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Stochastic simulation of prokaryotic two-component signalling indi-
cates stochasticity-induced active-state locking and growth-rate de-
pendent bistability†
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Signal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and responding to (extra-
cellular) signals. Here, we use stochastic models of two-component systems to better understand the impact of stochasticity
on the fidelity and robustness of signal transmission, the outcome of autoregulatory gene expression and the influence of cell
growth and division. We report that two-component systems are remarkably robust against copy number fluctuations of the
signalling proteins they are composed of, which enhances signal transmission fidelity. Furthermore, we find that due to stochas-
ticity these systems can get locked in an active state for extended time periods when (initially high) signal levels drop to zero.
This behaviour can contribute to a bet-hedging adaptation strategy, aiding survival in fluctuating environments. Additionally,
autoregulatory gene expression can cause two-component systems to become bistable at realistic parameter values. As a result,
two sub-populations of cells can co-exist—active and inactive cells, which contributes to fitness in unpredictable environments.
Bistability proved robust with respect to cell growth and division, and is tunable by the growth rate. In conclusion, our results
indicate how single cells can cope with the inevitable stochasticity occurring in the activity of their two-component systems.
They are robust to disadvantageous fluctuations that scramble signal transduction and they exploit beneficial stochasticity that
generates fitness-enhancing heterogeneity across an isogenic population of cells.

1 Introduction

The prevalence and diversity of two-component signalling
systems across the prokaryotic domain is remarkable given
their structural simplicity. They are composed of only two
proteins: a histidine kinase ‘sensor’ protein (S), which is typ-
ically a membrane protein, and a cytosolic response regula-
tor protein (R) that acts as a transcription factor. Protein-
complex formation, (de-)phosphorylation, and phosphotrans-
fer are the only types of reactions that take place. Despite
this, two-component systems are capable of sensing and re-
sponding to a wide range of environmental changes. They
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modelling files and scripts used to produce the plots in the main article. See
DOI: 10.1039/b000000x/
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d BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
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play a role in chemotaxis1, osmoregulation2, adaptation to
Mg2+-limiting environments3 and the induction of sporula-
tion in Bacillus subtilis4, among others. This broad scope is
partly due to the modularity of the system, which allows the
basic mechanism to be extended with auxiliary components,
but is likely also due to the intrinsic flexibility of the basic
system. These aspects make two-component systems of major
interest for synthetic biology. The simplicity of this molecular
sensing circuit, and the apparent lack of any internal regula-
tory interactions, raises the question how this simple system
copes with the inherent stochasticity of the reactions between
its signalling components as well as the stochasticity intro-
duced during cell growth and division. This is the question we
address here, using stochastic simulations of two-component
systems.

Two-component systems have been studied with mathemat-
ical models in previous works. Ortega et al.5 analysed the
consequences of the bifunctionality of the histidine kinase—
which acts as both an autokinase and a phosphatase—for sig-
nal sensitivity, and found that bifunctionality reduces sensi-
tivity. Shinar et al.6 and Batchelor & Goulian7 discovered
that the output of two-component systems, the concentration
of phosphorylated response regulator proteins, is robust with
respect to the total concentration of its signalling components.
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Batchelor & Goulian7 provided experimental evidence for
this surprising behaviour. Hoyle et al.8 and Igoshin et al.9

analysed the bistability of two-component signalling transduc-
tion systems when coupled to autoregulatory gene expression.
Hoyle et al.8 further demonstrated this behaviour experimen-
tally, using a synthetic two-component system.

The existing theoretical studies all use different models of
two-component systems, regarding the precise reactions and
kinetic parameter values that they consider. Here, we present a
model of two-component signal transduction that is intermedi-
ate in size, considers bifunctionality and captures all the essen-
tial reactions: autophosphorylation, complex formation, phos-
photransfer, and dephosphorylation. With this model, we re-
visit the phenomena of robustness and autoregulation-induced
bistability, using stochastic simulations. We study both these
system properties in more detail from the perspective of the
impact of stochastic fluctuations on the beneficial properties
of the signalling circuit. We also report a new behaviour of
two-component systems that arises only in stochastic simu-
lations and study the signalling system when embedded in a
growing and dividing cell. This paper hopes to offer a model
to the field that is of manageable complexity, yet sufficiently
realistic and generic to be of practical use. By benchmark-
ing these models against the established system behaviour of
two-component systems, we hope to show that this model is
flexible and realistic enough to be useful in other applications,
such as in the design of new two-component systems in syn-
thetic biology.

The model we propose captures the basic design of two-
component systems and differs in several ways from previ-
ous models. Upon binding a signalling ligand (L), the sen-
sor S changes conformation and autophosphorylates, yield-
ing the phosphorylate species SP. Next, SP forms a complex
with R, after which phosphotransfer can take place to yield
RP and S. Typically, RP acts as a transcription factor induc-
ing a gene expression response4. As aforementioned, in our
model the sensor is bifunctional: when S is neither phospho-
rylated nor bound to L it can also dephosphorylate RP. Most
sensor proteins have this property, including EnvZ from the
EnvZ/OmpR model system responsible for osmoregulation in
Escherichia coli (E. coli)2. This captures the basic model
without gene regulation (Fig. 1). Positive autoregulation, in
which RP enhances transcription of the genes encoding R and
S, is also not uncommon; the archetypal model system being
the PhoP/PhoQ system first identified in Salmonella enterica3.
We therefore also extend the basic model with autoregulatory
gene expression and study the appearance of bistability which
may result. Finally, we place the autoregulatory model in a
cell that grows exponentially in a steady-state manner to in-
vestigate whether bistability is impacted by cell division and
the required synthesis of signalling components accompany-
ing cell volume growth.

We find that the basic, generic two-component model that
we propose (1) protects itself spontaneously against hazardous
fluctuations that scramble signal transduction and (2) manages
to profit from fluctuations that generate beneficial heterogene-
ity in the cell population, which is advantageous for organisms
living in unpredictable, dynamic environments.

2 Results

2.1 A model of the two-component signalling system

The topology of the signalling network we consider in this
work is shown in Fig. 1. This model contains the core re-
actions known to occur in basic two-component systems4.
When the L concentration is high, high levels of RP are ex-
pected to be produced and the system is in the ‘active-state’.
Conversely, when the signal is weak (or absent) the amount
of RP is low; we will refer to this situation as the ‘off-state’.
The main simplification made was to consider the sensors and
response regulators as monomers, though in reality they are
often dimers10. Shinar et al.6 have already shown that the ro-
bustness of two-component systems with respect to the total
sensor and regulator concentration is preserved in monomer
and dimer models.

In our simulations we describe all reactions in terms of
mass-action kinetics. For stochastic simulations, we used the
Gillespie direct method in StochPy11, a Python-based stochas-
tic simulation platform. For the incorporation of cell division
we use an extension of StochPy described in the Supplemen-
tary Information† (Fig. S2). We will later also consider ‘total’
R and S numbers, RT and ST , which refer to the total number
of R and S molecules in the cell, irrespective of phosphory-
lation or complex formation. The ligand concentration was
considered fixed—equivalent to assuming a large extracellu-
lar reservoir of the signalling molecule. Also, the intracellu-
lar concentrations of ATP and inorganic phosphate are con-
sidered fixed and therefore not explicitly modelled. Our esti-
mated rate constants are provided in Table S1 of the Supple-
mentary Information†. In making the estimations, we ensured
that the parameters were physically relevant by considering
critical factors, such as the diffusion limit which restricts the
rates of second-order reactions, as well as matching published
experimental results with the model, as described in Section
2.2.

2.2 Robustness of signal transmission against fluctua-
tions in signalling protein abundance

In order to validate our model, the first step we took was
to compare its output with existing experimental data. The
best validated experimental results pertain to steady-state ac-
tivation levels of the system, typically measured indirectly by
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placing a reporter gene under transcriptional control of a RP-
responsive promoter7. Such data indicate that steady-state
concentrations of RP increase linearly in proportion to con-
centrations of the extracellular signalling molecule L7. Fur-
thermore, there is also data available which suggest that the
steady-state concentrations of RP are substantially robust to
changes in the total number of R and S molecules in the cell1,6.
This allows the cell to maintain a consistent response despite
fluctuations in molecule numbers due to stochasticity in pro-
tein production, degradation and cell division events. Robust-
ness is, however, limited because the number of RP molecules
cannot exceed RT , so RP concentrations always saturate under
high stimulus.

To test whether our model displayed the same (qualitative)
characteristics, we performed a mathematical analysis† based
on the approach by Shinar & Alon6 as well as deterministic
and stochastic simulations. The results of the mathematical
analysis indicate that the steady-state RP concentration of the
model are indeed expected to increase linearly with L, inde-
pendent of RT and ST , until saturation†. The parameter re-
quirements for this behaviour are†: 1) the binding of the sensor
to the ligand should occur on a fast enough time scale such that
this reaction always operates close to thermodynamic equilib-
rium and 2) the spontaneous dephosphorylation rates of RP
and SP should be negligible when compared to the catalysed
reactions in the model. For additional discussion we refer to
Shinar & Alon6.

In the numerical simulations, the network shown in Fig. 1
was considered at fixed levels of RT and ST , defined by the
initial conditions. The results of these simulations are shown
in Fig. 2. The deterministic steady-state RP concentrations in-
deed increase linearly with L for relatively low levels of stim-
ulation, independently of RT (and ST , though this data is not
shown). As expected, the response also saturates (RP = RT )
when the signal strength is sufficiently high. Furthermore, the
mean steady-state concentration of RP in the stochastic simu-
lations also follows the same trend. Hence, we conclude that
fluctuations in RT and ST —which may arise from stochastic-
ity during transcription, translation or cell division—do not
scramble the output of the signalling network. This acts as a
built-in mechanism to ensure high signal transmission fidelity
in two-component systems despite inevitable fluctuations in
their components. We emphasise that this behaviour is only
dependent on the two parameter requirements (mentioned
above) and that experimental evidence for his behaviour ex-
ists7.

2.3 Stochasticity-induced active-state locking upon sud-
den removal of the signal

Next, we studied the response time of the system—the time
that the system requires to attain a steady-state RP concen-

tration. In order for our model to be physiologically rele-
vant, we must consider that organisms have to respond within
a timescale significantly shorter than their generation time12.
We therefore expected this response time to be on the order of
about one minute. This is also what one would expect if the re-
action rates are considered in their diffusion limit (not shown).
To address the response time, we performed stochastic simula-
tions of the signalling network (Fig. 1) and subjected the sys-
tem to a stepwise-varying signal strength, ranging from negli-
gible to saturating L concentrations (Fig. 3). Indeed, the deter-
ministic simulation shows that the response time ranges from
approximately 20 to 60 seconds. The stochastic simulation
agrees with this timescale when the signal is increasing. How-
ever, when the signal is reduced from a saturating level, some
stochastic trajectories show surprising behaviour. Namely,
the RP concentration has a tendency to stay ‘locked’ in the
active-state for a prolonged time period—sometimes over ten
minutes—after the signal has been reduced. We call this inter-
esting phenomenon ‘stochasticity-induced active-state lock-
ing’.

The parameter conditions for stochasticity-induced active-
state locking only concern a small subset of all the parame-
ters, as was also the case for the robustness. The cause of
stochasticity-induced active-state locking is that the number
of (unbound, unphosphorylated) S molecules can drop to zero
when the system is subjected to saturating signal strengths.
As the S molecules are the dominant means of dephosphoryla-
tion of RP, their absence prevents the number of RP molecules
from declining. In our model this is achieved in the simplest
way as only the free sensor state, S, can dephosphorylate RP.
The autodephosphorylation rates are slow, and although the
phosphorylation reactions are reversible, the forward rates are
overwhelmingly favoured. Thus, the new lower equilibrium
value of RP at the reduced level of L can only be reached
once unbound, unphosphorylated S molecules are recovered
by unbinding/dephosphorylation reactions. Since these reac-
tions occur stochastically and at a low rate, the observed wait-
ing time can be remarkably long; in our simulations, we have
observed locking for up to ten minutes. As long as those re-
actions are reversible and occur at a low enough rate the time
that it takes before S molecules reappear can be quite variable
amongst individual cells.

We emphasize that this result is not reproducible in deter-
ministic simulations. The reason is that, deterministically, the
concentration of S is a continuous variable that would take a
small but non-zero value under saturating conditions and reac-
tions which increase S (and decrease RP) concentrations start
to occur immediately (albeit at a low rate) upon decreasing the
signal strength.

In order to further investigate this locking behaviour, we
studied a single stepwise drop in signal strength, from a sat-
urating level to a negligible level (Fig. 4A). As we now ex-
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pected, the stochastic trajectories tended to lock in the active
state for up to ten minutes, but over time an increasing number
of trajectories managed to escape the locked state. The his-
tograms taken at the different time points (Fig. 4B) show that
trajectories that remain locked have completely saturated RP
populations, and also illustrate the transiently bimodal distri-
bution just after the signal drops. If each stochastic trajectory
is interpreted as an individual cell in an isogenic population,
this locking phenomenon should thus create a similarly tran-
sient bimodal distribution, which should be experimentally
observable. A quantification of the variability of the response
time can be obtained by numerically determining the distri-
bution of the time that it takes for cells to reach a threshold
% of unphosphorylated R molecules. This resembles a hit-
ting time and is defined in the analysis of the stochastic time
series. As long as cells do not communicate via cell-to-cell
signalling, stochasticity-induced active state locking can tran-
sient diversify populations of cells which can be advantageous
in unpredictable environments.

2.4 Autoregulatory gene expression leads to bistability of
signalling activity

At this point, we extended the stochastic model with autoreg-
ulatory gene expression. The two-component system then up-
regulates the transcription of the genes encoding its own sen-
sor and response regulator, as illustrated in Fig. 5. We based
our transcription model on the structure of the PhoP/PhoQ
system, best studied in Salmonella enterica3. The coding se-
quence for S follows that of R in the same operon, and they are
under the transcriptional control of two promoters; one consti-
tutive, and the other activated by a RP dimer.

To investigate the steady-state behaviour of the autoregula-
tory system, we began with a simple (deterministic) mathe-
matical model consisting of the single equation:

d[RT ]

dt
= kp1 + kp2

[RP]2

K2
d +[RP]2

− kdeg[RT ] (1)

where kp1,kp2 and kdeg are the basal production rate constant,
maximal activated production rate constant and degradation
rate constant of R proteins, respectively. Furthermore, kp2
precedes a Hill function that describes the saturation of the
promoter with RP. The Kd is the microscopic dissociation con-
stant and the Hill coefficient has been taken to equal 2 to ac-
count for RP dimerisation. We have therefore approximated
the kinetics of RP dimers binding on a single operator site as
the binding of RP monomers on a pair of operator sites with
infinite cooperativity. To further simplify our calculations, we
considered saturating signal strengths, such that [RT ] = [RP].
Setting the right-hand side of the equation to zero—i.e. in-
vestigating the steady-state concentrations—thus gives a cubic

equation for [RP] (or, equivalently, [RT ]) which can in princi-
ple have one, two or three solutions. When three solutions are
exhibited, two are stable, while if only one or two solutions
exist only one state is stable (Fig. 6A-B). Depending on the
parameter values, therefore, the system may exhibit bistabil-
ity. We found that, for physically reasonable parameter val-
ues (SI†), both bistable and non-bistable states were possible.
When the system is bistable, the system may settle in either
an active-state or an off-state under high stimulus, depending
on the initial conditions. We note that the conditions for bista-
bility derive from the parameters in Equation (1); in fact the
parameter ratio’s kp2/kp1 and kdeg/kp1 and the Kd . When the
R molecules have a long life time, than kdeg is sensitive to the
cellular growth rate and otherwise not. So, bistability depends
on a relation between gene expression, protein stability and
growth rate parameters. Also the separating border between
two attractive regions (grey dashed line in Fig. 7) is set by
those parameters.

The largest simplification in the above equation is the pres-
ence of the Hill function, which estimates the average propor-
tion of time that the system spends activated without consid-
ering the individual dimerisation and binding/unbinding reac-
tion rates. For our stochastic simulations, we considered all
the individual reaction steps in order to create a more real-
istic model (see SI†), by adding these reactions to the sig-
nalling network depicted in Fig. 1. Also, we accounted for
(stochastic) delay times in transcription and translation us-
ing average transcription/translation rates from E. coli and
gene lengths taken from the autoregulatory PhoP/PhoQ two-
component system in E. coli (see SI†). Using parameters
that we found to cause bistability in the reduced mathematical
model given in Equation (1), we reproduced the phenomenon
in the stochastic model (Fig. 7 A-B). Occasionally, stochastic-
ity caused bistable switching, in which a simulation initially
settled in one stable activation state spontaneously switches
to the other. The overall effect on a large number of such
cells is a bimodal population, as shown in Fig. 6D, where a
proportion of cells remain in an ‘off’ state despite high sig-
nal strengths. This could be advantageous as an evolution-
ary bet-hedging strategy for signalling systems responding to
toxic stimuli, which we will consider further in the Discus-
sion. The parameter requirement for bistable switching is that
cells should be able to pass the border separating the two at-
tractive regions within a single generation time (grey dashed
line in Fig. 7).

2.5 Growth-rate dependent stochastic bistable switching
between inactive and active signalling states

Two notable features of the bistable system prompted us to
investigate the influence of cell growth and division on the
stochastic behaviour of the autoregulatory circuit. Firstly, the
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timescale over which the system settles into a steady-state—
on the order of tens of minutes as shown in Fig. 6C—can eas-
ily exceed the generation time of a typical prokaryotic organ-
ism. For example, E. coli can have a generation time of under
20 minutes when growing on glucose in rich media. During
this time, the cell doubles in size and cell growth is thus often
the dominant source of protein concentration ‘degradation’,
particularly when the protein is not targeted for enzymatic
degradation13. Cell division also has the dramatic effect of
(approximately) halving the protein copy numbers nearly in-
stantaneously. The division of molecules between daughter
cells can be well-modelled by a volume-dependent binomial
distribution14. With bistability-switching timescales exceed-
ing generation times, it is therefore important to check how
bistability is influenced by cell growth and division of the host
cell. Secondly, via the mathematical analysis, we found that
the presence of bistability was especially sensitive to changes
in the protein degradation rate kdeg (data not shown). Since
the protein degradation rate can equivalently be interpreted as
a protein dilution rate, we hypothesised that if cell growth is
taken as the only source of protein degradation we would find
that the bistability of the system becomes growth-rate depen-
dent. This would then constitute a parameter requirement for
the occurrence of growth-rate induced bistability.

In implementing growth and division processes in StochPy,
(exponential) growth rates were assumed to be fixed but the
generation time, daughter cell volume and division of cel-
lular species between daughter cells were modelled stochas-
tically (SI†). We found that a generation time of about 45
minutes—typical for bacteria such as E. coli and Bacillus
subtilis under laboratory conditions—could indeed lead to
bistable steady-state RP concentrations (Fig. 7C-D). The acti-
vation state is also occasionally seen to switch spontaneously
due to stochasticity. This indicates that the phenomenon of
bistability is also robust to growth and division processes, pro-
viding further support for the possibility of either finding or
creating such a system in nature.

We also found that this bistability is growth-rate dependent.
An upper bound to bistability-permitting growth rates is de-
termined by cell division events—the cell growth rate must be
slow enough to allow the protein population to at least double
during the generation time. Otherwise, the protein population
in mother cells decreases with each generation that passes, so
the active-state can never be maintained. This upper limit on
the growth rate can be adjusted by varying the protein pro-
duction rates, kp1 and kp2. There was also a lower bound
on growth-rate which arose from the original mathematical
model, because the degradation rate must exceed a critical
value in order for the ‘off-state’ to be maintained. For our
parameters, cell generation times of between 45 and 110 min-
utes permitted bistability.

3 Discussion

In this work, we studied with stochastic simulations a model
of two-component signalling that has a generic, realistic net-
work structure and is of manageable complexity. We studied
how this system copes with its inherent stochasticity, deriv-
ing from its reactions as well as the growth processes of the
cell, and how induction of bistability by auto-regulatory gene
expression is affected by cell growth. We found that two-
component systems are robust with respect to disadvantageous
stochasticity while they can also exploit stochasticity to cause
diversification of the cell population.

We discovered a new behaviour of two-component systems
that we termed ‘active-state locking’. Active-state locking
transiently creates a bimodal population after a sudden drop in
signal strength. This behaviour can contribute to bet-hedging
strategies where a subpopulation of cells remains active and
‘anticipates’ a return of the signal. One can imagine that this
is advantageous when the ligand signals toxicity. The locked
fraction of the population remains in the ‘safe-mode’ after
the signal decreases and is hence well-prepared if the toxic-
ity level rises again. The remainder of the population loses
the anti-toxic response rapidly after the signal is removed, en-
abling them to free more resources for other metabolic pro-
cesses. In this way, the population as a whole is better pre-
pared for survival in fluctuating and/or heterogeneous envi-
ronments.

To our knowledge, the stochasticity-induced active-state
locking phenomenon has not yet been reported by either the-
oretical or experimental research groups. The lack of exper-
imental evidence may initially raise doubts about the biolog-
ical applicability of our findings. However, there are numer-
ous factors that should be considered. Firstly, the bimodal
population is only transient—unless an active search is made
for this phenomenon, the probability of observation is low.
Secondly, the phenomenon also relies on a saturating signal
strength that causes all R molecules to be phosphorylated and
all S molecules to be either ligand-bound or phosphorylated.
This requires a high signal strength, and is also facilitated if
RT and ST are relatively low. This may not be feasible in all
two-component systems, but suggests a direction for future re-
search.

Several two-component systems are also known to be au-
toregulatory. Our results and those of Ishogin et al.9 and of
Kierzek et al.15 indicate that this property can lead to bista-
bility. Bistability persists even when cell growth and division
effects are (stochastically) accounted for. We found that the
bistability exhibits a growth-rate dependence and is sensitively
dependent on protein production and degradation parameters.
The growth-rate dependence has a particularly interesting in-
terpretation for the case of toxicity sensing. In this case,
the growth-rate dependency may be interpreted as a ‘back-up
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mechanism’ to judge whether or not the cell should respond
to a detected high-toxicity environment. If the growth-rate is
sufficiently fast, indicating that the cell’s metabolism is still
functioning soundly (and little toxin is likely present), then
the system remains in the off-state and the high detected level
of toxicity is treated as a false alarm. For example, a mor-
phologically similar molecule could have been mistaken for
the toxin. Alternatively, if the growth-rate is sufficiently slow,
indicating that the organism has been badly affected, then the
system switches to the active-state, where a large amount of
RP molecules is produced and the cell can respond to the toxic
threat. For intermediate growth-rates bistability exists, lead-
ing to a bimodal population in which a proportion of the cells
are activated while the rest are off—another example of a bet-
hedging evolutionary strategy that helps the species survive in
fluctuating environments.

Experimental evidence for bistability in the autoregulatory
PhoB/PhoR system was obtained by Zhou et al.16, where
flow cytometry data showed bimodal distributions qualita-
tively similar to Fig. 6D. Moreover, Kierzek et al. reproduced
these distributions by using a model accounting for stochas-
ticity in transcription, translation and degradation in growing
cells15. We have incorporated several additional sources of
stochasticity in our more detailed signalling network model,
and showed that the bistability can still be maintained. The ad-
ditional stochasticity arose not just from the inclusion of more
stochastic reactions, but also from more detailed modelling of
cell growth, division and gene expression.

We considered stochasticity of the cellular generation
time, daughter cell volumes, volume-dependent binomial di-
vision of cell contents, and gamma-distributed transcrip-
tion/translation delay times to account for the polymerisation
of each nucleotide/amino acid at an exponentially-distributed
rate. Growth dependence of bistability was also investigated
in a simple synthetic system by Tan et al.13, but is yet to be
found in a natural two-component system. The advantages of
such a system could also lend itself very well to applications
in synthetic biology, where persistence in a fluctuating or het-
erogeneous environment may often be required.

An important feature of our findings is that their qualitative
features are quite robust with respect the reaction rate param-
eters used in our model. Robustness of the steady-state signal
transmission relies on just two assumptions: (1) S and L bind-
ing reactions are relatively fast and (2) autodephosphorylation
reaction rates for RP and SP are relatively low. Active-state
locking and bistability only require the signalling system to
saturate at high signal strengths (i.e. all R molecules are phos-
phorylated, and all S molecules are ligand-bound and/or phos-
phorylated when L is high). Bistability further requires an au-
toregulatory gene network in combination with more stringent
restrictions on the protein production and degradation rates.
It is, however, well established that these rates vary widely

in nature for different signalling systems, depend heavily on
bacterial growth conditions and are easily variable in synthetic
systems17,18. We expect that our results are robust to uncer-
tainties in precise parameter values in the signalling network,
which are often difficult to quantify and control. Furthermore,
our findings are likely broadly applicable to two-component
signal transduction systems in general, both natural and syn-
thetic.

4 Conclusions

The rich and varied dynamics that we report in this study high-
lights the remarkable versatility of a biological sensing sys-
tem that consists of only two components. This suggests a
possible explanation for why two-component systems are so
widespread among prokaryotes and why a single species may
rely on tens of such signalling systems: these systems are reli-
able, versatile and small enough to be rapidly evolvable. Fur-
thermore, it also bodes well for the future of synthetic biology
and minimal cell research, which hope to achieve advanced
functionality using minimally complex building blocks. Fi-
nally, our work demonstrates the importance of conducting
stochastic simulations of molecular circuit models, as they can
uncover startling new dynamics with biological significance—
such as active-state locking—which may not be evident from
deterministic simulations.
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Fig. 1 Network reaction model. The quadrilateral arrowheads indicate the ‘forward’ directions of the (numbered) reactions, while the
triangular arrowheads indicate the reverse directions. Pictorially represented network nodes are treated as individual species in the in silico
model, other reactants are considered to have fixed concentrations in the cell. Rate constants corresponding to each reaction are provided in
Table S1†.
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Fig. 2 Steady-state RP dependence on signal level, L. Deterministic and stochastic simulation results for three different RT values (100, 200,
300) are coloured orange, green and purple respectively. Deterministic results are given by dashed lines, while time-averaged means of
stochastic simulations (calculated over 1000 seconds after the steady-state levels were reached) are plotted with markers. Standard deviations
of the stochastic simulations are also shown as error bars; where they are not visible, they are smaller than the marker size. The mathematical
predictions are also shown as thin back lines. Note that since the concentration of L is considered fixed, the units are arbitrary and hence the
gradient of the linear portion of the plot is also arbitrary. In this study, saturation is reached when L=RT .
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Fig. 3 The response of the system to time-varying signal strengths, where copy numbers of R and S are fixed at 100. The concentration of L,
shown in black, was increased stepwise at 200 second intervals from 1 to 100 a.u., then subsequently decreased. The deterministic prediction
for the output RP concentration is shown in red, and 10 stochastic simulations are shown in blue. The deterministic response time ranges from
20–60 seconds, but for the stochastic simulations active-state locking is seen to occur after L reaches 100 a.u., when saturation occurs.
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Histograms were prepared for time points indicated by colour-coded dashed lines. (B) Histograms for RP numbers at the different time-points,
illustrating the evolution of the transient bimodal population.
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are indicated in seconds, and modelled by gamma distributions in the stochastic simulations. Protein folding times are assumed to be
negligible relative to the translation time.
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Fig. 6 Bistability in the full autoregulatory model. (A) RP production and degradation rates, given by the positive and negative terms in
Equation 1 respectively. Where production and degradation rates intersect, a steady-state RP level is reached. (B) The total rate of change in
[RP] (Equation 1), for saturating signal strengths and parameters permitting bistability. The first and last fixed points are stable, while the
central one is unstable, separating the basins of attraction for the two stable states. (C) 20 stochastic simulations with an initial condition
RP=70 (close to the unstable point) illustrate the bistability in the system, as trajectories may tend towards either the upper or the lower steady
state when they are stochastically pushed into either basin of attraction. (D) Histogram of RP levels after 16.66 hours for 3000 stochastic
simulations, revealing a bimodal population. The first bin had a count of 2046, but the total height was cut in the figure for clarity.
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Fig. 7 10 stochastic simulations with two different initial conditions, demonstrating bistability in the system without (A-B) and with cell
division (C-D). Switching between the two stable states is occasionally enabled by stochasticity. (A) Initial RP population is low, so the
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output is biased towards the active-state.
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