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Abstract

Cells selectively respond to external stimuli to maintain cellular homeostasis by

making use of different regulatory mechanisms. We studied two classes of signal-

dependent regulatory inhibition and activation mechanisms in this study. Inhibition

mechanisms assume that inhibition can occur in two different ways: either by increas-

ing the degradation rate or decreasing the production rate. Similarly, it is assumed

that signal-triggered activation can occur either through increasing production rate

or decreasing degradation rate. We devised mathematical models (deterministic and

stochastic) to compare and contrast responses of these activation and inhibition mecha-

nisms to a time dependent discrete signal. Our simulation results show that the signal-

dependent increased degradation mechanism is a more effective, noisier and quicker

way to inhibit the protein abundance compared to the signal-dependent decreased ac-

tivation mechanism. On the other hand, the signal-dependent increased production

mechanism can produce a much stronger and faster response than the signal-dependent

decreased degradation mechanism. However, our simulations predict that both of the
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activation mechanisms have roughly similar noise structures. Our analysis exempli-

fies the importance of mathematical modeling in the analysis of biological regulatory

networks.

Keywords: Mathematical modeling, numerical simulation, stochastic simulation,

signal transduction, gene regulatory network

1 Introduction

To maintain cellular homeostasis in response to changes in intracellular and environmental

conditions, a cell must be able to regulate its internal network of processes and macro-

molecules. Such regulation can occur at multiple levels, from genes to proteins along with

the intermediate processes and components that link them. At the gene level, the cell can

employ various mechanisms to regulate transcription, allowing for control over the produc-

tion of mRNA [9]. In turn, mRNA can be regulated through RNA processing or degrada-

tion [38, 22]. Furthermore, the cell can regulate translation in order to control the direct

production of proteins [10, 44]. The resulting proteins can further be regulated through

protein folding, reversible and irreversible covalent modifications, translocation, or degra-

dation [26, 30, 3]. These basic mechanisms are used by cells to achieve distinct physiological

effects, which may include activation or inhibition of specific cellular functions. Separately,

each mechanism offers a distinct regulatory effect; however, it is the combination of basic

mechanisms that contributes to the complexity and size of the cellular regulatory network

that maintains cellular fitness and versatility.

A common goal in systems biology is to understand the complete cellular regulatory net-

work and the principles that govern the interactions between genes, proteins and other

signaling molecules. Since, mechanistic analysis of the complete regulatory network is often

overwhelmingly difficult, most of the existing research has focused on small-scale regula-

tory sub-networks. These studies have successfully uncovered conserved regulatory motifs

in the complete network and determined the distinct behaviors each motif confers upon

the cell. The transcriptional and the other regulatory motifs include feed-forward loops,

autoregulation, negative-feedback loops, to name a few [41, 1, 52, 36]. These motifs utilize

the basic control mechanisms to generate biologically important dynamic behaviors, such as

oscillations, generation of molecular pulses, and rapid or delayed responses [1, 2, 42, 53, 36].

While certain multiple regulatory architectures may elicit qualitatively similar dynamics,

such as oscillations, differences in network architecture may result in distinct properties

that are physiologically important to maintain cellular homeostasis [29, 24, 1, 5]. Compar-

ing different network architectures will help reveal their distinct physiological properties to

2

Page 2 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



elucidate the biological roles and importance of the regulatory network architecture.

Here we present two sets of alternatively structured regulatory mechanisms to study their

distinct behavioral effects. We define a system centered on a protein P , whose abundance

depends on the dynamics between its production and degradation rates. We stimulate the

system with a transient signal, which may positively or negatively affect the synthesis or

degradation rate of the protein. In studying how changes in signal amplitude and persis-

tency affect the temporal changes in the protein level measured by four response metrics

characterizing different aspects of the protein dynamics. We aim to determine the mech-

anistic properties specific to each mechanism’s architecture. As response metrics, we use

maximum/minimum protein abundance (mP ), time required for the protein to reach 90%

of its maximum/minimum abundance (mT ), duration of response (D) and integrated re-

sponse (IR). Such metrics are depicted in Figure 1. D is defined as the total time for

which the protein (P ) levels are below (for inhibition mechanisms) or above (for activation

mechanisms) 10% of its steady state level. IR is the relative increase or decrease of the

target protein’s effect to downstream targets throughout time, which is measured as the

sum of the reduction (for inhibition mechanisms) or increase (for activation mechanisms) of

the protein (P ) levels throughout time. By using such metrics, we compare the response of

alternatively designed inhibition and activation mechanisms to an external stimulus. The

results of this study provide further insights into the dynamic regulation of proteins that

plays crucial roles in cellular functions in living organisms.

======= Figure 1 here ====================

2 Mathematical Models

The mathematical models presented in this study describe four different mechanisms de-

picted in Scheme 1 in regulating a generic protein (P ) through a transient signal S(t).

To study dynamic responses of these similar biological regulatory mechanisms, we devised

simple ordinary differential equation (ODE) models according to mass-action kinetics. Al-

though the models differ in their exact mechanisms and equations, they utilize common

parameters. In all the models, the net rate of change in the protein abundance (dP
dt

) is as-

sumed to be the difference between its production and degradation rates and can be written

as in Eq.(1).

dP

dt
= α− βP (1)

In this equation, the production rate is assumed to be constant (α) and the degradation
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rate (βP ) is assumed to be a linear function of the protein abundance. To explore the

signal dependent responses of the simple regulatory activation mechanisms, we multiply the

production rate α by 1 + S(t) to increase production or divide the degradation rate βP by

1+S(t) to decrease degradation. Similarly, to study the simple regulatory inhibition mech-

anisms, we divide the rate of production α by 1 + S(t) or multiply the rate of degradation

βP by 1 + S(t).

======= Scheme 1 here ====================

For example, in order to obtain two different signal-induced inhibition mechanisms, the

degradation rate β can be multiplied by 1 + S(t) (increased degradation rate as in M1 in

Scheme 1), which results in Eq.(2)

dP

dt
= α− β(1 + S(t))P (2)

or the production rate α can be divided by 1+S(t) (decreased production rate as in M2 in

Scheme 1), which leads to Eq.(3).

dP

dt
=

α

1 + S(t)
− βP (3)

It is important to note that in the absence of the signal, all of the models include a constant

formation rate and a linear degradation rate, which yield a nonzero steady state protein

abundance at P ∗ = α/β.

The time dependent signal profile S(t) above is assumed to be a step function with two

parameters γ and k, and it has the following form

S(t) =







γ , if 0 ≤ t < k

0 , if t ≥ k
(4)

The signal amplitude parameter (γ) measures the system’s sensitivity to the perturbation

caused by the signal. The signal persistency parameter (k) controls how long the signal is

applied to the system.

2.1 Inhibition Mechanisms

The first set of mechanisms are governed by the following two differential equations in

Eqs.(5) and (6)
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dP1

dt
= α− β (1 + S(t))P1 (5)

dP2

dt
=

α

1 + S (t)
− βP2 (6)

The parameter α is the basal rate of the protein formation, which combines transcriptional,

post-transcriptional and translational rates. The parameter β represents the degradation

rate, which includes regulatory steps such as irreversible post-translational modifications

and degradation. These equations model two distinct mechanisms of signal-induced tran-

sient inhibition of the protein. The first model given by Eq.(5) describes a signal mediated

increase in the protein degradation rate, while the second model given by Eq.(6) represents

a signal dependent decrease in the protein formation rate. Eq.(5) maintains the basal for-

mation rate, α, and also includes a degradation rate, β, which is regulated by the signal

S(t). Eq.(6) maintains the basal degradation rate, β, and also includes a formation rate α,

that is decreased by the signal S(t).

2.2 Activation Mechanisms

The following two equations model two different regulatory mechanisms of a signal induced

transient activation of the protein abundance.

dP3

dt
= α− β

(

1

1 + S(t)

)

P3 (7)

dP4

dt
= α (1 + S (t))− βP4 (8)

In the first mechanism, the transient increase in the protein level is due to a signal-induced

decrease in the protein degradation rate, which is modeled by Eq.(7). In the second mech-

anism, we assume that the increase in the protein abundance is due to an increase in its

formation rate, which is modeled by Eq.(8). The model in Eq.(7) includes the basal forma-

tion rate, α, along with a degradation rate, β, which is negatively regulated by the signal

S(t). Eq.(8) maintains the basal degradation rate, β, and includes the protein formation

rate, α, that is positively regulated by the signal S(t).
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2.3 Parameter Values

In this section, we detail how the model parameter values are collected from the literature

for E.coli

• β: The protein half life changes from protein to protein and varies from 15 to 120

minutes in E.coli [49]. Assuming the degradation occurs exponentially, these figures

give two estimates of 0.0462 and 0.0057 min−1 for the degradation rate β. In this

study, we used 0.02 min−1 for this parameter, which is approximately equal to the

average of these two numbers and indicates a half life of 35 minutes for the protein.

• α : The protein production rate α is estimated as 10-150 molecules/minute in E.coli

[28]. Ishihama et al. [20] experimentally studied the protein abundances in E.coli and

classified all proteins in E.coli into three groups and reported that the average protein

molecule number per gene as 500 molecules. In this study, we took protein production

rate α as 10 molecules/minute in the absence of the signal, which results in the steady

state of the protein abundance as P ∗ = α/β = 10/0.02 = 500 molecules/cell.

• k : This parameter is used to mimic the signal persistency that is observed in signal

transduction pathways. Smaller values of this parameter mimic a less persistent signal

whereas larger values of this parameter represent a more persistent signal. The value

of this parameter changes between 5 to 100 minutes for deterministic simulations. To

study the effect of the signal to noise dynamics, we used a more persistent signal with

k = 200 minutes in the stochastic simulations.

• γ : This parameter refers to the system’s sensitivity to the signal. We varied this

parameter between 0 to 19, resulting in up to a 20 fold change in the produc-

tion/degradation rates in the deterministic simulations. For the stochastic simulation,

we fixed this parameter at γ = 2 .

2.4 The Solutions of the Models

In this section, we give the analytical solutions of the models in Eqs.(5)-(8) for all of the

mechanisms with two different initial conditions: (i) Pj(0) = α
β

for 0 ≤ t < k and (ii)

Pj(k) = Aj for k ≤ t ≤ 600 for j = 1, 2, 3, 4. The solutions are provided in Table 1. The

details of the steps of these solutions are given in the supplementary materials. Here Aj s

are the protein levels when the signal is removed.

======== Table 1 HERE ========
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3 Results

In sections 3.1 and 3.2, we summarize how the response metrics change as the signal ampli-

tude γ and the signal persistency k change in the deterministic models. In Section 3.3, the

results of our stochastic simulation will be summarized. We will discuss the dependency

of our results to the initial protein abundance determined by the parameters α and β in

Section 3.4.

3.1 Comparison of the Inhibition Mechanisms

In both mechanisms M1 (increase in the degradation rate) and M2 (decrease in the pro-

duction rate), the signals diminish protein abundance, but they employ distinct biological

mechanisms. Our simulations show that increasing the degradation rate (mechanism M1)

is more effective in diminishing the amount of protein than decreasing the formation rate

(mechanism M2) (Figure 2A). As a response to a 20 fold increase in the signal amplitude

with a persistent signal (k is large), the minimum amount of the protein level (mP ) decreases

down to 24 molecules/cell in mechanism M1 as opposed to 89 molecules/cell in mechanism

M2. This suggests a ∼3.7 fold difference in minimum protein mP values between the two

mechanisms for this signal profile. Since our models assume constant production and linear

degradation rates for the protein, decreasing the production rate diminishes the production

of the protein linearly while increasing the degradation rate exponentially decreases the

production over time. This explains the ∼3.7 fold difference between the two mechanisms

in our simulations. In mechanism M1, when signal amplitude γ is greater than a threshold

value (∼10 fold increase) the signal persistency k has much smaller effect on mP levels.

For smaller signal amplitude, the signal persistency alone can still decrease protein level

to ∼100 molecules/cell. This observation suggests that a persistent signal in mechanism

M1, but not in M2, can have a significant role in regulating the protein level even for the

signal profiles with small amplitude. Unlike what has been observed in mechanism M1, a

persistent signal is required to significantly decrease the protein levels in mechanism M2.

Furthermore, dependency of mP levels on the signal persistency k and amplitude γ param-

eters in mechanisms M1 and M2 is quite different. For a fixed value of signal persistency,

mechanism M1 has more variation in comparison to mechanism M2. However, for any fixed

value of the signal amplitude γ ≥ 7, the opposite behavior is observed. This suggests that

while varying signal amplitude leads to higher variation in protein abundance in mechanism

M1, similar behavior can be obtained in mechanism M2 by varying the signal persistency

parameter.
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======= Figure 2 here ====================

Interestingly, the M1 and M2 mechanisms display different behaviors with regards to time

required to reach minimum protein levels(mT ) (Figure 2B). Given the same signal pro-

file, increasing the degradation rate(mechanism M1) produces a quicker response, whereas

decreasing the production rate(mechanism M2) leads to a gradual response. Since the per-

sistent signal causes more severe responses in both mechanisms, the time required to reach

the minimum protein level(mT ) increases as the signal persistency increases. On the other

hand, mechanisms M1 and M2 show very distinct mT dynamics with respect to γ and k.

For a fixed signal persistency, while we observe roughly the same mT for any signal ampli-

tude in mechanism M2, there is a nonlinear dependence of mT on the signal amplitude in

mechanism M1. In mechanism M1, for a fixed signal persistency k, as the signal amplitude

increases the mT levels decrease.

Our simulations also show that the M1 and M2 mechanisms exhibit similar behavior in

the duration metric D, the time period on which the protein levels are reduced by more

than 10% of the steady state value (Figure 2C). However, they display different behavior on

the integrated response metric IR, the combined effect of the signal to the target proteins

(Figure 2D). We observed that, for both of the mechanisms, duration D is independent

from the signal amplitude for a fixed value of signal persistency and it stays unchanged as

γ varies (Figure 2C). Mechanism M1 produces a larger integrated response in comparison

to mechanism M2. This difference can be explained as the combined effect of the signal

yielding a smaller mP in mechanism M1 and a roughly similar D in both M1 and M2

mechanisms. The numerical simulations reveal that mechanism M2 shows a constant-like

IR dynamics in comparison to mechanism M1 for a fixed value of signal persistency. For a

fixed value of k , the integrated response IR is independent from the signal amplitude when

signal amplitude γ is greater than 5 in mechanism M2 and greater than 15 in mechanism

M1 (Figure 2D).

Although these two different mechanisms have the same general regulatory behavior (de-

crease in protein levels), cells selectively use these regulatory mechanisms as needed. The

systems that require an urgent and severe response would be better off using the degra-

dation mechanism (M1), which has a more direct effect on the protein than a production

mechanism (M2). Mechanism M2 may be more practical in regulating the protein levels in

systems that need long-term responses or whose effects need not be immediate after the sig-

nal. A few examples of biological systems that include an integral degradation mechanism

are the cell cycle control (p53), canonical Wnt and NF-kB signaling networks. In the first

system, the ubiquitin ligase activity of Mdm2 ubiquitinates p53, facilitating the association

of p53 with the proteosome leading to degradation of p53. The increased degradation can
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be attributed to the feedback loop involving p53 and Mdm2. The onset of DNA damage

first results in decreased p53 degradation; however, p53 enhances the expression of Mdm2,

which ultimately leads to an increase in degradation, accounting for the short-term spike

in p53 activity. This is a more complicated mechanism, but the increase in the degradation

rate of p53 is important since it maintains p53 levels in balance, with short deviations from

basal conditions [14, 33, 25]. In the canonical Wnt pathway, the binding of Wnt-5a inhibits

the pathway via the GSK-3-independent degradation of beta-catenin, an integral compo-

nent of the canonical pathway [50]. In the NF-kB pathway, the binding of a ligand such

as TNF-alpha activates the pathway, leads to increased IkK activity, which phosphorylates

IkB, an inhibitor of NF-kB that controls its translocation into the nucleus. Phosphorylation

of IkB leads to further ubiquitination of two lysine residues, targeting the compound for

proteosomal degradation [4, 37].

The M2 mechanism can also be found within the p53, canonical Wnt and NF-kB signaling

networks. Upon activation of the p53 pathway in response to DNA damage, p53, being a

transcription factor, suppresses myc expression to promote G1 arrest, while also suppressing

the expression of cyclin B1 to prevent the cell from moving into the G2 phase [19, 17]. In the

canonical Wnt pathway, the translocation of beta-catenin, a transcription factor, represses

the expression of Sox9 [8, 16, 51]. In the NF-kB pathway, activation and translocation of

NF-kB results in the transcriptional repression of c-myc and Sox9 [35].

Mechanisms M1 and M2 can coexist in the same biological systems. However, the systems

can employ them in different parts of the network depending on cellular needs.

3.2 Comparison of the Activation Mechanisms

Both mechanisms M3 (decrease in the degradation rate) and M4 (increase in the production

rate) promote protein (P ) levels in the cell through distinct biological mechanisms. Our

simulations predict that increasing the production rate (mechanism M4) seems to be more

effective in significantly increasing the maximum levels of the protein (mP ) (Figure 3A). For

persistent and high amplitude signal (γ = 20 and k = 100), while in mechanism M3 protein

level can go up to 1280 molecules/cell(∼2.6 fold of the steady state level) , in mechanism

M4 it can increase up to 8315 molecules/cell (∼16.6 fold of the steady state level). This

suggests that mechanism M4 can increase mP levels ∼6.5 fold more than mechanism M3.

Moreover, mP dependency on the signal persistency and the signal amplitude in mechanisms

M3 and M4 is significantly different. Similarly, for a fixed value of signal persistency,

mechanism M3 has less variation in comparison to mechanism M4. However, for a fixed

value of the signal amplitude, the opposite behavior is observed. This suggests that while
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varying signal amplitude leads to a higher variation in protein abundance in mechanism

M4, similar behavior can be obtained in mechanism M3 by varying the signal persistency.

======= Figure 3 here ====================

Interestingly, M3 and M4 mechanisms show similar dynamics in the mT metric (time needed

for the protein to reach its maximum level) as the signal persistency and signal amplitude

change (Figure 3B). Despite a qualitative similarity, M4 mechanism shows a slightly faster

response. In both mechanisms M3 and M4, for fixed signal persistency, mT does not change

as signal amplitude γ varies. However, for both mechanisms, when signal amplitude γ is held

constant, mT value increases as the signal persistency k increases. This can be explained by

the fact that the persistent signal pushes the system to a higher mP abundance in the later

time points. Our simulations show that M3 and M4 mechanisms exhibit similar qualitative

and quantitative behaviors on the duration D metric (Figure 3C). Similar dynamics in mT

has been observed for D. However, these two mechanisms display different behavior in the

integrated response metric IR (Figure 3D). Mechanism M4 provides a larger integrated

response IR in comparison to mechanism M3 since M4 has a similar duration metric D

but larger mP. Regarding the integrated response metric IR, mechanisms M3 and M4 show

different IR dynamics as a response to the changes in the signal persistency and signal

amplitude. The numerical simulations reveal that mechanism M3 shows a more constant-

like behavior than mechanism M4 for a fixed signal persistency.

Biological organisms optimize the regulatory mechanisms they employ in different parts of

the cell depending on their needs. They are capable of producing an appropriate response

to external signals in a timely fashion. Our simulations show that the protein levels are

higher in mechanism M4 in comparison to mechanism M3 for the same amount of signal.

This observation suggests that a system that needs high level of a certain protein P , the cell

should employ mechanism M4 rather than mechanism M3. Our simulations also show that

the time required to reach maximum protein mP is slightly faster in mechanism M4. Hence,

systems that need short-term response may prefer mechanism M4, while long-term responses

are better suited to mechanism M3. There is a whole list of other benefits to controlling

formation over degradation, one being the multi-level control mechanisms. A system may

control transcription, mediators, translation, activation/deactivation, and more. Although

there are many mechanisms of degradation, for the most part they all act on the protein

itself. A good example of mechanism M3 can be found in the DNA damage pathway. When

p19ARF associates with Mdm2, the latter protein is sequestered, decreasing the likelihood of

an interaction between Mdm2 and p53. This interaction eventually leads to p53 activation,

and by sequestering Mdm2, the system is reducing the degradation rate of p53 [18, 45, 34]. In

the canonical Wnt pathway, activation by a ligand, Wnt, results in the poly-ubiquitination
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and phosphorylation of Dishevelled protein, which prevents beta-catenin from the Axin-

Gsk3-Ck1a complex that phosphorylates beta-catenin, leading to its eventual ubiquitination

and proteosomal degradation. Thus, upon activation of the pathway, the degradation of

beta-catenin is decreased, increasing the probability that the protein will reach the nucleus

to effect the downstream target genes [23]. In the NF-kB system, ergolide, a sesquiterpene

lactone, results in a simultaneous decrease in degradation and reduction in IkK activity,

leading to inhibition of the NF-kB pathway (pushes equilibrium towards cytosolic NF-kB-

IkB complex) [7].

M4 mechanism can be observed in the DNA damage pathway. Upon activation of the

pathway, free p53 leads to enhanced expression of Mdm2, the ligase responsible for ubiq-

uitinating p53, marking the protein for proteosomal degradation [27, 47, 39, 31, 13, 32].

In the canonical Wnt pathway, beta-catenin directly enhances the expression of cyclin-D

[46, 43, 40] and c-myc [15]. In the NF-kB pathway, NF-kB directly enhances the expression

of Bcl-2 [6], Bax [12], mouse MHC class I [21] and cyclin-D1 [48].

Mechanisms M3 and M4 can coexist in a biological system, which can employ these mech-

anisms in different parts of the network depending on the needs of the system.

3.3 Stochastic Effects in the Activation and Inhibition Mechanisms

Biological systems are often studied using deterministic methods, where perturbations to

system parameters have a predictable and reproducible effect on the system dynamics. How-

ever, biochemical reactions in a cell are inherently noisy. The effects of random fluctuations

on protein concentrations can be studied by stochastic simulation techniques. Stochastic

simulations take random fluctuations in the system into account and capture dynamics that

may not be observable by deterministic simulations. To study the possible influence of ran-

dom fluctuations in the mechanisms M1, M2, M3 and M4 we have also utilized stochastic

simulations. We used the Gillespie Algorithm [11] (implemented in MATLAB) to stochas-

tically simulate the dynamics of all four mechanisms. For each mechanism, five hundred

stochastic simulations have been carried out until the system reaches its steady state after

the removal of the signal. A relatively small steady state level was selected to investigate

effects of noise in the dynamics. In all the stochastic simulations, we fixed the parame-

ter values as α = 1, β = 0.02, γ = 2 and k = 200, which results in a signal profile with

persistency about 200 minutes and a stable steady state of 50 molecules/cell.

Stochastic simulations of the mechanisms M1 (increased degradation rate) and M2 (de-

creased synthesis rate) show different behaviors in terms of noise in earlier time points after

the signal has been introduced to the system (Figure 4A). This figure shows the time se-
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ries simulation of the protein levels for 600 minutes starting with 50 molecules/cell. For

the same signal profile, the mechanism M1 has more fluctuations than the mechanism M2

in earlier times (<150 minutes) but not later times (Figure 4). This has been shown by

creating the histogram of the protein levels at t=50 minutes (Figure 4B). We calculated

the coefficient of variation (CV) for both mechanisms and found CV = 0.24 for mechanism

M1 and CV = 0.14 for mechanism M2. Therefore, mechanism M1 exhibits almost two-fold

more variation in comparison to mechanism M2. In later time points, the variation in these

two mechanisms are comparable. Such a difference can be explained by a faster response

observed in mechanism M1. This observation is in agreement with our deterministic simu-

lations. At any time before 150 minutes, the number of molecules in M1 is always smaller

than that of in M2. Due to the small number of molecules at early time points, the stochas-

tic simulations show more variation in mechanism M1 (Figure 6A). After t = 150 minutes,

since both mechanisms converge back to the same steady state levels, they show a similar

noise structure.

Similar to mechanisms M1 and M2, mechanisms M3 and M4 display different behaviors

in terms of noise at earlier time points (Figure 5A). For the same signal profile, dynamics

in M4 are noisier than dynamics in M3 in earlier time points (<50 minutes). However,

they have comparable noise levels at later times (Figure 5A). This has been shown by the

histogram of the protein levels at t = 10 minutes (Figure 5B). The computed CV value at

t=10 minutes is 0.064 for M3 whereas it is 0.083 for M4. This difference can be explained

by a faster response observed in mechanism M4, which is consistent with our deterministic

simulations. At time points before t = 50 minutes, mechanism M3 shows gradual change

in comparison to mechanism M4. Due to the sharper changes in mechanism M4, stochastic

simulations predict more variation in this mechanism.

At time points between 50 and 150 minutes, mechanism M3 shows slightly more variation

in comparison to mechanism M4 (Figure 6B). Since M4 levels reach to larger mP levels,

mechanism M4 shows less variation between 50 and 150 minutes. In the later time points,

these two mechanisms exhibit similar noise structure since both mechanisms approach back

to the same steady state levels.

In both cases, the mechanisms that provide the same general behavior (decrease or in-

crease in protein levels) show different noise structures (Figure 6B). Therefore, depending

on the needs of the biological system, the cells might selectively employ mechanisms M1

or M2. Same is true for mechanisms M3 or M4. Interestingly, overall difference between

the competing mechanisms are not affected by the initial protein levels when the number

of molecules stays smaller than 300 molecules (results are not shown).

======= Figure 4 here ====================
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======= Figure 5 here ====================

======= Figure 6 here ====================

3.4 Dependence of the Results on the Protein Abundance

In this section, we explore the effects of protein abundance on the response metrics in all

of the mechanisms. The values for the production and degradation parameters were fixed

respectively at α = 10 and β = 0.02 in the deterministic analysis of the models above

(Figures 2-3). In the stochastic simulations, a small steady state level of 50 molecules/cell

in the absence of the signal was selected to investigate effects of noise in the dynamics. As

the steady state molecule number increases, the stochastic simulations approach the results

of the deterministic simulations(results not shown). To study the effects of the parameters

α and β on the response metrics, we utilized the analytic solutions for all the models.

Suppose that P1(t) is the protein level in mechanism M1 and P2(t) is the protein level in

mechanism M2. Then, the dynamics of P1(t) and P2(t) are described by the equations in

Table 1. The details of the derivation of these solutions are provided in the supplementary

materials.

The solutions of our analytical model (Table 1) show that the main results of our study do

not depend on the parameters α and β as described below.

Minimum protein abundance (mP ): As described in supplementary material the values

of P1(t) and P2(t) functions at k can be written as P1(k) =
α

(1+γ)β
+
(

α
β
− α

(1+γ)β

)

e−β(1+γ)k

and P2(k) =
α

(1+γ)β
+
(

α
β
− α

(1+γ)β

)

e−βk. So, we have P1(k) < P2(k) since e−β(1+γ)k < e−βk

for any positive k, β and γ. In fact, for any t ∈ [0, k], P1(t) < P2(t) must hold. This

observation suggests that mP levels are lower in mechanism M1 compared to mechanism

M2, and this result does not depend on α and β values.

Minimal response time (mT ): Time required to reach minimal P1(t) and P2(t) values

are theoretically same and equal to k for both models. However, since e−β(1+γ)t < e−βt for

any positive t, β and γ, P1(t) decreases faster than P2(t). mT is defined as time required

to reach for the protein 90% of its minimum value, which makes it shorter for P1(t). This

observation suggests that mT is shorter for mechanism M1 in comparison to mechanism

M2, and this result is independent from the values of the parameters α and β.

Duration (D): Since the signal is removed from the system at t = k minutes, the same

differential equation with different initial conditions describes the dynamics of both P1(t)

and P2(t) for t ≥ k. Since A1 = P1(k) and A2 = P2(k), A1 < A2 must hold. This leads
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to P1(t) < P2(t) for all t > k. We also know that for any t ∈ [0, k], P1(t) < P2(t) is true,

which makes D longer for mechanism M1. Our numerical simulations confirm this result,

and show a slight variation between the two mechanisms.

Integrated Response (IR): Since mP is smaller and D is longer for mechanism M1, the

integrated response IR is larger for this mechanism. Our numerical simulations confirm

this result.

The same reasoning is applied to mechanisms M3 and M4 using solutions given in Table 1

as detailed in the supplementary materials.

4 Discussions

Understanding dynamics of the cellular regulatory mechanisms is the key for the analysis of

cellular functions, disease mechanisms and evolutionary dynamics. Such knowledge is im-

portant for finding better diagnoses and therapies for diseases. Mathematical models offer

an alternative approach to biological experimentation for studying the regulatory cellular

dynamics. In this study, we have compared dynamics of two classes of signal induced regula-

tory inhibition and activation mechanisms. It is assumed that the signal induced inhibition

of proteins can occur in two different ways, either by increasing protein degradation rate or

decreasing its production rate. In a similar way, the signal induced activation of proteins

can be achieved by decreasing its degradation rate or alternatively increasing its production

rate. We developed simple mathematical models to compare and contrast these mecha-

nisms using four different metrics characterizing different aspects of protein dynamics after

a time dependent signal has been applied. The metrics used are the highest/lowest protein

abundance (mP ), the time required for the protein to reach its highest/lowest abundance

(mT ), the duration of the response (D) and the integrated response (IR). Our analysis

shows that the signal-dependent increased degradation mechanism is a quicker, more ef-

fective and noisier way of inhibition of the protein compared to the decreased activation

mechanism. Furthermore, the signal-dependent increased production mechanism produces a

faster and stronger response than the decreased degradation mechanism. We observed that

both of the activation mechanisms show similar noise structures although there is a slight

difference. Such observations can experimentally be tested using synthetically engineered

genetic circuits utilizing fluorescent proteins. Our analysis emphasizes the importance of

mathematical modeling in better understanding the dynamics of cellular systems.

14

Page 14 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Acknowledgment:

We thank Matthew Zaringhalam for his contribution in the literature review in the early

stages of this study. We also thank two anonymous referees for their comments and sug-

gestions, which measurably improved this paper. This work was partially supported by the

Colgate University Research Council funds and New College of Florida faculty development

funds.

15

Page 15 of 27 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



P*

mT

mP

D

IR =

∫
tmax

0

(P ∗

− P (t))dt

M
o

le
c
u

le
 N

u
m

b
e

rs

Time

(A)

P*

mT

mP

D

IR =

∫
tmax

0

(P (t) − P
∗)dt

M
o

le
c
u

le
 N

u
m

b
e

rs

Time

(B)

Figure 1: Protein level P for both inhibition (A) and activation (B) mechanisms as a func-
tion of time after the system is perturbed by an external signal for a specific period of
time. The definitions of the four response metrics that characterize the temporal changes in
protein level are minimum/maximum protein abundance (mP ), time required for the pro-
tein to reach its minimum/maximum level (mT ), duration of response (D), and integrated
response (IR) are shown.
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Figure 2: M1 and M2 mechanisms’ dynamics and characteristics when changing signal with
signal amplitude γ ranging from a 1-fold change to a 20-fold change and signal persistency k
ranging from 5 to 100 minutes. Increasing the signal intensity results in ∼3.7 fold difference
in the minimum protein mP levels between the mechanisms M1 and M2 (A). A shorter
time is needed to reach minimum protein levels in mechanism M1 compared to mechanism
M2 (B). No difference on the duration is observed between two mechanisms in response to
the differences in the signal (C). The integrated response levels are higher in mechanism M1

than in mechanism M2, due to the more severe reductions in minimum protein mP levels
in mechanism M1 (D).
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Figure 3: M3 and M4 mechanisms’ dynamics and characteristics when changing signal am-
plitude γ from 1 fold to 20 fold, and signal persistency k from 5 to 100 minutes. Increasing
the signal intensity results in a ∼6.5 fold difference in the maximum protein mP levels
between M3 and M4 mechanisms (A). Slightly shorter time is needed to reach maximum
protein mP levels in mechanism M4 versus mechanism M3 (B). No difference on the du-
ration is observed between the two mechanisms in response to the differences in the signal
(C). The integrated response levels are higher in mechanism M4 versus mechanism M3, due
to more severe increase in maximum protein mP levels in mechanism M4 (D).
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Figure 4: M1 and M2 mechanisms’ dynamics and characteristics when the number of
molecules are low. Five hundred stochastic simulations of the mechanisms M1 and M2

are shown on the left (A). Histograms from the stochastic simulations at time 50 min (red
lines of the left panel) are shown in the right panel (B). Mechanisms M1 and M2 show
vastly different noise structures in the early time points just after the signal is applied to
the system. Noise levels are measured by using the coefficient of variation (CV) values in 1
minute time intervals.
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Figure 5: M3 and M4 mechanisms’ dynamics and characteristics when the number of
molecules are low. Five hundred stochastic simulations of the mechanisms M3 and M4 are
shown on the left (A). Histograms from the stochastic simulations at time 10 min (red lines
on the left panel) are shown in the right panel (B). Two mechanisms show slightly different
noise structures in the early time points just after the signal is applied to the system. Noise
levels are measured by using the coefficient of variation CV values in 1 minute time intervals.
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Figure 6: Noise level comparison of the mechanisms throughout the simulation. Mechanisms
M1 and M2 show different noise levels until approximately 150 minutes (A). M3 and M4

mechanisms show slightly different noise levels in early time points, however overall noise
structures between these two mechanisms are comparable most of the time (B).
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Table 1: The analytical solutions of the models for mechanisms M j for j = {1, 2, 3, 4}

M1: P1(t) =

{

α
(1+γ)β

+ α
β

γ

(1+γ)
e−β(1+γ)t, when 0 ≤ t < k

α
β
+
(

A1 −
α
β

)

e−β(t−k), when t ≥ k

M2: P2(t) =

{

α
(1+γ)β

+ α
β

γ

(1+γ)
e−βt, when 0 ≤ t < k

α
β
+
(

A2 −
α
β

)

e−β(t−k), when t ≥ k

M3: P3 (t) =

{

α(1+γ)
β

− αγ

β
e−

βt
1+γ , when 0 ≤ t < k

α
β
+ (A3 −

α
β
)e−β(t−k), when t ≥ k

M4: P4(t) =

{

α(1+γ)
β

− αγ

β
e−βt, when 0 ≤ t < k

α
β
+ (A4 −

α
β
)e−β(t−k), when t ≥ k

References

[1] U. Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet.,

8(6):450–461, Jun 2007.

[2] A. Ay, S. Knierer, A. Sperlea, J. Holland, and E.M. Özbudak. Short-lived her proteins

drive robust synchronized oscillations in the zebrafish segmentation clock. Development,

140(15):3244–3253, 2013.

[3] I. Braakman and N. J. Bulleid. Protein folding and modification in the mammalian

endoplasmic reticulum. Annu. Rev. Biochem., 80:71–99, Jun 2011.

[4] J. A. Brockman, D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and

D. W. Ballard. Coupling of a signal response domain in I kappa B alpha to multiple

pathways for NF-kappa B activation. Mol. Cell. Biol., 15(5):2809–2818, May 1995.

[5] T. Cagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalvo, and G. M. Suel.

Architecture-dependent noise discriminates functionally analogous differentiation cir-

cuits. Cell, 139(3):512–522, Oct 2009.

[6] S. D. Catz and J. L. Johnson. Transcriptional regulation of bcl-2 by nuclear factor

kappa B and its significance in prostate cancer. Oncogene, 20(50):7342–7351, Nov 2001.

23

Page 23 of 27 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



[7] J. K. Chun, D. W. Seo, S. H. Ahn, J. H. Park, J. S. You, C. H. Lee, J. C. Lee, Y. K.

Kim, and J. W. Han. Suppression of the NF-kappaB signalling pathway by ergolide,

sesquiterpene lactone, in HeLa cells. J. Pharm. Pharmacol., 59(4):561–566, Apr 2007.

[8] T. F. Day, X. Guo, L. Garrett-Beal, and Y. Yang. Wnt/beta-catenin signaling in

mesenchymal progenitors controls osteoblast and chondrocyte differentiation during

vertebrate skeletogenesis. Dev. Cell, 8(5):739–750, May 2005.

[9] John Fothergill. Genes and Signals. Cold Spring Harbor Laboratory, Cold Spring

Harbor, NY, 2002.

[10] F. Gebauer and M. W. Hentze. Molecular mechanisms of translational control. Nat.

Rev. Mol. Cell Biol., 5(10):827–835, Oct 2004.

[11] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem., 81:2340, 1977.

[12] T. Grimm, S. Schneider, E. Naschberger, J. Huber, E. Guenzi, A. Kieser, P. Reitmeir,

T. F. Schulz, C. A. Morris, and M. Sturzl. EBV latent membrane protein-1 protects

B cells from apoptosis by inhibition of BAX. Blood, 105(8):3263–3269, Apr 2005.

[13] S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt. Apoptosis - the p53 network. J.

Cell. Sci., 116(Pt 20):4077–4085, Oct 2003.

[14] Y. Haupt, R. Maya, A. Kazaz, and M. Oren. Mdm2 promotes the rapid degradation

of p53. Nature, 387(6630):296–299, May 1997.

[15] T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, P. J. Morin,

B. Vogelstein, and K. W. Kinzler. Identification of c-MYC as a target of the APC

pathway. Science, 281(5382):1509–1512, Sep 1998.

[16] T. P. Hill, D. Spater, M. M. Taketo, W. Birchmeier, and C. Hartmann. Canonical

Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.

Dev. Cell, 8(5):727–738, May 2005.

[17] J. S. Ho, W. Ma, D. Y. Mao, and S. Benchimol. p53-Dependent transcriptional repres-

sion of c-myc is required for G1 cell cycle arrest. Mol. Cell. Biol., 25(17):7423–7431,

Sep 2005.

[18] R. Honda, H. Tanaka, and H. Yasuda. Oncoprotein MDM2 is a ubiquitin ligase E3 for

tumor suppressor p53. FEBS Lett., 420(1):25–27, Dec 1997.

24

Page 24 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



[19] S. A. Innocente, J. L. Abrahamson, J. P. Cogswell, and J. M. Lee. p53 regulates a G2

checkpoint through cyclin B1. Proc. Natl. Acad. Sci. U.S.A., 96(5):2147–2152, Mar

1999.

[20] Yasushi Ishihama, Thorsten Schmidt, Juri Rappsilber, Matthias Mann, F Ulrich Hartl,

Michael Kerner, and Dmitrij Frishman. Protein abundance profiling of the escherichia

coli cytosol. BMC Genomics, 9(1):102, 2008.

[21] A. Israel, O. Yano, F. Logeat, M. Kieran, and P. Kourilsky. Two purified factors bind

to the same sequence in the enhancer of mouse MHC class I genes: one of them is a

positive regulator induced upon differentiation of teratocarcinoma cells. Nucleic Acids

Res., 17(13):5245–5257, Jul 1989.

[22] S. M. Kelly and A. H. Corbett. Messenger RNA export from the nucleus: a series of

molecular wardrobe changes. Traffic, 10(9):1199–1208, Sep 2009.

[23] D. Kimelman and W. Xu. beta-catenin destruction complex: insights and questions

from a structural perspective. Oncogene, 25(57):7482–7491, Dec 2006.

[24] M. Kollmann, L. Lovdok, K. Bartholome, J. Timmer, and V. Sourjik. Design principles

of a bacterial signalling network. Nature, 438(7067):504–507, Nov 2005.

[25] R. Kulikov, J. Letienne, M. Kaur, S. R. Grossman, J. Arts, and C. Blattner. Mdm2

facilitates the association of p53 with the proteasome. Proc. Natl. Acad. Sci. U.S.A.,

107(22):10038–10043, Jun 2010.

[26] S. H. Lecker, A. L. Goldberg, and W. E. Mitch. Protein degradation by the ubiquitin-

proteasome pathway in normal and disease states. J. Am. Soc. Nephrol., 17(7):1807–

1819, Jul 2006.

[27] A. J. Levine. p53, the cellular gatekeeper for growth and division. Cell, 88(3):323–331,

Feb 1997.

[28] M. C. Mackey M. Santillán, E. S. Zeron. Mathematical Biology Research Trends (ed:

Lachlan B. Wilson). Nova Science Publishers, Inc., Nova Science Publishers, Inc., 2008.

[29] S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif.

Proc. Natl. Acad. Sci. U.S.A., 100(21):11980–11985, Oct 2003.

[30] A. Marette. New insights in covalent modifications of proteins and lipids: phosphory-

lation and beyond. Am. J. Physiol. Endocrinol. Metab., 296(4):E579–580, Apr 2009.

25

Page 25 of 27 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



[31] L. D. Mayo and D. B. Donner. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein

network. Trends Biochem. Sci., 27(9):462–467, Sep 2002.

[32] D. Michael and M. Oren. The p53-Mdm2 module and the ubiquitin system. Semin.

Cancer Biol., 13(1):49–58, Feb 2003.

[33] U. M. Moll and O. Petrenko. The MDM2-p53 interaction. Mol. Cancer Res.,

1(14):1001–1008, Dec 2003.

[34] L. Moore, S. Venkatachalam, H. Vogel, J. C. Watt, C. L. Wu, H. Steinman, S. N.

Jones, and L. A. Donehower. Cooperativity of p19ARF, Mdm2, and p53 in murine

tumorigenesis. Oncogene, 22(49):7831–7837, Oct 2003.

[35] S. Murakami, V. Lefebvre, and B. de Crombrugghe. Potent inhibition of the master

chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J.

Biol. Chem., 275(5):3687–3692, Feb 2000.

[36] Yildirim N. and Mackey M. C. Feedback regulation in the lactose operon: a mathe-

matical modeling study and comparison with experimental data. Biophysical Journal,

84:84, 2003.

[37] A. Oeckinghaus and S. Ghosh. The NF-kappaB family of transcription factors and its

regulation. Cold Spring Harb Perspect Biol, 1(4):a000034, Oct 2009.

[38] R. Reed. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol.,

15(3):326–331, Jun 2003.

[39] K. M. Ryan, A. C. Phillips, and K. H. Vousden. Regulation and function of the p53

tumor suppressor protein. Curr. Opin. Cell Biol., 13(3):332–337, Jun 2001.

[40] O. J. Sansom, K. R. Reed, M. van de Wetering, V. Muncan, D. J. Winton, H. Clevers,

and A. R. Clarke. Cyclin D1 is not an immediate target of beta-catenin following Apc

loss in the intestine. J. Biol. Chem., 280(31):28463–28467, Aug 2005.

[41] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional

regulation network of Escherichia coli. Nat. Genet., 31(1):64–68, May 2002.

[42] O. Shoval and U. Alon. SnapShot: network motifs. Cell, 143(2):326–e1, Oct 2010.

[43] M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D’Amico, R. Pestell, and

A. Ben-Ze’ev. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway.

Proc. Natl. Acad. Sci. U.S.A., 96(10):5522–5527, May 1999.

26

Page 26 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



[44] N. Sonenberg and A. G. Hinnebusch. Regulation of translation initiation in eukaryotes:

mechanisms and biological targets. Cell, 136(4):731–745, Feb 2009.

[45] W. Tao and A. J. Levine. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic

shuttling of Mdm2. Proc. Natl. Acad. Sci. U.S.A., 96(12):6937–6941, Jun 1999.

[46] O. Tetsu and F. McCormick. Beta-catenin regulates expression of cyclin D1 in colon

carcinoma cells. Nature, 398(6726):422–426, Apr 1999.

[47] B. Vogelstein, D. Lane, and A. J. Levine. Surfing the p53 network. Nature,

408(6810):307–310, Nov 2000.

[48] S. D. Westerheide, M. W. Mayo, V. Anest, J. L. Hanson, and A. S. Baldwin. The

putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol. Cell.

Biol., 21(24):8428–8436, Dec 2001.

[49] P. Wong, S. Gladney, and J. D. Keasling. Mathematical model of the lac operon:

Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.

Biotechnol. Prog., 13:132.143, 1997.

[50] Y. Yang, L. Topol, H. Lee, and J. Wu. Wnt5a and Wnt5b exhibit distinct activities in

coordinating chondrocyte proliferation and differentiation. Development, 130(5):1003–

1015, Mar 2003.

[51] F. Yano, F. Kugimiya, S. Ohba, T. Ikeda, H. Chikuda, T. Ogasawara, N. Ogata,

T. Takato, K. Nakamura, H. Kawaguchi, and U. I. Chung. The canonical Wnt signaling

pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem.

Biophys. Res. Commun., 333(4):1300–1308, Aug 2005.

[52] Necmettin Yildirim. Mathematical modeling of the low and high affinity arabinose

transport systems in escherichia coli. Mol. BioSyst., 8(4):1319–1324, 2012.

[53] Horike D. Yildirim N., Santillan M. and Mackey M. C. Dynamics and bistability in a

reduced model of the lac operon. Chaos, 14(2):279–292, 2004.

27

Page 27 of 27 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


