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Abstract  25 

The well-studied plant pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) 26 

synthesizes the biotechnologically important polysaccharide xanthan gum, which is also 27 

regarded as a virulence factor in plant interactions. In Xcc, sugars like glucose are utilized as 28 

a source to generate energy and biomass for growth and pathogenicity. In this study, we used 29 

[1-13C]glucose as a tracer to analyze the fluxes in the central metabolism of the bacterium 30 

growing in a minimal medium. 13C-Metabolic flux analysis based on gas chromatography–31 

mass spectrometry (GC-MS) confirmed a prevalent catabolic role of the Entner-Doudoroff 32 

pathway. Comparative nuclear magnetic resonance (NMR)-based isotopologue profiling of a 33 

mutant deficient in glycolysis gave evidence for a moderate flux via glycolysis in the wild-34 

type. In addition to reconfirming the Entner-Doudoroff pathway as catabolic main route, this 35 

approach affirmed a numerically minor but important flux via the pentose phosphate pathway. 36 

 37 

 38 

 39 
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Introduction 43 

Gram negative bacteria of the genus Xanthomonas are plant pathogens that cause substantial 44 

losses in many crop plants like rice and citrus plants 1. The γ-proteobacterium Xanthomonas 45 

campestris pv. campestris (Xcc) is the causal agent of the black rot disease of crucifers 46 

including the model plant Arabidopsis thaliana 2. Like many other xanthomonads, Xcc 47 

spreads in the xylem before affecting other tissues of its host plants. Xcc synthesizes an 48 

exopolysaccharide termed xanthan gum that is a common feature of the genus Xanthomonas 49 

and assumed to have a role in plant pathogenicity 3–5. Xanthan is produced biotechnologically 50 

and used widely as a thickener in the food, cosmetics, and oil drilling industries 6, usually by 51 

large-scale fed-batch cultivation of Xcc 7,8. The production of xanthan gum increased 52 

significantly during the last years. In 2008, the worldwide consumption of xanthan gum was 53 

assumed to be 90,000 tons 9. Knowing the metabolic fluxes that provide the hexose phosphate 54 

precursors of the polysaccharide is important to better understand the role of xanthan 55 

biosynthesis in plant infection and to further improve the yields in xanthan production. 56 

Sugars like glucose are used as major carbon sources for Xcc fermentation 9. To import and 57 

activate glucose, at least two pathways exist in Xcc. Either, glucose can be imported directly 58 

followed by phosphorylation by a glucokinase (EC 2.7.1.2) 10 generating glucose 6-59 

phosphate, or glucose is metabolized via a periplasmic oxidative pathway 11. However, this 60 

periplasmic pathway was assumed to play a minor role in Xcc 12 and hence was not in the 61 

focus of this study. Via both routes, glucose is finally converted into 6-phosphogluconate, 62 

which can be further metabolized via the pentose phosphate (PP) pathway or via the prevalent 63 

Entner-Doudoroff (ED) pathway 13,14. Glyceraldehyde 3-phosphate delivered by these 64 

pathways can be further converted via the Embden-Meyerhof-Parnas pathway (EMP; 65 

glycolysis) 12. Alternatively, glyceraldehyde 3-phosphate resulting from activity of ED 66 

pathway enzymes could enter a “hexose cycle”, in which it is used to re-synthesize glucose 6-67 

phosphate via the gluconeogenic activities of fructose-bisphosphate aldolase (EC 4.1.2.13), 68 

fructose 1,6-bisphosphatase (EC 3.1.3.11), and glucose 6-phosphate isomerase (EC 5.3.1.9) 69 
15,16. The Xanthomonas EMP pathway appeared to be incomplete in several studies as no 70 

activity was observed for the key enzyme phosphofructokinase (PFK) 11,17,18. In contrast, a 71 

functional analysis of the Xcc genome 19 revealed the presence of a conserved pfkA gene 72 

similar to genes coding for phosphofructokinases. The product of this gene was recently 73 

identified as a pyrophosphate-dependent PFK which is conserved in other xanthomonads 20. 74 
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On the basis of Xcc B100 genome data 19, a large-scale model was established of the Xcc 75 

metabolism and applied for flux balance analysis (FBA) 21, thereby exceeding in scope a 76 

pioneering FBA model established previous to the availability of Xanthomonas genome data 77 
12. The large-scale FBA model 21 comprised 352 genes and 437 biochemical reactions 78 

including the PP pathway, the ED pathway, the EMP pathway, amino acid biosynthetic 79 

pathways, amino sugar and nucleotide sugar metabolism, fatty acid biosynthesis, 80 

lipopolysaccharide biosynthesis, nitrogen and sulfur metabolism, as well as peptidoglycan 81 

biosynthesis, glycogen biosynthesis, and carbohydrate uptake systems for glucose, gluconate, 82 

fructose, sucrose, mannose, galactose, and N-acetylglucosamine. FBA based on this model 83 

facilitated the prediction of individual flux rates for all individual reactions covered by the 84 

model. This metabolic network was holistically validated by appropriate experiments that 85 

included growth analysis on different carbon sources and phenotypic analyses of deletion 86 

mutants 21. However, such a validation can provide no evidence regarding the reliability of 87 

flux predictions for individual reactions, nor does it deliver precise predictions of absolute 88 

flux rates due to lack of information related to bidirectional reactions, metabolic cycles, or 89 

parallel pathways 22. 90 

In order to more directly determine metabolic fluxes in the central carbon metabolism, we 91 

performed labeling experiments using [1-13C]glucose as sole carbon source for growing Xcc. 92 

Recently, this technique 22–25 has been demonstrated to be useful for Xcc when amino acid 93 

biosynthetic pathways were identified on the basis of the label distribution in protein-derived 94 

amino acids 13. In a subsequent study, we determined the biomass composition of Xcc B100 95 

to employ it for FBA 21, gaining thereby fundamental data that is beneficial for metabolic flux 96 

analysis. In this study, we have used GC-MS-derived labeling data for a more detailed study 97 

of metabolic flux that also considered extracellular fluxes like glucose uptake and xanthan 98 

production. For this purpose, the demand of metabolic precursors for the Xcc biomass was 99 

determined and the mass isotopomer distributions (MIDs) of 11 amino acids were measured 100 

to facilitate 13C metabolic flux analysis. We presume this is the first application of 13C-based 101 

metabolic flux analysis for a bacterium of the genus Xanthomonas. Moreover, the role of 102 

central metabolic pathways was elucidated in more detail by NMR-based isotopologue 103 

profiling. Besides the Xcc B100 wild-type, a mutant strain deficient in the 104 

phosphofructokinase gene was analyzed to shed more light on metabolic processes related to 105 

glucose utilization in Xcc. 106 
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Results and Discussion 107 

Establishment of the metabolic model for flux analysis based on 13C-labeled glucose 108 

To analyze the carbohydrate flux in Xcc, a reaction network of the primary metabolism was 109 

reconstructed to establish a metabolic model for utilization with the OpenFLUX software 26. 110 

For this purpose, data was used from genome annotation based on the sequencing of strain 111 

Xcc B100 19. The data considered the complete enzyme sets of three main pathways for 112 

glucose catabolism, namely the ED, PP, EMP pathways, the citrate cycle and reactions toward 113 

nucleotide sugars precursor metabolites of xanthan as a basis of the metabolic network. 114 

Information on the stoichiometry and reversibility of the reactions was adopted from the 115 

recently established large-scale metabolic network of Xcc that had been used initially to 116 

facilitate FBA modeling 21. The biosynthetic pathways of amino acids were included as 117 

lumped reactions, meaning that unbranched sequences of multiple in vivo reactions were 118 

condensed to single reactions if the relevant atom compositions within these reactions did not 119 

change. Lumped reactions were included for alanine, valine, aspartate, glutamate, serine, 120 

phenylalanine, glycine, tyrosine, threonine, isoleucine, histidine, lysine, and leucine. The 121 

metabolic network including all reactions was translated into an Excel sheet (Suppl. Table 1). 122 

For 13C-flux analysis, atom transitions were defined for all reactions 26. Furthermore, co-123 

factors were included for all relevant reactions. Whenever possible, sets of subsequent 124 

enzymatic reactions were represented as condensed reactions when there were no changes in 125 

the atom transition. The resulting network model consisted of 79 reactions and 48 intracellular 126 

metabolites, among them 13 amino acids, plus two extracellular metabolites, namely glucose 127 

and CO2 (Fig. 1, Suppl. Table 1).  128 

To facilitate 13C-metabolic flux analysis using the OpenFLUX software 26, information on the 129 

stoichiometric demand was required in addition to the metabolic model. To determine the 130 

precursor drain toward biomass generation, the anabolic precursor demand (Table 1) was 131 

calculated based on requirements for cellular building blocks. For this purpose, the recently 132 

established biomass composition of Xcc B100 21 was taken into account. Details are given in 133 

the methods section. The Xcc biomass is composed of about 0.49 g proteins per g cell dry 134 

weight (CDW), 0.16 g RNA per g CDW, 0.04 g DNA per g CDW, 0.13 g lipids per g CDW, 135 

and 0.033 g LPS per g CDW. The fatty acid composition for Xcc was obtained from MIDI 136 

(MIDI Sherlock TSBA40 library, version 4.10.,1/28/1999, MIDI Inc., 125 Sandy Drive, 137 

Newark, DE, 19713, USA). The data correlated well with fatty acid composition results 138 
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determined earlier for Xcc 27,28 and ranged from C10:0 (decanoic acid) to C18:1 (ω9-139 

octadecenoic acid and ω7-octadecenoic acid). The most abundant fatty acid was 13-methyl 140 

tetradecanoic acid that was represented with a percentage of 23.28 %. 141 

 142 

GC-MS based analysis of the metabolic flux in Xcc B100 143 

To determine flux values for each individual reaction represented in the reconstructed 144 

metabolic network, Xcc B100 was cultivated in minimal medium containing 0.3% [1-145 
13C]glucose as sole carbon source. Xcc cells were harvested after 34 h, in the exponential 146 

growth phase. The cell pellet was hydrolyzed and the resulting amino acids were analyzed as 147 

t-butyldimethylsilyl (TBDMS) derivatives via GC-MS. The data obtained from GC-MS 148 

measurements were analyzed using the MeltDB software 29 to determine the mass isotopomer 149 

distributions of the amino acid derivatives. The established Xcc OpenFLUX model was 150 

applied to calculate metabolic fluxes. The glucose consumption rate had been determined as 2 151 

mmol glucose g-1 h-1, the xanthan pentasaccharide production rate was 0.198 mmol g1 h1 and 152 

the specific growth rate was 0.05 h-1 21. 153 

The metabolic model consisted of 79 reactions and 42 balanced metabolites (Suppl. Table 1). 154 

The network had 24 degrees of freedom that are called ‘basis’ in the OpenFLUX 26 155 

terminology. These free independent flux parameters of the model are displayed in Suppl. 156 

Table 1. Fourteen of the OpenFLUX model bases were determined experimentally. One basis 157 

was the glucose uptake rate, which had been determined to be 2 mmol g-1 h-1 21. The glucose 158 

uptake rate was set as a reference with a value of 100 and all flux values were specified 159 

relative to this glucose uptake rate. The indicated relative flux values can be converted 160 

numerically into absolute flux values in mmol g-1 h-1 by dividing the given relative flux values 161 

by 50. Ten bases were derived from the anabolic precursor demand for glucose 6-phosphate, 162 

fructose 6-phosphate, ribose 5-phosphate, erythrose 4-phosphate, glyceraldehyde 3-163 

phosphate, glycerate 3-phosphate, pyruvate, acetyl-CoA, oxaloacetate, and 2-oxoglutarate. A 164 

flux of 5.5 was determined as drain toward biomass and a flux of 7.99 was defined by the 165 

xanthan pentasaccharide unit production rate. Of the remaining eleven fluxes, seven were 166 

associated with reversible reactions. In the OpenFLUX model, for each reversible in vivo 167 

reaction like that catalyzed by glucose 6-phosphate isomerase, two distinct reactions are 168 

defined, one for each direction. The reverse reaction was always assigned as an additional 169 

individual basis, as reversibility of a reaction adds an additional degree of freedom to the 170 
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model 26. Four bases were assigned to the reactions catalyzed by phosphogluconate 171 

dehydrogenase (v11),  6-phosphogluconate dehydratase (v18), isocitrate lyase (v25), and  172 

malate dehydrogenase (35), respectively, representing branching points in the metabolic 173 

network.  174 

To facilitate the calculation of absolute fluxes within the metabolic network, mass isotopomer 175 

distributions (MIDs) were measured and included in the OpenFLUX model as additional 176 

constraints in the network besides reaction stoichiometries, reaction directions, and metabolite 177 

uptake and excretion rates. MIDs were obtained for eleven amino acids, namely for alanine, 178 

valine, threonine, glutamine, serine, phenylalanine, glycine, tyrosine, leucine, isoleucine, and 179 

asparagine (Table 2). The MIDs for the respective amino acid fragments were determined by 180 

GC-MS using selective ion monitoring (SIM) of derivatized amino acids. All MIDs were 181 

determined as mean values from three biological replicates with two technical replicates. 182 

Measured and simulated amino acid mass isotopomer fractions are compared in Table 2.  183 

For each reaction of the metabolic network, the flux was determined in a stochastic approach 184 

based on Monte Carlo simulations, thereby providing for all reactions individual confidence 185 

intervals in addition to optimal flux values that give the best fit between the simulated and the 186 

measured data (Table 3). Subsequently, we used the Markov Chain Monte Carlo sensitivity 187 

analysis30  to determine confidence intervals by means of  OpenFlux26 (Table 3). In addition, 188 

a non-linear algorithm31 was applied with results that are detailed in Supplementary Table 2. 189 

Hence, two algorithms were used for confidence interval determination by means of 190 

OpenFlux26. The results of both computational approaches conform extensively, thereby 191 

mutually confirming their results. Calculated flux optima are not identical but always lie 192 

within the confidence intervals of the other approach.  193 

The optimal flux values as determined by the non-linear algorithm were mapped to a 194 

graphical representation of the Xcc central carbon metabolism (Fig. 1). The visualized data 195 

clearly indicates that after its import into the cell, glucose is mainly catabolized via the 196 

Entner-Doudoroff (ED) pathway (81). In contrast, a low flux via the pentose phosphate (PP) 197 

pathway (9.42) resulted for the gluconate dehydrogenase reaction. The flux through the PP 198 

pathway was in a dimension sufficient to meet anabolic demand for biomass precursors, such 199 

as histidine and aromatic amino acids 32. The transketolase reaction (reactions v11/ v12) turned 200 

out to be reversible. Besides using the ED and PP pathways, a small mass flux was apparently 201 

calculated for glucose catabolism via the PFK reaction of the Embden-Meyerhoff-Parnas 202 
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(EMP) pathway. Based on the GC-MS data, the Monte Carlo simulation for the 203 

phosphofructokinase reaction resulted in a confidence interval ranging from 1.22 to 6.05 204 

(Monte Carlo analysis) and 1.7 to 2.8 for non-linear analysis for the flux via this reaction.  205 

Flux analysis revealed a high TCA cycle flux in Xcc. Besides being the supply for further 206 

biomass precursors, the TCA is the origin of multiple amino acids. There was apparent flux 207 

along the glyoxylate shunt, although the numerical results were not significant (Table 3). The 208 

confidence interval for the glyoxylate reactions ranged from 0 to 3.78 when calculated using 209 

the Monte Carlo Markov Chain algorithm or from 0 to 3.3 for non-linear analysis (Suppl. 210 

Table 2), respectively. The phosphogluconate dehydratase (Edd) reaction of the ED pathway, 211 

the reactions of the lower glycolysis pathway and TCA reactions had rather narrow 212 

confidence intervals. In contrast, the confidence intervals of the phosphoglucose isomerase, 213 

phosphofructokinase reactions and of the malate dehydrogenase and phosphoenolpyruvate 214 

carboxylase were rather wide.  215 

Hence, the GC-MS based flux data demonstrated a metabolic flux originating from imported 216 

glucose mainly via the ED pathway and lower glycolytic reactions toward the citrate cycle. 217 

Moderate fluxes occurred in the PP pathway, the upper glycolytic pathways represented by 218 

the PFK reaction and the glyoxylate shunt, but in these cases the reliability of the data 219 

suffered from uncertainties that got apparent in substantial confidence intervals. 220 

 221 

Evidence from NMR-based analyses for EMP activity in Xcc B100  222 

13C-Flux modeling based on GC-MS of 13C-labeled amino acids suggested a minor flux via 223 

glycolysis in Xcc. In order to further validate this result, we employed NMR spectroscopy to 224 

analyze in detail the positional 13C-enrichments in amino acids originating from [1-225 
13C]glucose that was provided as carbon source during cultivation. Data were determined 226 

comparatively for the Xcc B100 wild-type and a mutant strain derived from Xcc B100 that 227 

was devoid of the phosphofructokinase gene, pfkA, encoding this key enzyme of glycolysis 20. 228 

In both strains, the major 13C-enrichments (> 38 %) were found at positions reflecting carbon 229 

flux via the ED pathway (Table 4, Fig. 2). More specifically, the 13C-label at C-1 of alanine 230 

clearly indicated formation of pyruvate (acting as precursor for alanine) by conversion of [1-231 
13C]glucose into [1-13C]pyruvate and unlabeled glyceraldehyde phosphate via the 232 

intermediates [1-13C]6-phosphogluconate and [113C]2-oxo-3-deoxy-6-phosphogluconate. 233 

Notably, [1-13C]pyruvate was converted into unlabeled acetyl-CoA by decarboxylation, and, 234 
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not surprisingly, amino acids derived from intermediates of the citrate cycle were only weakly 235 

labeled. This confirmed the notion that there was no major carbon flux from pyruvate to 236 

oxaloacetate, which would have resulted in [1-13C]-labeled oxaloacetate, aspartate, and 237 

threonine. As shown in Table 4, these specimens were not present in samples derived from 238 

the Xcc B100 wild-type and found only in low amounts (< 4 % 13C-enrichment) in samples of 239 

the PFK mutant strain. Taken together, this data indicate that the main pathway of glucose 240 

utilization is the Entner-Douderoff pathway (> 90 %) and that oxaloacetate is not formed by 241 

anaplerotic reactions.  242 

We also noticed minor 13C-enrichment (2.9 %) at position 3 of alanine from the wild type 243 

strain. This C3-label suggested some carbon flux either via the non-oxidative pentose-244 

phosphate pathway or via the Embden-Meyerhof-Parnas pathway (glycolysis) (Suppl. Fig. 2). 245 

By means of the initial reactions of glycolysis, [1-13C]glucose was deduced to be converted 246 

into [313C]dihydroxyacetone phosphate. Catalytic action of triose phosphate isomerase results 247 

in [313C]glyceraldehyde phosphate. The latter species yields [3-13C]3-phosphoglycerate, [3-248 
13C]phosphoenol pyruvate, [3-13C]pyruvate, and the cognate [3-13C]alanine (Suppl. Fig. 2). 249 

Scrambling of the 13C-label is also expected on the basis of carbon flux from [1-13C]pyruvate 250 

produced by the ED pathway into [3,4-13C1]hexose phosphates and [1-13C]3-phosphoglycerate 251 

via glycolytic cycling. Indeed, label was detected at both C-1 and C-3 of serine from the wild-252 

type strain, reflecting a mixture of both [1-13C]- and [3-13C]-isotopologues for the serine 253 

precursor, 3phosphoglycerate. Presence of both serine species can therefore be taken as 254 

fingerprints for a flux contribution of the glycolytic pathway acting in both directions. 255 

Interestingly, 13C flux modeling conducted with gluconeogenic reactions did not reveal flux 256 

via this route. Final confirmation of the functional role of glycolysis in Xcc was elucidated on 257 

the basis of alanine and serine profiles obtained from the mutant strain lacking the 258 

phosphofructokinase gene (Table 4). In two independent labeling experiments, serine was 259 

found apparently unlabeled in the mutant strain. The label at position 3 of alanine was 260 

significantly decreased (from 2.9 to 1.8 % 13C). In conclusion, the NMR analysis confirmed 261 

the major fluxes in the OpenFLUX model calculations with the direct determination of a 262 

minor flux contribution (< 10 %) in glucose degradation by glycolysis probably including 263 

glycolytic cycling. This is consistent with the recent functional characterization of the Xcc 264 

B100 phosphofructokinase 20, thereby confirming that a complete set of EMP enzymes is 265 

available in xanthomonads.  266 
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Hence, our data show flux via the forward PFK reaction in Xcc, concluding that all three main 267 

pathways for glucose catabolism, the ED pathway, the PP pathway, and the EMP pathway, 268 

are active in Xcc. The availability and parallel activity of three catabolic pathways is an 269 

unusual feature. In particular, it seemed unusual that the ED pathway is the prevalent route for 270 

glucose catabolization while glycolysis is available. Considering efficiency of ATP 271 

production, glycolysis is the most efficient pathway for glucose catabolism. This leads to the 272 

question why Xcc predominantly uses the Entner-Doudoroff pathway instead of glycolysis. 273 

The kinetic constants determined for the Xcc PFK clearly reflect a minor processivity of that 274 

enzyme. Actually, the PFK had some non-canonical features as it uses pyrophosphate as 275 

cosubstrate and had no indications for allosteric regulation contrasting in these aspects to 276 

conventional ATP-dependent PFKs. Flux via glycolysis may be limited due to this low 277 

processivity of the Xcc PFK. Based on profound analysis of other bacteria it is quite doubtful 278 

whether regulation at the transcriptional level might compensate for the low enzymatic PFK 279 

activity to a degree that evokes metabolic effects on the level of flux distribution 33,34. A 280 

hypothesis to elucidate a prevalent role of the ED pathway in glucose catabolization assumes 281 

that organisms that use the ED pathway are not dependent on living in energy-limited 282 

environments so that efficiency in ATP generation is not significantly advantageous for them 283 
35. This was first discussed for Zymomonas mobilis, a Gram-negative proteobacterium that 284 

constitutively uses the ED pathway. It was found in warm climates associated with plants 285 

harboring a high sugar content in their xylem sap 36. Xanthomonads are plant pathogenic 286 

bacteria and Xcc initially grows in xylem sap of Brassicaceae before it invades other plant 287 

tissues in the course of infection. GC-MS analysis revealed in xylem sap of the Xcc host plant 288 

Brassica olerace diverse sugars and organic acids 37,38. But in particular when plant defense is 289 

overpowered by the pathogen attack and xanthomonads advance from the xylem toward 290 

surrounding tissues, a wealth of metabolic resources from the host plant is likely to get 291 

available to them. Xanthomonads have diverse degradative exoenzymes available 39 plus a 292 

wide range of import systems in both cellular membranes 19,40 to scavenge such resources 293 

toward their central metabolism. Under such circumstances, tremendous viable bacterial titers 294 

are observed for Xcc in planta 41. Hence, akin to Z. mobilis, utilizing the ED pathway for 295 

glucose catabolism could be an adaptation to a nutrient-rich environment. However, when 296 

seeing carbon utilization in a wider perspective it may be meaningful that Xcc imports the 297 

carbon sources sucrose, malate, citrate and amino acids prior to importing fructose and 298 

glucose when these compounds are available in parallel 42. Thus, Xcc metabolism is not likely 299 

to be optimized toward growth on glucose as carbon source. Likewise, diauxic growth of 300 
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Pseudomonas on glucose and succinate revealed that succinate is preferred as carbon source 301 

and genes encoding glucose catabolizing enzymes are repressed in this organism until 302 

succinate is consumed 43,44.  303 

Still, rather few bacteria are known to use the ED pathway, the PP pathway, and the EMP 304 

pathway in parallel as Roseobacter denitrificans 45. For some of these and for additional 305 

bacteria that highly employ the ED pathway there is quantitative data for the individual 306 

contributions of these pathways to glucose utilization (Table 5). A genomic analysis indicated 307 

a particular prevalence of the ED pathway in aerobic bacteria 56. The ED pathway generates 308 

NADPH as reducing equivalents instead of NADH that is generated by the EMP pathway. 309 

While NADPH provides reducing equivalents for biosynthetic reactions, biosynthesis of ED 310 

pathway enzymes is expected to require substantial fewer metabolic resources to achieve the 311 

same glucose conversion rate as the EMP pathway 56. Moreover, recent experimental findings 312 

from a taxonomically close proteobacterium remind of another advantage the ED pathway 313 

provides. Chavarría et al. have analyzed the effect of artificially enabling EMP activity in 314 

Pseudomonas putida, an organism that like Xcc mainly uses the ED pathway to catabolize 315 

glucose57. They introduced a transgenic phosphofructokinase from Escherichia coli into 316 

P. putida. The transgenic P. putida cells became highly sensitive to hydrogen peroxide; 317 

thereby pointing to the role of the ED pathway in NADPH generation, as NADPH is utilized 318 

not only for biosynthetic reactions but also for the detoxication of reactive oxygen species 319 

(ROS)58. Likewise, the introduction of a transgenic pyrophosphate-dependent 320 

phosphofructokinase did not result in noticeable EMP activity in Z. mobilis, possibly due to 321 

interference with redox balancing59. As deduced for the engineered P. putida cells 57, support 322 

for effective detoxication of ROS by ED pathway activity may be a key advantage also for 323 

Xcc, in particular in pathogenic interactions with plants. 324 

It is tempting to compare the flux data provided by this 13C metabolic flux analysis to 325 

predictions determined recently by FBA for the central metabolism of the same Xcc wild-type 326 

strain B100 21. Both complementary techniques 60 provide similar results in the case of Xcc. 327 

Yet, results from this study provide a potential to further enhance the FBA model in a subtle 328 

way by including experimentally determined fluxes as constraints for individual reactions 61. 329 

Such combining of the strengths of both approaches could not only obtain a clearer 330 

perspective of the Xcc metabolism. Conducting isotopically non-stationary 13C-labeling 331 

experiments might be a promising next step to study the dynamics of the Xcc carbohydrate 332 

metabolism in more detail 62–64 besides extending the Xcc metabolic model to fully consider 333 
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co-factor balancing. In particular, it would be of interest to obtain an initial grasp of the 334 

dynamic in planta metabolism of phytopathogenic bacteria like xanthomonads. Thereby, 335 

perhaps not only from an evolutionary point of view, it may become interesting to compare 336 

the flow of reducing equivalents in the interaction of plant and bacterial pathogen with data 337 

emerging for phototrophic bacteria 65. Likewise, based on a deeper understanding of 338 

metabolic fluxes in Xcc, it may be possible to elucidate for xanthomonads the presence of 339 

“flux sensors” 34 that were recently found to regulate metabolism in response to actually 340 

occurring metabolic fluxes in E. coli cells.  341 

Experimental 342 

Strains and molecular biology 343 

Strains studied in this work are the Xanthomonas campestris pv. campestris B100 wild-type 344 
19,66 and a mutant strain B100∆pfkA wherein the pfkA gene encoding a well-conserved 345 

phosphofructokinase was deleted 21
. Xcc cells were grown in rich TY medium containing 5 g 346 

of tryptone, 3 g of yeast extract, and 0.7 g of CaCl2 per l 67. When required, the antibiotic 347 

streptomycin (Sm) was added to the media in a concentration of 800 µg/ml. Pre-cultures were 348 

cultivated in the modified minimal medium XMD 21 supplemented with 0.3 % glucose. XMD 349 

medium contained per liter 1 g of K2HPO4· 3 H2O, 1 g of KH2PO4, 0.6 g of KNO3, 0.25 g of 350 

MgSO4· 7 H2O , 0.1 g of CaCl2· 2 H2O, and 0.2 µg of FeCl3. To start cultivation for the 351 

labeling experiment, pre-culture was used as inoculum in a volume of one tenth of the final 352 

volume, resulting in a minor contamination of unlabeled biomass and glucose. For the 353 

labeling experiment, Xcc cells were grown in XMD minimal medium with 0.3% [1-354 
13C]glucose (99% 13C enrichment, Euriso Top GmbH, Saarbrücken, Germany). Xcc cells 355 

were incubated in Erlenmeyer flasks at 30°C, shaking at 180 rpm. After 34 h, bacteria were 356 

harvested in the exponential growth phase (OD 0.8) by centrifugation at 20,000 × g, washed 357 

with isotonic buffer saline (0.9% NaCl), frozen in liquid nitrogen and finally lyophilized as 358 

described previously13. The lyophilized cell pellet was treated and subjected to GC-MS and 359 

NMR analysis as described below. 360 

 361 

GC-MS and fluxome analysis 362 

For the GC-MS-based metabolic flux analysis, the lyophilized cell pellet was hydrolyzed and 363 

the derived amino acids were converted into t-butyldimethylsilyl (TBDMS) derivatives as 364 
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described previously 47,68. Briefly, 4 to 5 mg of the cell pellet was hydrolyzed with 250 µl 6 M 365 

HCl and incubated at 110°C for 4 hours. The hydrolysates were neutralized by addition of 366 

NaOH and filtered using a 0.2µm centrifuge filter device (Ultrafree MC, Merck Millipore, 367 

MA, USA). Samples were dried by a stream of nitrogen and derivatized at 80°C by addition 368 

of 250 µl N,N-dimethylformamide (Carl Roth, Karlsruhe, Germany) with 0.1 % (v/v) pyridine 369 

and 50 µl N-methyl-tert-butyldimethylsilyl-trifluoracetamide (Macherey-Nagel, Düren, 370 

Germany) for 60 min. For the GC-MS analysis, 1 µl of sample was injected to a GC-MS G-371 

CQ system (Thermo Finnigan, Waltham, MA, US). GC-MS conditions were used as 372 

described previously 69. Samples were first measured in scan mode to check for other sample 373 

components. Subsequently, the relative fractions of different mass isotopomers (M0, M1, …, 374 

Mn) were measured in triplicates with selective ion monitoring (SIM). The resulting data was 375 

converted to cdf format using the Xcalibur software (Thermo Finnigan, Waltham, MA, USA). 376 

The data was imported to the MeltDB software 29 that has been recently enhanced and 377 

extended 70. Thereby, targeted fragments of metabolites from the Xcc metabolism were 378 

verified based on retention times and mass values expected from the SIM measurements. 379 

Chromatographic peak detection was performed in MeltDB and the mass isotopomers at the 380 

apex of identified chromatographic peaks were extracted from raw measurement data. For 381 

flux analysis, it is important to correct MS raw data for the contribution of naturally abundant 382 

isotopes 71. Specific interactive software is available for such purposes 72, but to streamline 383 

data processing respective functionality has been integrated into MeltDB 29. By means of this 384 

added functionality, the mass isotope distribution (MID) was corrected for naturally occurring 385 

isotopes when using the MeltDB tool "13C flux analysis" and exported as Excel worksheets. 386 

 387 

Establishment of the metabolic network and calculation of metabolic fluxes 388 

A model for the Xcc B100 central carbohydrate metabolism that includes atom transitions 389 

(Suppl. Table 1) was built with Excel for the 13C flux modeling software OpenFLUX 26. 390 

Carbon metabolite requirements for cell growth (Table 1) were calculated 73 from the 391 

experimentally determined biomass composition of Xcc 21 by using known anabolic pathways 392 
21. Co-factors were added to all relevant reactions as recently conducted for another organism 393 
74, thereby using NADH for modeling also for NADP-depending reactions. The Xcc biomass 394 

is composed of 0.49 g per g CDW proteins, 0.16 g per g CDW RNA, 0.04 g per g CDW 395 

DNA, 0.13 g per g CDW lipids, and 0.033 g per g CDW LPS. The fatty acid composition was 396 
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obtained from MIDI (MIDI Sherlock TSBA40 library, version 4.10.,1/28/1999, MIDI, 397 

Inc.,125 Sandy Drive, Newark, DE, 19713, USA, Xanthomonas-campestris-campestris). For 398 

substrate consumption, xanthan production, and specific growth rates had been 399 

experimentally determined previously as 2 mmol glucose g-1 h-1, 0.198 mmol pentasaccharide 400 

g-1 h-1, and 0.05 h-1, respectively 21, and were now applied as inputs for the model 75. Outputs 401 

of biomass precursors were determined by multiplication of the anabolic demand by the 402 

specific growth rate 75. The glucose uptake in the model was set to 100 to obtain relative flux 403 

values for glucose uptake. The carbon flux at each step of the pathway was determined by 404 

assuming that metabolite pools did not vary within steady-state cultures. The corrected MIDs 405 

obtained from MeltDB were included in the model. For visualization, the predicted fluxes 406 

were imported into ProMeTra 76 and the values were mapped onto the metabolic network of 407 

Xcc (Fig. 1). 408 

The intracellular fluxes were determined by metabolite and isotopomer balancing via the 409 

reaction network regarding the atom transitions of the reactions. The unknown free fluxes 410 

were calculated using a nonlinear least-squares fitting procedure. Starting from random 411 

numbers, it calculates MID and flux values from the available data by variation of the free 412 

fluxes in an attempt to minimize the deviation between experimental and simulated MIDs 413 
26,77. Establishment of the metabolic network and flux calculations were performed using the 414 

OpenFLUX 26 modeling software which is based on elementary metabolite units 78. In this 415 

work, 55 mass isotopomer fractions were regarded (Table 2). To account for measurement 416 

errors, MS analysis considered data from three biological replicates with at least two technical 417 

replicates. The reversible reactions of the lower glycolysis reactions glyceraldehyde 3-418 

phosphate dehydrogenase (EC 1.2.1.12, gapA), phosphoglycerate kinase (EC 2.7.2.3, pgk), 419 

phosphoglycerate mutase (EC 5.4.2.1, gpm1, gpm2), and phosphopyruvate hydratase (EC 420 

4.2.1.11, eno1, eno2) were transformed to unidirectional reactions, since they are supposed to 421 

exclusively facilitate glycolytic reactions when grown on glucose as sole carbon source 79–81. 422 

Parameter estimation was performed ten times with 50 iterations. The goodness of fit was 423 

evaluated with a χ2-test regarding the obtained minimal sum of squares. Statistical analysis 424 

was conducted using a Monte Carlo approach 30. Experimental errors encountered when mean 425 

values were determined in the GC-MS measurements were included as random errors in the 426 

analysis, thereby assuming a normal distribution of measurement errors in previously 427 

obtained mean values. With the Markov Chain Monte Carlo approach 30 a 95% confidence 428 

interval was determined for the variable values of those fluxes that are not predefined by the 429 
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precursor drain (Table 3). Results were confirmed by a second, independent approach using a 430 

non-linear approach developed by Antoniewicz et al 31 implemented in the OpenFlux software 431 

(Supplementary Table 2 and Fig. 1). 432 

 433 

NMR-based 13C-isotopologue profiling of amino acids from X. campestris pv. 434 

campestris wilde-type and a PFK deletion mutant 435 

For NMR analysis, about 200 mg of Xcc cells (dry weight) were hydrolyzed and processed as 436 

described previously 13,82 . Briefly, amino acids from the acidic cell hydrolysates were 437 

purified by cation exchange chromatography. Fractions containing specific amino acids were 438 

subsequently dried under reduced pressure. The residues were dissolved in D2O/DCl (pH 1) 439 

and subjected to quantitative NMR spectroscopy using a 500 MHz Bruker instrument 440 

equipped with a dual 13C-1H probe head. Positional 13C-enrichments were calculated from the 441 

NMR signal integrals as described before 13,82,83. For each strain, two independent biological 442 

replicates were analyzed. 443 

 444 
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Conclusions 445 

To our knowledge, the 13C metabolic flux analysis of Xcc presented here is the first 446 

application of this experimental approach to determine metabolic rates in the 447 

Xanthomonadaceae clade, which includes a wide range of plant pathogens, several of which 448 

are agriculturally relevant being causal agents of plant diseases that lead to severe losses of 449 

important crops 1. Our study combines two complementary techniques, GC-MS-based 13C 450 

metabolic flux analysis and NMR spectroscopy-based 13C-isotopologue profiling 84–86, both 451 

tracing [1-13C]glucose-derived metabolic intermediates, to obtain a more detailed view on the 452 

Xcc central metabolism and its key enzymatic interconversions. The consistent findings of 453 

both approaches are mutually affirmative. Likewise, vast agreement with results from a recent 454 

FBA analysis 21 does not only widely confirm the FBA predictions but is also a good 455 

indication for the reliability of this 13C metabolic flux analysis. Extensive accordance with 456 

outcomes from earlier studies that indicated prevalence of the ED pathway in Xcc on the basis 457 

of other techniques 11,12,14,17,18 further confirms the applicability of 13C metabolic flux analysis 458 

to xanthomonads. Hence, this study clearly indicates that xanthomonads utilize glucose 459 

mainly via the ED pathway, in minor amounts via the PP and EMP pathways. Adjusting 460 

previous conceptions, xanthomonads use the EMP pathway in minor extent as determined by 461 

our flux measurement in vivo. However, EMP fluxes via the EMP pathway were low. 462 

Physiological interpretation of these results is challenging, as glucose might play a minor role 463 

as C-source in natural habitats of xanthomonads. Yet, a deeper understanding of metabolic 464 

fluxes originating from glucose as intended to be initiated by this first 13C metabolic flux 465 

analysis of Xanthomonas is important, not only due to the paramount role of glucose in 466 

experimental approaches aiming at fundamental insights into the metabolism, but also due to 467 

the prevalent use of glucose as carbon source in large-scale industrial cultivation of Xcc for 468 

xanthan production 6,9. Future research might expand this work by applying instationary flux 469 

analysis or including co-factor balancing, which might further increase the precision of the 470 

flux estimation for some of the reactions and reveal additional fundamental properties of the 471 

Xcc metabolism. 472 

 473 

Conflict of interest 474 

No conflicts of interest exist. 475 

476 

Page 16 of 30Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



17 
 

Acknowledgements 477 

We thank Tobias Fürch for helpful discussions related to the analysis of GC-MS and MID 478 

data and in particular for his induction to selective ion monitoring (SIM) measurements. 479 

This work was supported by grant SPP 1316 awarded by Deutsche Forschungsgemeinschaft 480 

(DFG) and by the GenoMik Plus program of the German Federal Ministry of Education and 481 

Research (BMBF). Sarah Schatschneider was supported by Hans Böckler Foundation, by the 482 

CLIB graduate cluster and by a scholarship of Bielefeld University.  483 

Page 17 of 30 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



18 
 

Figure Legends 484 

Figure 1. In vivo carbon flux distribution of X. campestris pv. campestris B100 as 485 

determined by GC-MS based metabolic flux analysis. The fluxes calculated based on 13C 486 

GC-MS measurements are mapped to the metabolic network reconstructed for Xcc B100. 487 

Numerical data of fluxes relative to a glucose uptake rate set as 100 are indicated in the 488 

vicinity of the individual reactions that are symbolized by arrows. Arrow widths are 489 

proportional to the relative fluxes determined. The biomass precursor drains (BM) are 490 

displayed in grey and symbolized by dashed arrows. Flux values were calculated using a non-491 

linear algorithm. The data is given in Suppl. Table 2, reaction IDs are documented in Suppl. 492 

Fig. 1. The main flux was determined through the Entner-Doudoroff pathway. Since the 493 

glucose uptake rate was determined to be 2 mmol g-1 h-1, the indicated relative flux values can 494 

be converted to absolute flux rates in the unit mmol g1 h1 by dividing the flux values by 50. 495 

The metabolic network underlying the model includes the Embden-Meyerhof-Parnas 496 

pathway, the pentose phosphate pathway, the Entner-Doudoroff pathway, gluconeogenesis, 497 

the tricaboxylic acid cycle, biosynthesis of xanthan precursors, and lumped reactions for the 498 

amino acids biosyntheses of alanine (Ala), valine (Val), aspartate (Asp), glutamate (Glu), 499 

serine (Ser), phenylalanine (Phe), glycine (Gly), tyrosine (Tyr), threonine (Thr), tryptophan 500 

(Trp), isoleucine (Ile), histidine (His), lysine (Lys) and leucine (Leu), Minor fluxes 501 

contributing to biomass generation with numerical flux values less than 0.1 were not included 502 

to avoid cluttering the diagram. Glc-6P, glucose 6-phosphate; Fru-6P, fructose 6-phosphate; 503 

Fru-1,6P2, fructose 1,6-bisphosphate; P-5P, pentose 5-phosphate; S-7P, sedoheptulose 7--504 

phosphate; E-4P, erythrose 4-phosphate, GAP, glyceraldehyde 3-phosphate; DHAP, 505 

dihydroxyacetone phosphate; GA3P, 3-Phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, 506 

pyruvate; Ac-CoA, acetyl-CoA; CitA, citrate; αk-GlA, α-ketoglutarate (2-oxoglutarate); 507 

SucA, succinate; FumA, fumarate, MalA, malate; OAA, oxaloacetate; CO2, carbon dioxide.  508 
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Figure 2. Comparative NMR analysis of 
13
C-labeled metabolites of X. campestris pv. 509 

campestris B100 related to glycolysis. NMR analysis was performed for the Xcc B100 wild-510 

type (A) and for the B100∆pfkA deletion mutant deficient in phosphofructokinase, a key 511 

enzyme of the Embden-Meyerhof-Parnas pathway (glycolysis) (B). A grey dot symbolizes 512 
13C label of imported [1-13C]glucose. Green dots indicate 13C label which was derived from 513 

[1-13C]glucose metabolized via glycolysis while red dots reflect label derived from [1-514 
13C]glucose metabolized through the Entner-Doudoroff pathway. More than 90 percent of [1-515 
13C]glucose-derived label originated from the Entner-Doudoroff pathway. Poor label 516 

quantities indicate that glycolysis and the pentose phosphate pathway collectively contribute 517 

less than 10 % to glucose catabolism. The natural abundance of 13C labeling is 1.1%. This 518 

should be considered when low levels of 13C labeling are observed. Data related to 13C labels 519 

was known for the imported [1-13C]glucose and determined experimentally for alanine, 520 

glycine, and serine (Table 4); digits giving the measurement results. Labels at the respective 521 

intermediate metabolites are interpolations which indicate minimal labeling required for 522 

obtaining the measured amino acid labels via the known biosynthetic pathways.523 
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Table 1 
Anabolic precursor demand for biomass synthesis in Xanthomonas campestris pv. campestris B100 in µmol/g dry cell mass 

 
Precursor(µmol/g)   Amount G6P  F6P R5P E4P GAP PGA PEP PYR AcCoA OAA AKG NADPH 

Ala 369 631 1 1 
Arg 131 224 1 4 
Asx 173 296 1 1 
Cys 87 149 1 5 
Glx 207 354 1 1 
Gly 220 376 1 1 
His 70 120 1 1 
Ile 97 166 1 1 5 
Leu 199 340 2 1 2 
Lys 111 190 1 1 4 
Met 5 9 1 8 
Phe 87 149 1 2 2 
Pro 55 94 1 3 
Ser 136 232 1 1 
Thr 203 347 1 3 
Trp 10 17 1 1 1 2 
Tyr 110 188 1 2 2 
Val 161 275 2 2 
Protein 4155 0 0 137 354 0 757 690 1586 340 1007 672 8564 
ATP 112 1 1 1 
GTP 138 1 1 
CTP 119 1 1 1 
UTP 100 1 1 1 
RNA 0 0 469 0 0 250 0 0 0.00 219 0 331 
dATP 21 1 1 2 
dGTP 37 1 1 1 
dCTP 42 1 1 2 
dTTP 22 1 1 3 
DNA 0 0 122 0 0 58 0 0 0.00 64 0 229 
Glycerol-3-phosphate 215 1 1 
Serine 215 1 1 
10:0 (0.92%) 0.92 5 8 
11:0 ISO (3.69%) 3.69 2 4 8 
11:0 ISO 3OH (2.25%) 2.25 2 4 8 
12:0 3OH (3.01%) 3.01 6 10 
14:0 ISO (0.34%) 0.34 2 6 12 
14:0 (1.35%) 1.35 7 12 
13:0 ISO 3OH (3.27%) 3.27 2 6 11 
15:1 ISO F (0.38%) 0.38 2 6 12 
15:0 ISO(23.28%) 23.28 2 6 13 
15:0 ANTEISO (13.46%) 13.46 2 6 13 
15:0 (1.44%) 1.44 7 13 
16:0 ISO (2.33%) 2.33 2 7 14 
16:1 w9c (2.13%) 2.13 2 7 13 
16:0 (5.48%) 5.48 8 14 
ISO 17:1 w9c (7.32%) 7.32 2 8 14 
17:0 ISO (7.15%) 7.15 2 8 15 
17:0 ANTEISO (0.82%) 0.82 2 8 15 
17: 1 w8c (1.32%) 1.32 8 14 
18: 1 w9c (0.54%) 0.54 9 15 
18: 1 w7c (0.47%) 0.47 9 15 
17:0 ISO 3OH (0.35%) 0.35 2 8 15 

81.30 530.16 1040.07 
Average Fatty Acids 429 1.6426 6.52 12.793 
Lipids 0 0 0 0 215 215 0 704.66 2797.52 0 0 5488.192 
UDP-Glucose 19 1 
CDP(Ethanolamine) 28 1 1 
OH-Myristic acid 28 7.00 11 
C:14 28 7.00 12 
(CMP)KDO 28 1 1 
(NDP)Heptose 28 1.50 -4 
(TDP)Glucosamine 19 1 
LPS 61 19 28 0 0 28 28 0 392.00 0 0 560 
UDP-N-Acetylglucosamine 27.6 1 1.00 
UDP-N-Acetylmuramic acid 27.6 1 1 1.00 1 
Alanine 55.2 1 1 
Diaminopimelate 27.6 1 1 4 
Glutamate 27.6 1 1 
Peptidoglycan 0 55.2 0 0 0 0 27.6 82.8 55.20 27.6 27.6 220.8 
Glucose 154 1 
Glycogen 154 0 0 0 0 0 0 0 0.00 0 0 0 
Serine 48.5 1 1 
C1-Units 0 0 0 0 0 48.5 0 0 0.00 0 0 48.5 
Ornithine equivalents 59.3 1 3 
Polyamines 0 0 0 0 0 0 0 0 0.00 0 59.3 177.9 
TOTAL 376 6210 215 74.2 755.7 353.8 215 1357 746 2373 3584.81 1317 759 15619 
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Table 2 
Mass isotopomer fractions of amino acids from the cell protein of 
Xanthomonas campestris pv. campestris B100 

 
Amino Acid Mass isotopomers 

M0 M1 M2 

Alanine Calc 0.334 0.497 0.125 
260 Exp 0.334 0.496 0.126 

Alanine Calc 0.756 0.174 0.070 
232 Exp 0.756 0.174 0.070 

Valine Calc 0.320 0.487 0.137 
288 Exp 0.318 0.488 0.140 

Valine Calc 0.721 0.192 0.073 
260 Exp 0.718 0.193 0.075 

Threonine Calc 0.603 0.249 0.112 
404 Exp 0.612 0.248 0.106 

Threonine Calc 0.620 0.244 0.109 
376 Exp 0.616 0.246 0.110 

Aspartate Calc 0.602 0.248 0.113 
418 Exp 0.613 0.247 0.107 

Aspartate Calc 0.725 0.198 0.076 
302 Exp 0.721 0.196 0.083 

Glutamate Calc 0.591 0.254 0.115 
432 Exp 0.596 0.253 0.114 

Serine Calc 0.639 0.229 0.107 
390 Exp 0.646 0.228 0.101 

Serine Calc 0.665 0.229 0.106 
362 Exp 0.662 0.229 0.106 

Phenylalanine Calc 0.667 0.226 0.085 
336 Exp 0.671 0.227 0.080 

Phenylalanine Calc 0.728 0.197 0.076 
302 Exp 0.735 0.189 0.075 

Glycine Calc 0.760 0.170 
246 Exp 0.759 0.172 

Glycine Calc 0.829 0.171 
218 Exp 0.828 0.172 

Tyrosine Calc 0.574 0.262 0.120 
466 Exp 0.568 0.265 0.122 

Tyrosine Calc 0.728 0.197 0.076 
302 Exp 0.725 0.199 0.076 

Leucine Calc 0.697 0.209 0.077 
274 Exp 0.699 0.207 0.077 

Histidine Calc 0.366 0.367 0.178 
440 Exp 0.364 0.366 0.177 
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Table 3 
Probability distributions of confidence intervals for individual reaction rates using a Monte Carlo approach: Calculated optimum of free fluxes and the associated 95% 
confidence interval  

Reaction equation Parameters 
a
  optValue 

b
  lower CI 

c
  upperCI 

d
 Gene name Enzyme EC number 

GLC6P = F6P/F6P = GLC6P  v(2)-v(3) 3.85 1.9 8.82 pgi Glc6P-Isomerase 5.3.1.9 
F6P + PPi = F16BP v(7) 2.7 1.22 6.05 pfkA Phosphofructokinase 2.7.1.11 
GLC6P = 6PG + NADH v(10) 90.4 85.5 96.2 zwf/ gnl  glucose-6-phosphate 

dehydrogenase / 6-
phosphogluconolactonase 

1.1.1.49 / 3.1.1.31 

6PG  = P5P + CO2 + NADH v(11) 9.42 6.98 12.2 gnd phosphogluconate dehydrogenase 1.1.1.44 
P5P + P5P = S7P + G3P/S7P + 
G3P = P5P + P5P 

v(12)-v(13) 2.2 1.39 3.12 tkt Transketolase 1 2.2.1.1 

S7P + G3P = E4P + F6P/E4P + 
F6P = S7P + G3P 

v(14)-v(15) 2.2 1.39 3.12 tal Transaldolase 2.2.1.2 

E4P + P5P = F6P + G3P/F6P + 
G3P = E4P + P5P 

v(16)-v(17) 0.0281 -0.782 0.942 tkt Transketolase 2 2.2.1.1 

GLC6P = G3P + PYR v(18) 81 78.5 84 eda edd 6P-Gluconate-dehydratase 4.2.1.12 
G3P = 3PG + ATP + NADH v(19) 85.4 81.4 88.7 gapA, pgk GAPDH 1.2.1.12 
3PG = PEP v(20) 75.9 72 79.3 gpm1, gpm2, 

eno1, eno2 
Phosphoglycerate-
mutase/phosphopyruvate hydratase 

5.4.2.1 / 4.2.1.11 

PEP = PYR + ATP v(21) 59.9 25.5 66.6 pykA Pyruvate Kinase 2.7.1.40 
PYR + ATP = PEP  v(22) 0.236 0 1.1 ppsA Phosphoenolpyruvate synthase 2.7.9.2 
PYR = ACCOA + CO2 + NADH v(23) 132 130 135 pdhABC Pyruvate-dehydrogenase 1.2.4.1 
ACCOA + OAA  = CIT v(24) 112 111 113 gltA Citrate synthase 2.3.3.1 
CIT = GLYOXY + 0.5 SUC + 0.5 
SUC 

v(25) 1.29 0 3.78 aceA Isocitrate lyase 4.1.3.1 

ACCOA + GLYOXY = MAL v(26) 1.29 0 3.78 aceB Malate synthase 2.3.3.9  
CIT = AKG + CO2 + NADH v(27) 111 107 113 icd1, icd2, 

acnB 
Aconitate Hydratase/Isocitrate 
dehydrogenase 

4.2.1.3 / 1.1.1.41 

AKG =  SUCCOA + CO2 + NADH v(28) 106 103 108 sucA Oxoglutarate dehydrogenase 1.2.4.2 
SUCCOA = 0.5 SUC + 0.5 SUC + 
ATP 

v(29) 106 103 108 sucB Dihydrolipoyllysine-residue 
succinyltransferase 

2.3.1.61 

SUC  = FUM + FADH2 v(30) 107 106 108 sdhABCD Succinate dehydrogenase 1.3.5.1 
FUM  = MAL v(31) 107 106 108 fumBC Fumarate hydratase 4.2.1.2 
MAL = OAA + NADH v(32) 107 77.5 108 mdh Malate dehydrogenase 1.1.1.37 
PEP + CO2 = OAA/ OAA = PEP + 
CO2 

v (34)-v(33) 12.7 10.2 42.9 ppc Phosphoenolpyruvate carboxylase 4.1.1.31 

MAL = PYR + CO2 + NADH v (35) 0 0 29 maeB Malate dehydrogenase 1.1.1.40 
a
) Relevant reaction rate/ reaction rate tested  

b
) Optimum value for the flux parameters calculated from the free flux parameter 

c
) Lower boundary of associated confidence interval 

d
) Upper boundary of associated confidence interval 
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Table 4 

13
C-enrichments observed for amino acids from X. campestris pv. campestris B100 labeled with [1

13
C]glucose 

WT 
a
 B100∆pfkA1 

b
 B100∆pfkA2 

b
 

Amino 
acid 

Position 
Chemical 

Shift in 
ppm 

%
13

C 
Amino 
acid 

Position 
Chemical 

Shift in ppm 
%

13
C 

Amino 
acid 

Position 
Chemical 

Shift in ppm 
%

13
C 

Alanine 1 173.5 46.6 Alanine 1 173.1 38.4 Alanine 1 173.1 38.3 

  2 49.2 1.1   2 48.9 1.1 2 48.9 1.1 

  3 15.4 2.9   3 15.3 1.9 3 15.3 1.8 

Serine 1 170.7 6.2 Serine 1 170.4 1.8 Serine 1 170.5 1.8 

  2 56.4 1.1   2 54.8 1.1  
2 54.9 1.1 

  3 59.5 5.9   3 59.3 1.3  
3 59.4 1.2 

Lysine 1 172.9 18.7 Lysine 1 172.9 25.8 Lysine 1 172.7 22.4 

  2 53.5 1.1   2 53.3 1.3  2 53.2 1.0 

  3 29.4 7.8   3 29.4 1.7  3 29.4 1.6 

  4 21.3 3.2   4 21.3 3.6  4 21.3 3.3 

  5 26.2 2   5 26.3 1.5  5 26.3 1.5 

  6 28.9 1.3   6 38.9 1.1  6 39.9 1.1 

Arginine 1 − − Arginine 1 172.5 2.4 Arginine 1 172.7 2.8 

  2 53.4 1.1   2 53 1.1  2 53.2 1.4 

  3 27.1 1.8   3 27 1.2  3 27 1.4 

  4 23.7 2.1   4 23.5 1.4  4 23.7 1.6 

  5 40.3 1.3   5 40.3 1.1  5 40.3 1.1 

  6 156.7 15.5   6 156.6 15.1  6 156.6 15.8 

Aspartate 1 169.8 1.1 Aspartate 1 171.8 1.9 Aspartate 1 171.9 1.9 

  2 52.8 3.3   2 49.4 1.1 2 49.5 1.1 

  3 33.9 1.4   3 33.7 1.1 3 33.8 1.2 

  4 171.5 1.7   4 173.2 2.6 4 173.3 2.7 

Glutamate 1 169.3 1.6 Glutamate 1 170.7 1.1 Glutamate 1 170.8 1.1 

  2 52.6 1.3   2 52.2 1.3 2 52.3 1.2 

  3 25.0 1.1   3 24.8 1.5 3 24.9 1.4 

  4 29.5 1.3   4 29.4 1.6 4 29.4 1.4 

  5 172.3 2.4   5 176.3 1.2 5 176.3 1.2 

Threonine 1 171.1 1.3 Threonine 1 170.7 3.5 Threonine 1 170.9 3.9 

  2 58.9 1.1   2 58.6 1.1  
2 58.7 1.1 

  3 65.3 1.3   3 65.2 1.2  
3 65.2 1.1 

  4 18.9 2.8   4 18.9 2.6  
4 18.9 2.5 

Glycine 1 171.7 1.9 Glycine 1 170.2 1.5 Glycine 1 170.2 1.7 

  2 49.8 1.1   2 40.2 1.1 2 40.2 1.1 

Tyrosine 1 169.0 6.7 Tyrosine 1 173.7 n.a Tyrosine 1 173.2 1.6 

  2 35.8 1.1   2 55.5 1.1 2 55.4 1.1 

  3 21.9 1.6   3 35.1 1.4 3 35.1 1.3 

  4 127.8 1.9   4 126.3 1.1 4 126.3 1.1 

  5/9 − −   5/9 130.7 1.3 5/9 130.7 1.1 

  6/8 117.0 1.9   6/8 115.8 2.2 6/8 115.8 2.1 

  7 155.3 8.1   7 154.8 1.2 7 154.9 1.2 

Leucine 1 169.3 4.9     Leucine 1 169.5 1.1 

  2 46.1 1.3      2 51.9 6.0 

  3 35.7 1.1      3 35.7 2.2 

  4 28.7 3.9      4 23.9 4.5 

  5 24.6 1.8      5 20.7 7.9 

  6 24.3 1.2           6 21.6 7.7 
a)

 Data taken from Schatschneider et al., 2011 
b)

 Individual biological replicate measurements of the B100∆pfkA mutant strain deficient in the phosphofructokinase 
gene 
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Table 5  
Metabolic flux in catabolic key pathways determined for bacterial species with Entner-Doudoroff pathway activities 
grown on glucose 

Organism ED flux 
a
  PP flux 

a
 EMP flux 

a
 Reference 

Zymomonas mobilis  (DSMZ 424) 100  — 
b
 — 

b
 

44
. 

Rhodobacter sphaeroides  ATH 2.4.1 (DSMZ 158) 100  0  0  
44

 

Dinoroseobacter shibae DFL12 > 99  < 1  < 1  
45

 

Phaeobacter gallaeciensis DSMZ 17395 > 99  < 1  < 1  
45

 

Pseudomonas putida KT2440 97  3  — 
b
 

46
 

Sinorhizobium meliloti TAL 380 (DSMZ 1981) 95  0  — 
b
 

44
 

P. fluorescens 52-1C 91  2  — 
b
 

44
 

P. aeruginosa PAO1 87  11  0 
c
 

47
 

Uropathogenic P. aeruginosa isolates 91  7  2 
c
 

47
 

Agrobacterium tumefaciens C58 86  0 — 
b
 

44
 

Xanthomonas campestris pv. campestris B100 81  9  2  This study 

Nonomuraea sp. ATCC 39727 59  40  24  
48

 

Streptomyces tenebrarius TD507 42  5  44  
49

 

Escherichia coli DH1 2  26  71  
50

 

E. coli MG1655 4  22  73  
51

 

Corynebacterium glutamicum ATCC 13032 
d
 — 

b
 69 27 

52
 

Thermus thermophilus HB8 
d
 0  0  98  

53
. 

a
 Molar net fluxes as percentage of glucose uptake / glucose consumption rate. Measurement errors were ignored 

as different analytical methods were applied. 
b
 This pathway was considered absent based on literature data. 

c
 Incomplete EMP pathway due to lacking phosphofructokinase reaction.  

d
 Included for the purpose of comparison. 
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