalling pathway. All EGFR-

pathway pairs showed higher frequencies in GBM individuals 

than other gene-pathway pairs (Figure 4A). Among the 252 GBM 

individuals with gene-pathway pairs, 146 GBM individuals were 

identified to be linked with EGFR-pathway pairs. Moreover, we 35 

found that EGFR could induce multiple cancer-related pathways 

in each GBM individual (Figure 4B), consistent with its versatile 

roles in GBM. Then, we divided the GBM individuals into three 

groups: group I with EGFR-pathway pairs, group II with other 

gene-pathway pairs, and group III without any gene-pathway 40 

pairs. The overall survival of the three groups showed significant 

difference (P=0.01, log-rank test). Group I with EGFR-pathway 

pairs had significantly shorter survival time than the other groups 

(P=0.02 for group III, and P=0.04 for group II, log-rank test) 

(Figure 4C), consistent with the previous studies42, 43. 45 

To further investigate how EGFR contributes to dysregulated 

pathways, we took the EGFR-Glioma pathway pair as an 

example, which was identified in 98 GBM individuals. The 

Glioma pathway contains two important signalling cascades: 

PI3K/Akt/mTOR and Ras/MEK/MAPK. EGFR is an upstream 50 

member of the Glioma pathway and the amplification of EGFR 

can destroy the downstream signalling cascades of 

PI3K/Akt/mTOR and Ras/MEK/MAPK and, in turn, promote cell 

survival, proliferation, and growth44. Expression analysis showed 

that many genes in the Glioma pathway were consistently up-55 

regulated (such as EGFR and RAF1) or down-regulated (such as  
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MAP2K1, CALM3, and CAMK2A) across the 98 GBM 

individuals (Figure 4D). Nonetheless, some genes showed 

inconsistent expression patterns across GBM individuals, some of 

which were associated with the survival of GBM (Figure 4E). For 

example, SOS2 and HRAS were two members of the signalling 5 

cascade Ras/MEK/MAPK. The overexpression of SOS2 and 

underexpression of HRAS were significantly associated with 

shorter survival (P=0.0004 for SOS2 and P=0.0096 for HRAS, 

log-rank test), which could be attributed to the activation of the 

signalling cascade Ras/MEK/MAPK. PLCG2 and CALM2 10 

located in an alternative path were involved in the signalling 

cascade Ras/MEK/MAPK. The overexpression of PLCG2 was 

significantly associated with shorter survival (P=0.03 for PLCG2, 

log-rank test), and the underexpression of CAML2 was associated 

with better survival (P=0.018 for CAML2, log-rank test). These 15 

results may provide an explanation why GBM patients with 

EGFR amplification exhibited different responses to EGFR 

inhibitor45, 46. 

 

Figure 5. The role of MET-pathway pairs in GBM survival. (A) 20 

Kaplan–Meier estimates of overall survival for MET alteration. 

(B) Kaplan–Meier estimates of overall survival for three GBM 

groups (I, II and III) according to distribution of MET-pathway 

pairs and other gene-pathway pairs. (C) Kaplan–Meier estimates 

of overall survival according to MET alteration and MET-25 

pathway pairs. (D) Kaplan–Meier estimates of overall survival 

for MET-pathway pairs in GBM samples with MET alteration. 

 In addition to genes with frequent alteration like EGFR, MET, a 

functional marker of glioblastoma stem cells46, with low-

frequency alteration (3.5%, 17/476) was ranked in the top 10 of 30 

genes according to their degree. We observed that the copy 

number of MET was not an indicator of survival in GBM 

(P=0.23, log-rank test, Figure 5A). Interestingly, when we 

divided GBM samples into three groups like EFGF (group I with 

MET-pathway pairs, group II with other gene-pathway pairs and 35 

group III without any gene-pathway pairs), the overall survival of 

the three groups showed significant difference (P=6.86e-5, log-

rank test, Figure 5B). Group I with MET-pathway pairs had 

significantly shorter survival times than the other groups 

(P=3.87e10-5 for group III, and P=8.13e-5 for group II, log rank 40 

test). Furthermore, the GBM samples with MET-pathway pairs 

showed significantly shorter survival times than the samples with 

MET amplification but without MET-pathway pairs (P=0.0032, 

log rank test, Figure 5C and 5D). Together, these results proved 

that our method can be effectively used in identifying key gene-45 

pathway pairs in cancer. 

GBM pathways driven by distinct copy number alterations in 
GBM individuals 

To explore how CNAs of genes influence the same pathways, we 

examined the distributions of gene-pathway pairs across GBM 50 

individuals. We found that the same pathway could be affected 

by different genes. Notably, these genes linked with the same 

pathways showed obvious mutual exclusivity in GBM individuals 

(Figure 6). To determine the statistical significance of mutual 

exclusivity, the distributions of genes across the samples with a 55 

specific risk pathway were randomly permuted 1000 times. We 

calculated the number of samples covered by genes in each 

permutation, and calculated the significance as the fraction of 

permutations that produced an equal number of covered samples 

with that observed in real data. For instance, the Glioma pathway 60 

was affected by 12 genes, including EGFR, PDGFRA, CAMK2B, 

AKT1, CDK4, MDM2, NRAS, PIK3CA, TGFA, SHC4, CDKN2A, 

and PDGFA, in 119 GBM samples. EGFR and PDGFRA were 

identified to contribute to the Glioma pathway in 74% of these 

GBM samples. The dysfunction of the Glioma pathway in the rest 65 

of the GBM samples was dependent on the other 10 genes. These 

12 genes showed a significant pattern of mutual exclusivity 

(P<0.001). The similar mutual exclusivity phenomenon was also 

observed for other pathways such as MAPK signalling pathway 

(P<0.001), apoptosis (P<0.001), Wnt signalling pathway 70 

(P=0.003), TGF-beta signalling pathway (P=0.005) and 

neurotrophin signalling pathway (P<0.001), which was in line 

with previous studies47. The property of mutual exclusivity 

suggests complex heterogeneity in cancer. 

Specific gene-pathway pairs in GBM subtypes. 75 

To investigate whether gene-pathway pairs were specific in 

different GBM subtypes, we clustered the 252 GBM individuals 

into four subtypes－classical (92), proneural (67), mesenchymal 

(49) and neural (42)6, 48－according to the expression of signature 

genes identified in5, 6. In the classical subtype, EGFR-pathway 80 

pairs were found to be significantly enriched in classical GBM 

individuals (P<2.2e-16, OR=16.4, Fisher's Exact Test, Figure 

7A), which was consistent with previous reports that the classical 

subtype was characterized by the amplification of EGFR6. 

Similarly, for the signature gene PDGFRA of the proneural 85 

subtype6, our results showed that PDGFRA and its affected 

pathways were presented in 29 proneural GBM individuals 

(P=2.4e-16, OR=45.4, Fisher's Exact Test, Figure 7B). Notably, 

CDK4-pathway pairs were presented in 30 proneural GBM 

individuals (P<2.2e-16, OR=72.5, Fisher's Exact Test, Figure 90 

7B). PDGFRA and CDK4 showed a complement tendency－both 

of these pairs covered approximately 73.1% of proneural GBM 

individuals. These results indicated that CDK4 may be another 

significant gene of the proneural subtype. In addition, it should be 

noted that the individuals in the same GBM subtype showed 95 

different gene-pathway pairs. For example, completely different 

sets of gene-pathway pairs were identified in two classical GBM 

individuals. In one individual, CDK4 and CCND2 influenced the 

dysfunction of 9 pathways such as Glioma, cell cycle, and Wnt 

signalling pathway. In the other individual, PLA2G5 and GNG12  100 
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Figure 6. Distinct genes with CNAs contributed to the same pathways with mutual exclusivity. 

affected 7 different pathways such as MAPK signaling pathway, 

VEGF signaling pathway, and chemokine signaling pathway 

(Supplementary Figure S4). 5 

The functional impact of rare CNAs in GBM individuals 

By analyzing the frequency of CNAs among all GBM 

individuals, we found that 81.4% of genes in the gene-pathway 

pairs had the frequency of less than 5%. These genes with rare 

alterations were usually overlooked by population-based 10 

methods. For example, NRAS, neuroblastoma RAS viral (v-ras) 

oncogene homolog, showed somatic alterations in only one 

mesenchymal GBM individual. NRAS was reported to be 

associated with multiple types of cancers such as melanomas49 

and multiple myelomas50. Our results showed that the alteration 15 

of NRAS contributed to the dysfunction of many GBM-associated 

pathways such as Glioma, ErbB signalling pathway, MAPK 

signalling pathway, neurotrophin signalling pathway, gap 

junction and axon guidance (Supplementary Figure S5). Notably, 

a total of 27 genes with CNAs were determined in the 20 

mesenchymal GBM individual, whereas there were no any other 

genes contributing to these pathways except NRAS, suggesting 

that NRAS played key roles in this GBM individual. NOTCH1, 

altered in three GBM individuals, was found to be associated 

with the dysfunction of Notch signalling pathway in one 25 

proneural GBM individual. Consistently, recent studies reported 

that NOTCH1 was associated with glioma cell differentiation51, 

and the proneural subtype of GBM showed high Notch pathway 

activation52. The inhibition of NOTCH153, 54 or Notch signalling55, 

56 can block glioblastoma cell proliferation and tumor growth. 30 

These results implied that rare genetic alterations also have 

functional impact on the pathogenesis of GBM individuals. 

Discussion  

Different cancer individuals may exhibit different combinations 

of genetic alterations11 that disturb the same or similar cellular 35 

biological pathways and, in turn, lead to the same or similar 

phenotypes57. Such genetic heterogeneity, as one of the most 

important hallmarks of tumors58, poses a major challenge in 

diagnosing cancer and designing effective therapies59-61. In this  
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Figure 7. The gene-pathway pairs in the GBM subtypes. (A) The heatmaps of gene-pathway pairs in the classical GBM subtype. (B) The heatmaps of 

gene-pathway pairs in the proneural GBM subtype. 

study, we developed an integrated method IndividualizedPath to 

identify cancer-related genetic alterations and their downstream 5 

risk pathways in cancer individuals. We applied the method to 

GBM and identified abnormal gene-pathway pairs for each GBM 

individual. 

Based on the underlying assumption that genes with CNAs 

should account for most expression changes in a given 10 

dysfunctional pathway, our method allows us to identify potential 

driver genes and offers the ability to characterize their affected 

risk biological pathways at the individual lever. To characterize 

the links between genes with CNAs and downstream expression 

changes in risk pathways, our method not only combines DNA 15 

copy number and gene expression data but also takes into account 

the topological structures of KEGG pathways. Through scoring 

each gene in a risk pathway based on random walk started from a 

gene with CNAs, the method evaluates whether the CNA can 

capture most expression changes in the risk pathway. 20 

More importantly, our method enables us to identify abnormal 

gene-pathway pairs from the individual perspective by analyzing 

CNAs and expression changes in cancer individuals. The results 

of our method not only give the global landscape of driver 

mechanisms across cancer populations but also provide insights 25 

into personalized cancer mechanisms. From the population 

perspective, the global landscape of gene-pathway showed that 
some GBM-associated genes contributed to multiple pathways in 

the majority of GBM individuals, while most present in a few 

samples. The dysfunction of the same pathways in different 30 

samples was affected by distinct genes showing significant 

mutual exclusivity, suggesting that different groups of cancer 

individuals depend on distinct genetic alterations in destroying 

the same pathways, consistent with high genetic heterogeneity of 

GBM62. This also highlights the importance of identifying 35 

personalized mechanisms of cancer. From the individual 

perspective, our results can partially explain the heterogeneity 

across cancer individuals. For example, MET has been reported to 

be associated with GBM stem cell, while the amplification of 

MET was not associated with GBM survival. We found that the 40 

samples with MET-associated risk pathways showed a 

significantly shorter survival time than the samples with only 

MET amplification. The risk pathways not only characterized the 

potential driver roles of MET in some GBM samples but also 

showed heterogeneity under the same copy number alteration. 45 

Also, our method can identify rare CNAs that have functional 

impact on the pathogenesis of GBM. For example, NARS, which 

has been reported to participate in tumorigenesis in other types of 

cancer, was altered with low frequency but affected various key 

cancer-associated pathways. This will facilitate understanding of 50 

the phenomenon that different cancer individuals exhibit 

remarkable differences in clinical drug response. 

Furthermore, we compared the risk pathways identified by our 

method with those by other approaches (i.e., the pathways 

significantly enriched by genes by GISTIC, genes identified by 55 

both GISTIC and differential expression analysis, and genes 

whose CNAs significantly influenced their own expression 

levels). We found that the risk pathways identified by our method 

not only contained known cancer-related pathways identified by 

other methods but also contained additional important cancer-60 

related pathways such as apoptosis, TGF-beta signalling pathway 

and Notch signalling pathway (P<0.01), (Supplementary Figure 

S6). 

In addition, our approach can be applied to other types of cancer. 

We applied our method to 513 breast cancer and 149 colorectal 65 

adenocarcinoma samples derived from TCGA, separately. In 

breast cancer, a global gene-pathway network involving 166 

genes and 61 pathways was constructed (Supplementary Figure 

S7). In colorectal adenocarcinoma, a global gene-pathway 

network involving 46 genes and 30 pathways was constructed 70 

(Supplementary Figure S8). Among the top-10 genes with the 

highest degree, some have been found to contribute to 

tumorigenesis, such as PTEN63, CCNE164, SMAD465 and 

PIK3CA66. They showed extensive links with multiple cancer-

associated pathways across cancer individuals. Then, we 75 

investigated gene-pathway pairs across these three cancer types 

(i.e., GBM, breast cancer and colorectal adenocarcinoma). For the 
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top-10 ranked pathways with the highest degree, we found four 

common pathways including Pathways in cancer, cell cycle, 

MAPK signalling pathway and p53 signalling pathway, all of 

which are crucial for tumorigenesis. Interestingly, no common 

genes linked with these pathways across the three cancer types 5 

were identified, implying that different types of cancer are 

dependent on distinct driver genes to destroy the same key 

pathways. Also, we developed an online webserver (available at 

http://bioinfo.hrbmu.edu.cn/IndividualizedPath/), where 

researchers can identify gene-pathway pairs in other cancer types 10 

using our method. 

Notably, there were no gene-pathway pairs identified in about 

half of the samples. Three possible reasons for these results are: 

(1) A part of samples harbor no or few CNAs. We found that the 

samples with no gene-pathway pairs had significantly smaller 15 

numbers of genes with CNAs (Supplementary Figure S9); (2) 

Numerous biological pathways are yet incomplete. Among a total 

of 16526 genes with CNAs across GBM individuals, only 2528 

were annotated in the pathways; (3) Identification of risk 

pathways depends on the threshold of Z-score. The higher Z-20 

score threshold may lead to decreased numbers of differential 

genes and thus lower numbers of risk pathways. We used Z-

score=4 as the threshold to identify risk pathways, more stringent 

than 2.3 used in a previous study20. If a more lenient threshold 

was used, more risk pathways may be identified, which might 25 

lead to identification of new gene-pathway pairs. 

Conclusions 

In summary, we proposed an integrative method to identify 

personalized genetic alterations and their affecting biological 

pathways, which will be helpful in better understanding the 30 

molecular mechanisms of cancer individuals and in promoting 

personalized therapy. 
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