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Abstract 

A major effort in systems biology is the development of mathematical models that describe 

complex biological systems at multiple scales and levels of abstraction. Determining the 

topology—the set of interactions—of a biological system from observations of the system’s 

behavior is an important and difficult problem. Here we present and demonstrate new 

methodology for efficiently computing the probability distribution over a set of topologies based 

on consistency with existing measurements. Key features of the new approach include derivation 

in a Bayesian framework, incorporation of prior probability distributions of topologies and 

parameters, and use of an analytically integrable linearization based on the Fisher information 

matrix that is responsible for large gains in efficiency. The new method was demonstrated on a 

collection of four biological topologies representing a kinase and phosphatase that operate in 

opposition to each other with either processive or distributive kinetics, giving 8–12 parameters 

for each topology. The linearization produced an approximate result very rapidly (CPU minutes) 

that was highly accurate on its own, as compared to a Monte Carlo method guaranteed to 

converge to the correct answer but at greater cost (CPU weeks). The Monte Carlo method 

developed and applied here used the linearization method as a starting point and importance 

sampling to approach the Bayesian answer in acceptable time. Other inexpensive methods to 

estimate probabilities produced poor approximations for this system, with likelihood estimation 

showing its well-known bias toward topologies with more parameters and the Akaike and 

Schwarz Information Criteria showing a strong bias toward topologies with fewer parameters. 

These results suggest that this linear approximation may be an effective compromise, providing 

an answer whose accuracy is near the true Bayesian answer, but at a cost near the common 

heuristics.  
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Introduction 

In systems biology, mechanistic models of biochemical networks can be seen as a 

combination of two main components, a topology that defines the set of elementary reactions 

that occur and a parameter set that defines the rate constants of those interactions and perhaps 

initial concentrations. By mapping components of the model to components of the system, one 

can computationally ask what role individual parts of the system play with respect to a particular 

behavior—what behavior would result if a particular part of the system were altered or what part 

of the system would have to be altered to effect a desired behavior. 

Determining the topology of a biological network from data is a difficult and widely 

studied problem1–4. The space of possible biological topologies is a discrete one. For a finite 

number of chemical species, there is a finite, though exponentially large, number of possible 

ways to connect those species in a network of reactions. In this work, different mathematical 

formulations of the same network will be considered different topologies. For example, one may 

wish to test if the data supports using Michaelis-Menten kinetics or mass action kinetics to 

describe the enzymatic reactions. The two different sets of differential equations would be 

considered different topologies. There is currently a tradeoff between greater freedom in the 

mathematical formulation of the topologies and an ability to consider a larger space of 

topologies, since only some structures have algorithms that can define good topologies without 

enumerating all possibilities. One can consider three main classes of topology determination 

methods along this spectrum. 

At the most abstract level are the statistical clustering algorithms5–10. In hierarchical 

clustering11, well-known for its use in analyzing microarrays, each state is organized as a leaf on 

a tree where the distance along the branches indicates the amount of dissimilarity in the behavior 
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of the states either in response to a set of perturbations or over time in response to a single 

perturbation. If a previously unknown state is clustered closely with several known states, this 

suggests that the unknown state may be involved in the same role as the known states. However, 

a specific function or mechanism is not elucidated for any state. Another popular method is 

principal component analysis, which finds the relationships between the states that explain the 

most variance under the conditions studied12. The resulting relationships may reveal the states 

that are most closely associated with the process that is perturbed between the conditions as well 

as group the conditions with similar responses. Like hierarchical clustering, such groupings only 

suggest a coarse organization of the topology, leaving out individual interactions. Methods at this 

level are widely used because they provide testable hypotheses from very data large sets, even if 

the studied system is poorly understood. 

At the next level are algorithms that reverse engineer causal networks. These algorithms 

use data to generate de novo interaction networks between states of the system13–17. These 

methods exploit a useful mathematical relation between a specific formulation of the model and 

a specific type of data. An algorithm by Sachs et al. generates an acyclic Bayesian network using 

single-cell measurements18. This method exploits the fact that the short-term stochastic 

fluctuations in one state would be most strongly correlated with the short-term fluctuations of the 

nearest states. Thus, a causal graph can be built, not by finding the strongest correlations in the 

states, but by finding the strongest correlations in the stochastic fluctuations of the states about 

their mean value. Another algorithm by Yeung et al. generates a system of linear ODEs using 

concentrations of states near a gently perturbed steady state19. The method exploits the fact that a 

linear approximation is good near a steady state, allowing a sparse SVD to be used to solve for 

the topology. By requiring little a priori information, methods at this level bridge the gap 
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5 

between the exponentially large number of possible topologies and a smaller number of 

topologies supported by the data.  

At the most specific level are algorithms that compare the evidence for an enumerated set 

of topologies. Because one cannot actually enumerate all possible networks for even a small 

number of states, the set must be shrunk either by assembling topologies based on prior 

knowledge or by collecting the most favorable topologies generated by a higher-level method 

like one mentioned in the previous paragraph. These algorithms make use of the likelihood that a 

topology generated the data to compute the probability that the topology is correct. Several of 

these methods are used in this work and are described below. Because these methods only 

require the likelihood of the data, they can be used on a broad range of mathematical modeling 

techniques such as dynamic nonlinear ODE modeling, which is used in this work. 

We phrase the problem of topology probability in a Bayesian framework. Each topology 

is defined by a pair of functions, a likelihood and a parameter prior. The topologies are indexed 

by m : 

       | || , , |T m p y m p m  y θ,m θ m  (1) 

where  | | ,p y my θ,m  is the likelihood, the probability of seeing data y  given a model with 

topology m  and parameters  , and  | |p mθ m  is the parameter prior, the probability 

distribution of   for topology m . 

Bayes theorem provides the basic identity for computing the posterior topology 

probability: 

  
   

   
|

|

|

|
|

|
i

p m p y m
p m y

p i p y i





m y m

m y

m y m

 (2) 
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where  | |p m ym y  is the posterior probability that the topology with index m  is correct given 

that data y  (a vector of length 
yn ) has been observed,  p mm is the topology prior of model m , 

and  | |p y my m  is the marginal likelihood of data y  given model m . 

The marginal likelihood is the probability that a set of data would be observed under a 

particular topology. Because topologies alone do not generate data (parameterized topologies do) 

the average probability over all parameters weighted by the prior on the parameters is computed 

by an integral over parameter space: 

      | | , || | , |p y m p y m p m


  y m y m θ θ m  (3) 

where  | , | ,p y m y m θ  is the likelihood of data y  being produced by model topology m  

parameterized with values   and  | |p mθ m  is the parameter prior for parameter values   in 

model topology m . 

It is difficult and computationally expensive to evaluate the Bayesian result because of 

the multidimensional integral required to compute the marginal likelihood in Equation 3. This 

integral does not have an analytical solution for many interesting problems, including mass-

action models, and the possibly large number of dimensions of the integral precludes the use of 

standard quadrature methods such as the trapezoidal rule for numerical integration. 

A number of methods have been developed to solve this integral for biological 

problems20. All are Monte Carlo methods that compare a known distribution to the unknown 

posterior distribution and currently require prohibitive computational resources even for simple 

topologies. To be a known distribution means that its normalization factor, the integral over all 

space, is known. The simplest methods compare the prior distribution to the posterior 

distribution while either sampling from the prior (Prior Arithmetic Mean Estimator21) or from the 
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posterior (Posterior Harmonic Mean Estimator22). Unfortunately, these methods are inefficient 

20,23,24  and cannot be used effectively for any biological system because the difference between 

the prior and posterior is always large for a topology with more than a few parameters and a few 

data points, and the size of this difference determines the uncertainty in the estimators23. Bridge 

sampling improves on these methods by having one distribution “in between” the prior and 

posterior to which the prior and posterior are compared, rather than to each other, so that the 

differences between the compared distributions (and, thus, the variances) are smaller resulting in 

faster convergence25. Other methods, such as Thermodynamic Integration24,26,27, Path 

Sampling28, Annealed Importance Sampling29, and more30,31, use even more distributions 

between the prior and the posterior, so that each comparison is between two quite similar 

distributions resulting in a variance that is low enough to converge for simple biological 

topologies32. We tried several of these methods but were unable to find one that would converge 

in a reasonable time for the system we investigated. 

Because of this, we developed our own Monte Carlo method for use here. Our method is 

similar to the one used by Neal29. Like almost all methods of this type, ours integrates the 

marginal likelihood by stepping through a sequence of distributions between the unknown 

marginal likelihood and a known distribution.  Our method uses the linear approximation as the 

known starting distribution, and the step size from one distribution to the next is generated 

dynamically to minimize the variance in the answer. A detailed description of our linearized 

approximation and full Monte Carlo method is provided in the Methods section. The full method 

was used as the gold standard to which our linearization and other methods were compared. 

Because of the computational costs of Monte Carlo methods, approximations to the 

topology probability are often used instead. The simplest method is to fit each topology to the 
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data and compare the likelihoods of obtaining the data from each topology parameterized by the 

best-fit parameters33,34. According to this method, a topology that has a higher likelihood has 

more evidence in its favor. The method is problematic for one main reason: because topologies 

have different numbers of parameters, and topologies with more parameters can typically fit data 

better whether or not they are true, this leads to a bias in favor of more complex topologies and 

an inability to rule out complex topologies if a simpler topology is true. 

To compensate for the shortcomings of a simple comparison of likelihoods, several 

methods have been developed to appropriately penalize topologies with more parameters. The 

two most popular are the Akaike Information Criterion (AIC)35 and the Schwarz (or Bayes) 

Information Criterion (SIC)36, each justified by a different derivation. These heuristics are no 

more expensive to compute than the likelihood. One assumption of both heuristics is that 

sufficient data has been collected to make the parameter uncertainty small37. This is not the case 

for typical biological models fit to typical data, as our work and that of others has found38–42. As 

a result, the heuristics can be quite inaccurate43,44, which is also the case in the current work. 

Unsatisfied with the accuracy of the existing heuristics and computational cost of the 

Monte Carlo methods, we created an approximation to the topology probability problem that 

provides an accurate answer but at a lower computational cost. We noticed that, if the model has 

a linear relationship between the parameters and outputs and the measurements have Gaussian 

noise, the topology probability has an analytical solution. We wondered if there was a way to 

linearize the nonlinear model such that it provided an effective approximation to the nonlinear 

answer. In this work, we derive a method to compute the topology probability for a model 

linearized at the maximum a posteriori parameters (the best-fit parameters considering the data 

and prior). 

Page 8 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



9 

A detailed derivation is provided in the Methods section of this work, but the key insight 

in developing this method, visualized in Figure 1, is that the marginal likelihood (Equation 3) of 

a linear Gaussian model can be written as: 

          
1

2
| | , || | , , , | 2 ,p y m p y y m m p y m m V y m


      y m y θ m θ m  (4) 

where X  is the determinant of matrix X ,  ,y m  is the maximum a posteriori parameter set, 

and  ,V y m


 is the posterior variance of the parameters. While the maximum a posteriori 

parameter set and posterior variance terms have analytic expressions for a linear Gaussian model, 

each can be computed numerically using nonlinear fitting and numeric integration; thus, using 

this equation to compute the marginal likelihood provides a linear approximation of the topology 

probability. This approach is similar to a Laplace approximation but exchanges the Hessian 

(second-order sensitivities of the negative log posterior) for the Fisher information matrix as the 

approximation to the inverse of the variance. 

We demonstrated this method on a set of four candidate topologies of MAPK signaling 

by Ferrell et al.45. We generated random data sets by selecting a random topology from the set of 

four according to a prior, a random parameter set according to a prior, and a random data set by 

simulating the model and adding noise. We then asked the various methods (Monte Carlo, 

linearization, likelihood comparison, AIC, and SIC), to determine which topology had generated 

the data set and compared the accuracy and speed of the methods. The Monte Carlo method gave 

the most accurate answer, but took significantly more time, while the heuristics took only the 

time needed to fit the data, but performed only slightly better than random. The linearization 

method performed almost as well as Monte Carlo but took no longer than the heuristics. These 

results suggest that this method is an effective tool for topology discrimination for systems 
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10 

biology. 

 

Methods 

Linearization 

Important to the linearization method is not just having an analytical solution to the linear 

model, but writing that solution with terms that can be calculated for the nonlinear model. In this 

section, we outline the derivation of the analytical solution to the marginal likelihood (Equation 

3) for a model that has a linear relationship between the parameters and the outputs, which are 

measured with Gaussian noise superimposed. The likelihood function of a topology with this 

form is defined by: 

     | , | , , , , yp y m N y y m V y θ m  (5) 

where  , , yN y y V  is the probability density function of the normal distribution over the data y  

with a mean of y  (a vector of length 
yn ) and a variance of yV  (an 

yn  by 
yn  matrix). The mean, 

which can be interpreted as the true value underneath a noisy measurement, is a function of the 

topology and parameters and, in a linear model, is defined in the following way: 

      ,y m A m b m     (6) 

where ( )A m  is a matrix 
yn  by ( )n m  and ( )b m  is a column vector of length 

yn . Together, 

( )A m  and ( )b m  define linear topology m . The length of the parameter vector   depends on the 

topology. Combining Equations 5 and 6, we arrive at the likelihood of a linear Gaussian model: 

       | , | , , , yp y m N y A m b m V   y θ m  (7) 

We also assume that the prior on the parameters is a Gaussian as well: 

       | | , ,p m N m V m  θ m  (8) 
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where  m  is the mean of the prior on the parameters for topology m (a vector of length ( )n m

) and  V m  is the variance (an ( )n m  by ( )n m  symmetric positive definite matrix). 

Substituting the Gaussian definitions for the likelihood and prior into Equation 3, we get: 

            | | , , , ,yp y m N y A m b m V N m V m



     y m  (9) 

This integral, the marginal likelihood of a linear Gaussian model, has a well-known analytical 

solution: 

               | | , ,
T

yp y m N y A m m b m V A m V m A m     y m  (10) 

Nonlinear models are not defined using the  A m  and  b m  matrices, so this form is not 

directly applicable as a linear approximation of nonlinear models. It is known46 and is rederived 

with matrix transformations in Appendix 1 that this can be rearranged into a convenient form 

that is the product of the likelihood and prior evaluated at the maximum a posteriori parameter 

set and a term involving the determinant of the posterior variance: 

          
1

2
| | , || | , , , | 2 ,p y m p y y m m p y m m V y m


      y m y θ m θ m

 (11) 

where  ,y m is the maximum a posteriori parameter set, the best-fit parameters of topology m  

for data y , and  ,V y m


 is the posterior variance, which is equal to the inverse of the Fisher 

information matrix. While the maximum a posteriori parameter values and posterior variance 

have closed-form solutions for linear Gaussian models (Equations A5 and A31 in Appendix 1), 

such an analytic expression does not exist for the topologies we investigated, nor for mass action 

models in general and many other biological models of interest. Therefore, the best-fit 

parameters were found using a nonlinear fitting algorithm. The posterior covariance was 

computed by evaluating the Fisher information matrix at the best-fit parameter set: 

Page 11 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



12 

  
     

1
, , , ,

,

T

y

y y m m y y m m
F y m V

 

 


 

  
 

 (12) 

where 
  , ,y m y m






 is the 

yn  by ( )n m  sensitivity matrix, calculated by integrating the 

forward sensitivities with a numerical ODE solver for each topology m  parameterized with its 

best fit parameters  ,y m . 

The representation of the marginal likelihood in Equation 11 is the central formula to our 

method. While it is an exact representation for linear models, it is composed of terms that are 

also well defined for nonlinear models. Since all terms are calculated at the maximum a 

posteriori parameter set, this formula can be interpreted as a linearization at that point. As we 

show in Results, this turns out to be a powerfully effective approximation for ODE models of 

biological systems. 

Topologies 

As our test case, we used four mass-action ODE topologies of MAPK activation45. A set 

of reaction diagrams illustrating these topologies is provided in Figure 2. The topologies model 

the double phosphorylation of Erk by Mek. Each topology has a pair of phosphorylation 

reactions in which the kinase either binds, phosphorylates once, and falls off before rebinding 

and phosphorylating a second time (distributive mechanism) or, after initial binding, the kinase 

phosphorylates once and remains bound until a second phosphorylation occurs (processive 

mechanism). Each topology also has a pair of phosphatase reactions that follow either the 

distributive or processive mechanisms like the kinase, falling off or remaining bound between 

reactions. The four possible combinations of these two mechanisms for these two enzymes 

constitute the four topologies used in this work. As an example of the mathematical form of 
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these topologies, the differential equation for unphosphorylated Erk, which is the same for all 

topologies, is shown here: 

 
,1 ,1 ,4

Erk
Erk Mek Mek:Erk Ptase:Erk#Pon off cat

d
k k k

dt
         (13) 

The four model topologies have 12, 10, 10, and 8 parameters in the respective order they 

will be listed throughout this work and shown in Figure 2A–D. Each distributive mechanism has 

two additional parameters for the on and off rates of enzyme rebinding that don’t exist for the 

corresponding distributive topology. Each topology has 8 species, although in topology 4 

(processive/processive) the free singly phosphorylated state is not populated. Each topology has 

1 input, the amount of kinase, which has a constant value of 1 M. The initial amount of 

substrate is 2 M, the initial amount of phosphatase is 1 M, and all other initial amounts are 0 

M. These values are comparable to experimental procedures of Ferrell et al.45. 

There are three outputs, the amounts of unphosphorylated substrate, singly 

phosphorylated substrate, and doubly phosphosphorylated substrate. The outputs include the 

amounts of that species that are free or are bound in a complex with the kinase or phosphatase. 

Scenario 

We set up a computational scenario to generate many data sets from the topologies so 

that we could interrogate several methods of topology discrimination to determine how well each 

performed. To generate each data set, a topology was chosen randomly from a uniform 

distribution (all four topologies were equally likely to be chosen) and the topology was 

parameterized with random parameters chosen from a multivariate log-normal distribution with a 

geometric mean of 0.1 and an independent geometric variance such that the 95% confidence 

intervals stretched 100-fold above and below the geometric mean. This meant that each 

parameter was essentially chosen over a range of four orders of magnitude. 
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Each randomly drawn model was simulated for 100 minutes and the three outputs were 

measured at 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, and 100.0 min. Each measurement had 

Gaussian error added to it with a standard deviation equal to 10% plus 0.01 M. The resulting 

noisy measurements were floored at 0 (negative values were moved to zero). By measuring the 

sum of phosphorylation sites across the complexes in which they appear and by only measuring 

at 8 time points, we intended to represent the modern measurement capabilities of mass 

spectrometry47. 

This scenario was repeated 1000 times to generate that many random models with that 

many random data sets. 

Monte Carlo 

The various Monte Carlo methods used to solve this problem are all similar in that they 

compare the unknown likelihood function to a known likelihood function by sampling from one 

and comparing the sample in some way to the other21,22,24,28,29. To be a known likelihood function 

means that its normalization factor, the integral over all space, is known. The method we use in 

this work has some conceptual similarity to the Annealed Importance Sampling method29, but is 

procedurally very different. 

To use importance sampling to determine the normalization constant 1z  of a distribution 

determined by likelihood function 1l , we sample from a distribution determined by likelihood 0l  

with known normalization constant 0z and use the following formula to estimate the ratio of the 

normalization constants: 

 
 

 
11

0 0

1
ˆ i

i i

lz
w

z n l




    (14) 

where each i  is one of n  random parameter sets drawn from the distribution represented by 0l . 
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The uncertainty in this estimator is: 

 
 

 

2

1

ˆ

0

1
ˆ

1

i

w

i i

l
w

n l






 
     

  (15) 

The convergence of this estimator is dependent on the amount of overlap between the known and 

unknown distributions. If the distributions are similar, the estimator will converge quickly. If the 

distributions are very different, the estimator will converge slowly. To ensure that the 

distributions are similar enough, we used a sequence of distributions between the known and 

unknown distribution defined by the formula: 

      
1

0 1,l l l
 

   


   (16) 

which, by tuning β, gradually transforms the known distribution at 0   into the unknown 

distribution at 1  . 

For the known distribution, we used a linear Gaussian approximation of the posterior by 

using a nonlinear fitting algorithm to find the maximum a posteriori parameter set (the best-fit 

parameters) and the Fisher information matrix evaluated at the best-fit parameter. The best-fit 

parameters became the mean and the inverse of the Fisher information matrix plus the inverse of 

the prior variance became the variance of a log-normal distribution in parameter space that 

served as the known, starting distribution of the Monte Carlo procedure. 

The final piece of the transformation process is the schedule on   to transform the 

known distribution into a sequence of unknown distributions culminating in the final unknown 

distribution. Again, there are many ways to select the points between 0 and 1. The most basic 

method, a uniform spacing did not allow the Monte Carlo method to converge because the 

distribution changed far more near the ends than near the middle (data not shown). For example, 

a change from 0% to 1% or 99% to 100% unknown distribution was a far greater change than 
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going from 49% to 50%. As a result, the importance sampling estimates near the ends had very 

large uncertainties, but making the steps fine enough to reduce the uncertainty resulted in many 

wasteful estimates being made of the low-uncertainty middle region. To ensure that each step 

had a reasonably low variance, we started from 0  and determined the next value of   by 

generating a small sample from the distribution defined by the current value of   and finding, 

via Matlab’s numerical root finder fzero, the value of the next   that would result in a desired 

sample standard deviation. We chose 0.2, or 20%, as the desired sample standard deviation of 

each step. 

The importance sampling at each span provides an estimate to the change in the integral 

across that span and an uncertainty in that estimate. The estimates are combined by a simple 

product: 

 ˆ ˆ
final j

j

w w  (17) 

where j  is an index over each bridge point. (Because of the limitations of floating point 

arithmetic, these calculations were actually performed in log space and exponentiated to get the 

final answer.) The uncertainty in this estimate can be computed by the linear propagation of 

uncertainty, but in working with this system we found that this dramatically overestimated the 

uncertainty (data not shown). So we used bootstrap resampling instead. We resampled with 

replacement each bridge point and recomputed the estimate of the integral. This resampling was 

repeated 100 times, the sample standard deviation of the recomputed integrals was used as the 

uncertainty in the integral. 

The sampling of the posterior was done using the Metropolis-Hastings algorithm48,49. At 

each bridge point, the sampling was started at the maximum a posteriori parameter set. The 

proposal distribution of the algorithm was a log-normal distribution with a geometric mean of the 
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current point and a geometric variance equal to the inverse of the Fisher information matrix plus 

the inverse of the prior variance computed at the starting point of the sampling multiplied by 

5.66 divided by the number of dimensions50. The log-normal distribution was truncated below 

1×10-10 and above 1×108 to reduce the chance of drawing an extreme parameter set that could 

destabilize the integrator. The sampling was thinned by saving only every fifth point, and the 

sampling was restarted every 100 samples after thinning using an updated proposal variance. The 

autocorrelation in each parameter was computed with Matlab’s autocorr function. The 

sampling was thinned further using the smallest step size such that the estimated autocorrelation 

in every parameter was less than 0.05. To ensure that the estimate of the autocorrelation was 

itself accurate, the autocorrelation step size was not trusted until the total length of the sample 

used to compute the autocorrelation was 20 times longer than the step size. 

Akaike Information Criterion 

The Akaike Information Criterion (AIC)35 is a popular heuristic for topology 

discrimination: 

       | ,
ˆ, 2 2 log | , ,AIC m y n m p y y m m     y θ m  (18) 

which evaluates the log likelihood at the best-fit parameters and adds a penalty proportional to 

the number of parameters. To plot the relative evidence, we return the AIC to probability space: 

  

  
  

  
  

| ,

| ,

ˆ| , ,

exp
,

ˆ| , ,

exp

AIC

i

p y y m m

n m
p m y

p y y m i

n i












y θ m

y θ m

 (19) 

The ranking of topologies under this metric is the same, but makes the values comparable to the 

Monte Carlo and linear methods. 

Schwarz Information Criterion 
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The Schwarz (or Bayes) Information Criterion (SIC)36 is another popular heuristic for 

topology discrimination: 

         | ,
ˆ, log 2 log | , ,ySIC m y n m n p y y m m     y θ m  (20) 

which differs from the AIC only by the size of the penalty. Both use the log likelihood of the 

best-fit parameters, but the SIC penalizes the topologies with more parameters more strongly. 

This metric can be transformed into parameter space in a similar way to the AIC: 

  

  
  

  
  

| ,

| ,

ˆ| , ,

exp
,

ˆ| , ,

exp

y

SIC

i y

p y y m m

n n m
p m y

p y y m i

n n i















y θ m

y θ m

 (21) 

Availability of Software 

Matlab files for implementing the algorithm, running the simulations, and generating the 

figures described here are available at the authors’ website: mit.edu/tidor. 

Results 

We generated 1000 data sets from 1000 random parameterized topologies and asked each 

of the methods to determine the relative evidence that each topology had generated the data, 

quantified as a probability distribution over the four candidate topologies. These probability 

distributions were compared to each other and, in particular, to the Monte Carlo result, which 

should have converged to the correct probability distribution. 

We show four of the thousand runs in Figure 3 to illustrate typical results seen. The true 

topologies underlying Figures 3A, 3B, 3C, and 3D were topologies 1, 2, 3, and 4, respectively. 

The results for our scenario can be classified into two main cases. The less common case, 

represented by Figure 3B, is the case where the data unambiguously indicate the true topology; 

in this case, it was topology 2. When only one topology can fit the data, with the ability to fit the 
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data indicated by the “Likelihood” bars, then all methods agree that the topology that fits is the 

correct topology. The more common case is represented in Figures 3A, 3C, and 3D. Here, all the 

topologies can the fit the data to some degree and the different methods give different probability 

distributions on the data. In these cases, one can see that the likelihood method tends to overstate 

the true probability, given by the “Monte Carlo” bars, for topology 1, which has the greatest 

number of parameters. Interestingly, the AIC and SIC methods show a strong bias in favor of 

topology 4, which has the fewest parameters. However, it can be seen that the linearization 

method is quite close to the Monte Carlo method in each case, suggesting that it is a good 

approximation. If one were to look at just one result, for instance Figure 3D, it may appear that 

the AIC and SIC are the superior methods because they are the only ones that put the highest 

probability on the true topology, topology 4. However, this would be misleading, because they 

frequently put a high probability on topology 4, even when it is not the topology that generated 

the data (Figures 3A and 3C). In fact, even in Figure 3D, they are overstating the evidence that 

topology 4 is true, for the actual probability is provided by the Monte Carlo. 

For each of the 1000 runs, we calculated the Jensen-Shannon (JS) divergence between the 

probability distribution given by each method and the Monte Carlo probability distribution. The 

JS divergence is one standard measure of how different two probability distributions are, which 

in this case provides a single quantification for how far each method’s answer is from the correct 

answer. The JS divergence returns a value between 0 (identical distributions) and 1 (non-

overlapping distributions). The divergence values for each method over all runs were binned and 

plotted as a histogram in Figure 4. Of the other methods, the linearization method is closest to 

the Monte Carlo. The likelihood comparison was the next closest, followed by the AIC and the 

SIC. 
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While the JS divergence is one measure of how different one probability distribution is 

from a reference distribution, it does not report numbers that can easily be used to understand if 

the error in each approximation is large enough to matter. To aggregate the results in a way that 

was easier to interpret, we took the most likely topology according to each method and compared 

it to the topology that actually generated the data. In the real world, we would not be able to do 

this test because the true topology would be unknown, but this computational scenario allows us 

to investigate whether the methods actually do what they are intended to do—tell us which 

topology is correct according to the data. We computed the fraction of top hits that were correct 

for each method (Figure 5). As expected, the Monte Carlo was correct most often; the most 

likely topology according to this method was the true topology 46% of the time. Because Monte 

Carlo provides the correct probability, it is impossible to do better than this provided that the 

Monte Carlo has converged and a sufficiently large number of runs are done to approach 

statistical averages. No method could pick the correct topology 100% of the time because that 

information was not contained in the data. The linearization method did almost as well as Monte 

Carlo, finding the correct topology 44% of the time. The likelihood comparison, the AIC, and the 

SIC were correct 30%, 30%, and 28% of the time, respectively. Surprisingly, these heuristics 

only do slightly better than randomly guessing one of the four topologies, which would be 

correct 25% of the time. 

We analyzed the bias in each method by plotting the mean probability each method 

returned for each topology (Figure 6). An unbiased method will return a mean of 0.25 for each 

topology because that is the probability by which each topology was drawn. The bias that the 

likelihood comparison has for the topology with the most parameters can be seen though it is not 

particularly large. Interestingly, AIC and SIC are strongly biased toward the topology with the 
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fewest parameters. The Monte Carlo method has no bias, as expected, but neither does the 

linearization, which is a satisfying result. 

Despite the improved accuracy of linearization, the method does not take substantially 

greater computational resources than the heuristics, which take radically less time to compute 

than the full Monte Carlo. While the Monte Carlo method took a median of 13 days to complete, 

the linearization method, likelihood comparison, AIC, and SIC all took a median of 4.2 minutes 

to complete. The fast methods took the same amount of time to complete because the time of 

each was dominated by the time it took to simply fit parameters for each of the topologies to the 

data. The computation of the likelihood (needed for all methods) and the Fisher information 

matrix (needed for the linearization method) took about as much time as a single iteration of the 

gradient descent fitting algorithm. Computing the Fisher information matrix requires computing 

the sensitivities of the outputs to the parameters, which is not needed to compute a likelihood 

comparison, the AIC, or the SIC and is more expensive that simply simulating the system to 

compute the likelihood of the data. If the time to fit the topologies to the data is ignored, it took a 

median of 0.80 seconds to compute the likelihood comparison, AIC, and SIC and 3.4 seconds to 

compute the linearization method. Thus, the linearization was slightly more time consuming than 

the other fast methods, but insignificantly so. 

 

Conclusion 

The quantification of parameter uncertainty in ODE models of biological systems has a 

number of successful and computationally feasible methods31,38,39,42,51. However, doing the same 

for the other half of the model, the topology, has not been as successful. The existing methods 

are either expensive (Monte Carlo methods) or inaccurate (various heuristics). We have proposed 
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one method, our linearized Bayesian approach, which may fill this gap. It returns an answer that 

is similar to the Monte Carlo gold standard, but does so at a computational cost no more than 

fitting the topologies to data. 

There are several ways to interpret what the method is doing. The simplest one and the 

one we have used throughout this work is that it is a linearization at the maximum a posteriori 

parameter set, because we arrive at this parameter set with nonlinear fitting and then evaluate the 

likelihood, the prior, and the Fisher information matrix with these parameters. These values are 

then plugged into a formula that is exactly true only for linear Gaussian topologies. Another 

interpretation is that the integrand of the marginal likelihood equation has been replaced by a 

Laplace approximation. A Laplace approximation is like a second-order Taylor approximation 

except that an exponential of a polynomial is used rather than a polynomial itself52. A Laplace 

approximation generates a single Gaussian at a point to approximate the rest of the function. This 

interpretation has one additional caveat: instead of the second-order derivative of the log 

likelihood with respect to the parameters (also known as the Hessian), we use the Fisher 

information matrix, which is only exactly equal to the Hessian if the model is linear. Computing 

the Hessian takes greater computational resources, yet has little impact on the result (data not 

shown). The use of the Hessian and Fisher information matrix in the Laplace approximation of 

marginal likelihoods even has some use in other fields46. 

The number of possible topologies grows exponentially with the number of states. The 

linearization method would not be very effective at reverse engineering the topology from 

scratch because the method considers each topology individually. However, the method could 

work effectively as a subsequent step to other methods that efficiently pare down the vast 

topological space to a manageable number of topologies. As long as the number of topologies is 
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small enough such that each can be fit to data, possibly in parallel, then the linearization method 

would efficiently quantify the uncertainty in the remaining set. 

Because the problem is phrased in a Bayesian fashion, the probability distribution 

returned by the linearization method sums to 1. This means that, like all Bayesian methods, it is 

implicitly assumed that the true topology is in the set of possibilities. The possibility that no 

topology is a good fit for the data can be mitigated by checking after the fact that there is one at 

least one topology that fits the data by using a frequentist statistic, such as a chi-square p-value. 

In this work we have demonstrated the effectiveness of the approximation only on a 

single set of simple biological topologies. Testing on more systems, especially more complex 

systems, is warranted. The main limitation with our testing scenario in evaluating the method on 

more complex topologies was that the Monte Carlo method already took 13 days to complete. A 

noticeably more complex set of topologies would not finish in a reasonable amount of time, so 

that there would be no gold standard with which to compare. Perhaps this illustrates why a good 

approximation of the topology probability is so important: most of the models that biologists care 

about are too large to compute the topology probability with a Monte Carlo method. 

The approximation is dependent on the “area” under the hyperdimensional Gaussian 

being similar to the “area” under the product of the likelihood and the prior, which has the shape 

of the parameter posterior distribution. If the region of probable parameters is substantially larger 

or smaller than the approximation, the approximation will fail unless the difference is similar for 

all topologies. It may be interesting to note that the linear Gaussian approximation does not have 

to be very similar to the true distribution; it only has to have a similar integral. This may be an 

important property because the posterior parameter uncertainty is typically very large for 

biological models. When the uncertainty is large, there will be regions of likely parameter sets 
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that a linear approximation will not recognize as likely parameters because the linear 

approximation is only valid for a short range. Fortunately, the linear approximation does not 

actually have to overlay the underlying posterior distribution in order to be a good approximation 

for the purpose of topology probability; it only has to have a similar integral. A case where one 

might expect the approximation to be very different from the true value is when the posterior is 

multimodal. How much of a problem this is in practice should be monitored through experience. 

In our previous work, we found that a linear approximation of the parameter uncertainty 

was an effective enough approximation for designing experiments to efficiently reduce that 

uncertainty39,42. This work does not consider the effectiveness of our approximation for any 

particular task, but the ability to not only determine the current topology uncertainty but design 

experiments to reduce that uncertainty is an alluring goal for which research is ongoing to 

achieve. 
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Figure 1. Illustration of linear topology probability. Here is a plot of the joint probability 

distribution between the parameter and data point of a one-parameter, one-data-point model. The 

orange curve has the same shape as the posterior, the probability distribution over the parameters 

  given that a particular data point was observed, but does not have an integral equal to 1, which 

a true distribution must have. The integral of that curve is the marginal likelihood and the critical 

component to determining the topology probability. For a linear Gaussian model, the curve has 

the shape of a Gaussian with a mean at the maximum a posteriori parameter set and a variance 

equal to the posterior variance. Such an expression has an analytical solution to the integral. If 

the model is nonlinear, then a linearization at the maximum a posteriori parameter set will 

provide a linear approximation to the marginal likelihood. 
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Figure 2. MAPK topologies. These are the four topologies used in the scenario to generate 

synthetic data, which was then presented to several topology discrimination methods to 

determine what the probability was that each topology had generated the particular data set. The 

suffix “#P” indicates a phosphorylated species.  
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Figure 3. Typical results. The topology probability according to each of the five methods is 

shown for four example data sets. The synthetic data underlying A, B, C, and D were generated 

by topologies 1, 2, 3, and 4, respectively. The error bars on the Monte Carlo method are the 

standard error on the mean as computed by bootstrap resampling. 
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Figure 4. Divergence of each method from the gold standard. The Jensen-Shannon (JS) 

divergence measures the difference between two distributions on a scale of 0 to 1, which ranges 

from identical to no overlap, respectively. The divergence between the topology probability 

supplied by each method and the gold standard Monte Carlo were computed for all 1000 data 

sets, sorted into 50 evenly spaced bins, and plotted as histograms. For reference, the median 

residual divergence in the Monte Carlo from the true probability distribution was estimated with 

bootstrap resampling to be 0.0061.  
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Figure 5. Accuracy of the most probable topology. For all 1000 data sets, the most likely 

topology according to each method was compared to the actual topology that generated the data. 

The fraction that each method found correct is plotted here. The error bars are the standard error 

of the mean. 
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Figure 6. Bias in methods. The mean topology probability distribution was taken over all 1000 

runs. Because all topologies were drawn with equal probability, the mean probability distribution 

should be uniform if the method is unbiased (dashed line). The linearization method shows this 

lack of bias as does the Monte Carlo method. The likelihood method is expected to have a bias 

toward the topology with the most parameters (topology 1) and against the topology with the 

fewest parameters (topology 4), which is visible but slight. A strong bias in favor of topologies 

with fewer parameters can be seen with the AIC and SIC methods. The number of parameters in 

topologies 1, 2, 3, and 4 are 12, 10, 10, and 8, respectively. (A) Monte Carlo method, (B) the 

linearization method developed here, (C) likelihood method, (D) Akaike Information Criterion 

method, and (E) Schwarz Information Criterion method. 
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