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We developed a metabolic network model that maps hourly gene expression to time-dependent 

metabolism and stage-specific growth, allowing us to link specific metabolites or pathways to 

specific physiological functions. 
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Abstract 

The human malaria parasite Plasmodium falciparum goes through a complex life cycle, 

including a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) in human red 

blood cells. A better understanding of the metabolic processes required during the asexual blood-

stage reproduction will enhance our basic knowledge of P. falciparum and help identify critical 

metabolic reactions and pathways associated with blood-stage malaria. We developed a 

metabolic network model that mechanistically links time-dependent gene expression, metabolism, 

and stage-specific growth, allowing us to predict the metabolic fluxes, the biomass production 

rates, and the timing of production of the different biomass components during the IDC. We 

predicted time- and stage-specific production of precursors and macromolecules for P. 

falciparum (strain HB3), allowing us to link specific metabolites to specific physiological 

functions. For example, we hypothesized that coenzyme A might be involved in late-IDC DNA 

replication and cell division. Moreover, the predicted ATP metabolism indicated that energy was 

mainly produced from glycolysis and utilized for non-metabolic processes. Finally, we used the 

model to classify the entire tricarboxylic acid cycle into segments, each with a distinct function, 

such as superoxide detoxification, glutamate/glutamine processing, and metabolism of fumarate 

as a byproduct of purine biosynthesis. By capturing the normal metabolic and growth 

progression in P. falciparum during the IDC, our model provides a starting point for further 

elucidation of strain-specific metabolic activity, host-parasite interactions, stress-induced 

metabolic responses, and metabolic responses to antimalarial drugs and drug candidates.  
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Introduction 

Malaria constitutes a major human health threat, with more than 207 million clinical cases and 

627,000 deaths annually.
1
 Despite the success of current anti-malarial efforts, including vector 

control, the improvement of diagnostic testing, and drug development, the complete control and 

elimination of this disease is hindered by an emerging resistance to existing drugs and lack of 

effective prophylactic vaccines.
1
 Thus, efforts to develop truly novel treatment options for this 

disease warrant basic research into the different mechanisms used by Plasmodium falciparum, 

the most virulent causative agent of malaria, to survive and proliferate in host-based 

physiological environments.
2
 

One important feature of this process is the organism’s life cycle, during which it adopts distinct 

and radically different morphological stages.
3
 The malaria parasite invades the host through the 

bite of an infected mosquito. The infective sporozoite rapidly moves to the liver, where it 

initially proliferates into merozoites, largely asymptomatically to the host. Subsequently, the 

merozoites enter the bloodstream. While some merozoites develop sexual forms that re-infect 

mosquitos, others begin a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) of 

asexual reproduction. This allows the parasites to infect many more red blood cells and leads to 

the well-known malarial symptom of recurring fever. During this cycle, the parasites are 

susceptible to drug treatments, and efforts to elucidate essential biological activities such as 

metabolism, the focus of this study, provide a foundation for developing novel therapies. 

Experimental studies of P. falciparum metabolism can be classified into two categories as 

focused either on single pathways or on more comprehensive “omics”-based studies. In the 

former category, studies have shed light on how P. falciparum during the IDC satisfies its energy 
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demand by oxidizing the bulk of the taken-up glucose into lactate through the glycolysis 

pathway.
4
 Although the organism has all the enzymes to execute a fully functional tricarboxylic 

acid (TCA) cycle, its role is not fully elucidated, as only a fraction of the glucose is processed in 

this pathway.
5, 6

 However, these studies could not comprehensively capture all aspects of P. 

falciparum metabolism during the IDC. Conversely, the latter studies include high-throughput 

“omics” profiling, e.g., genome-scale transcriptomics profiling in P. falciparum during different 

stages of its life cycle.
7, 8

 Of particular interest for IDC studies, the expression data for nearly all 

genes (including metabolic genes) have been collected at each hour during the IDC, providing a 

continual transcriptomics readout of stage-specific developments.
9, 10

 Again, these data have 

primarily been analyzed in terms of individual metabolic pathways and not from a fully 

integrated metabolic analysis that takes into account the entire IDC.
11, 12

 Here, we performed a 

system-level investigation of IDC metabolism using a combination of the high-throughput gene 

expression data with in silico metabolic network modeling to systematically connect altered 

genetic transcriptions to enzymes and metabolic activities. 

Systems biology representations of metabolism use the constituent components (genes, 

metabolites, and reactions) to predict metabolic activity and growth phenotypes of organisms.
13

 

Genome-scale metabolic networks consist of interconnected biochemical reactions, each 

processing particular metabolites spontaneously or through enzyme(s) encoded by gene(s), 

which, when they were analyzed under certain constrained conditions, such as limited nutrient 

uptake, can predict cellular growth (biomass accumulation) and other phenotypic functions 

related to metabolism.
13

 For instance, metabolic networks for P. falciparum have been developed 

and used to identify essential genes/reactions that represent candidates for target-based anti-

malarial drug discovery.
14-19

 Importantly, these networks were integrated with gene expression 
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data at different stages of the IDC, generating static models of stage-specific P. falciparum 

metabolic activities and correctly predicting metabolite exchanges between the parasite and the 

host.
16, 17

 A limitation with this approach is that these models did not capture the parasite’s stage-

specific growth, failing to link genotypic alterations and phenotypic growth of P. falciparum 

during the IDC. These models used fixed biomass functions, and, thus, were not able to capture 

the distinct time-dependent synthesis of each biomass component and relate these components to 

stage-specific cellular activities. 

To overcome these limitations, we created an integrated “global” P. falciparum metabolic 

network model that can predict metabolic fluxes, biomass production rates (representative of 

specific growth rates),
20

 and the production of biomass components at each hour during the IDC. 

We validated our model by comparing the predicted production of the biomass and its 

components with the experimentally observed stage-specific growth and macromolecular 

syntheses. In addition, we analyzed the predicted net production of small metabolites, the ATP 

production and consumption, and the fluxes through the TCA cycle, providing a rationale for the 

stage-specific functions of these molecules, energy metabolism, and metabolic pathways. Thus, 

our model provides a framework to link gene expression, metabolic fluxes, and growth 

phenotypes that can be used to model and interpret P. falciparum metabolism under different 

conditions, including drug treatments and other physiological stress conditions.  
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Results and Discussion 

Metabolic model of P. falciparum during the IDC 

We created a model that describes all metabolic activities in P. falciparum HB3 during asexual 

reproduction in red blood cells, by estimating 1) the distribution of metabolite flows (or fluxes), 

2) an overall biomass production rate, and 3) the production rate of each component of the 

organism’s biomass at each hour of the IDC. We used a modified metabolic network 

reconstruction
16

 (see Experimental Section for details) combined with hourly gene expression 

data from the highest time-resolution experiment available to date.
9
 This approach used the time-

series gene expression data
9
 to alter a set of “nominal” metabolic fluxes, representing the average 

physiological reaction fluxes of P. falciparum in the IDC. 

Despite the lack of a reliable correlation between gene transcription levels and enzyme activities, 

a number of methodologies have demonstrated the ability to capture condition-specific metabolic 

behaviors via the integration of a metabolic network with either absolute gene transcriptional 

data
21-23

 or differential gene expressions compared to particular reference conditions.
24, 25

 Here, 

we constructed a hybrid version of these approaches, as the gene expression data represent gene 

transcriptional differences between the sample at a particular time point and a mixed pool of 

samples from all time points.
9
 Importantly, we used a semi-continuous approach to account for 

gradual changes in metabolite fluxes and growth phenotypes rather than considering metabolic 

reactions in a binary manner (active or inactive depending on predefined stage-specific metabolic 

states).
26, 27

 This approach represents a data-driven methodology in which the time-dependent 

state of the metabolic network (and organism) is driven and determined by alterations in gene 

transcription. 
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Figure 1 schematically outlines the major steps we used to perform the integration of the 

metabolic network with time-series gene expression data. In this exemplar, we used a set of time-

series gene expression data and a metabolic network containing five metabolites (A–E), two 

uptake reactions, three enzymatic reactions, and one biomass reaction. In Step I, we initially used 

the network to construct a nominal flux distribution that satisfied the mass balance of each 

metabolite and the average biomass composition. In Step II, we mapped the gene expression data 

into reactions. Given the nominal fluxes and relative expression data, we generated a set of time-

series metabolic fluxes that fluctuated around their nominal value (Step III). For each reaction, 

the time-dependent pattern of these fluxes followed, as closely as possible, that of the 

corresponding expression levels. Using these fluxes, we could determine the syntheses and net 

production of all biomass components (B, C, and E in Figure 1), which when summed up yielded 

the overall time-series biomass production rate (Step IV).  

The malaria model also incorporated mass conservation constraints to account for the growth 

from one organism to 16–32 organisms through four to five cell division cycles during the IDC. 

Furthermore, given that there is no one-to-one mapping between gene expression levels and 

enzyme activity, we introduced time shifts in the model to account for the time difference 

between when a gene is transcribed (the available data) to when the synthesized proteins appear 

and are active in the organism (metabolic activity as discussed in the paper). This procedure 

resulted in time-series metabolic states that indicated time-dependent alterations of reaction 

fluxes, the biomass production, and the synthesis of each biomass component. We provide a 

detailed description of these steps and their implementation in the Experimental Section. 
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Prediction of the overall biomass production 

Using the developed model, we predicted the overall biomass production rate μ of P. falciparum 

at each of the 48 hours during the IDC (see Figure 2). The prediction shows an overall qualitative 

agreement with the experimentally observed growth phenotypes of the parasite during the three 

stages (ring, trophozoite, and schizont) throughout the cycle. We predicted that the biomass 

production rate started from a very low level and increased during the ring stage (first 18 hours). 

The relatively low production rate is consistent with the experimental slow-growth phenotype in 

the ring stage,
28

 during which the primary activity of the organism is remodeling its internal 

structures.
29

 Further, we predicted sustained biomass production rates at relatively high levels 

during the trophozoite stage (18–30 hours), during which P. falciparum is observed to grow 

rapidly by consuming most of the cytoplasm of its host red blood cells.
30

 Finally, the biomass 

production rates after 30 hours decreased, which is compatible with the observed schizont-stage 

P. falciparum shift in focus from growth to cell division.
29

 In particular, the predicted biomass 

production rate at the end of the IDC was close to that at the beginning, suggesting that the 

metabolic program goes back to its original state after one round of the cycle and readies itself 

for another round of infection.
29

  

Prediction of time-dependent macromolecule biomass-component synthesis 

P. falciparum accumulates biomass by taking up nutrients and synthesizing required components, 

such as DNA, RNA, protein, and phospholipids. However, these processes are not uniformly 

active during the IDC and instead exhibit time- or stage-specific dependencies indicative of 

tightly controlled metabolic processes during merozoite asexual reproduction. We used our 

model to predict the net amounts of each of these macromolecules produced during different 

time intervals throughout the IDC, and compared the predicted results with the corresponding 
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HB3 strain-specific experimental data.
31, 32

 This comparison was especially relevant as the 

measured levels from the experimental system of P. falciparum-infected erythrocytes are not 

obscured by difficulties in separating host and parasite components. Mature human red blood 

cells contain no nucleus to synthesize DNA and RNA,
33

 are thought not to synthesize protein,
33

 

and have negligible phospholipid syntheses and metabolism.
34

 Hence, the measured syntheses of 

these molecules are attributable to P. falciparum and not to the erythrocytes. 

Figures 3A and 3B show that the predicted syntheses of RNA and protein, respectively, peaked 

during the mid-IDC. Specifically, both the prediction and experimental data showed that the net 

amount of RNA synthesized was relatively high between 12 and 36 hours after infection, with 

the highest amount produced at around 24 hours.
31

 Figure 3B shows that our prediction results 

for the synthesized amount of protein were relatively high between 18 and 40 hours and at the 

highest level between 24 and 36 hours. Although no quantitative experimental measurements of 

protein synthesis were available, our predictions were qualitatively supported by the 

experimental data from polyacrylamide gel electrophoresis, which showed that the synthesized 

amounts of soluble proteins were relatively high between 24 and 36 hours, while those for 

antigens were high between 18 and 40 hours.
31

 

Figures 3C and 3D show that our predictions and experimental results indicate that DNA and 

phospholipids, respectively, were mainly synthesized in P. falciparum during the late IDC. 

Figure 3C shows that the predicted DNA synthesis amount was the highest between 36 and 40 

hours, compared to the maximum experimental amounts, which occurred a few hours earlier 

during the 30- to 36-hour time interval. Figure 3D shows that both the predicted and 

experimental synthesized amounts of phospholipids during the 30- to 43-hour time intervals were 

higher compared to the earlier intervals. Although the predicted and experimental amounts
32
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reached their maximums at different time intervals, the trends in both sets of data showed general 

increases from the early to the late IDC, confirming that phospholipids were mainly synthesized 

during the late stage of the cycle. The timing of the DNA and phospholipid syntheses prepares 

the organism for cell division during the schizont stage by generating the needed genomic 

materials and cellular membranes to support cell replication. 

Despite the qualitative consistency in the timing of macromolecular production, the predicted 

and experimental results still exhibited quantitative discrepancies. For example, the predicted 

maximum in DNA synthesis occurred six hours later than experimentally observed. These 

discrepancies are partly a reflection of our limited consideration of post-transcriptional and post-

translational regulations.
35

 As outlined in the Experimental Section, we did approximately 

account for these processes by shifting the gene expression data by the average time delay 

derived from comparing a set of bi-hourly time-series proteomics data with the corresponding 

transcriptional levels.
36

 However, time delays might vary non-linearly during the developmental 

stages, e.g., due to synchronization switches or just a lack of available ribosomes. For ribosomal 

proteins, their transcription levels peaked during the ring and early trophozoite stages,
9
 whereas 

the corresponding proteins were abundant only during the trophozoite and early schizont 

stages.
36

 Thus, the variation in the number of ribosomal proteins may also contribute to changes 

in protein synthesis rates and in the time delay of the proteomics data compared to the 

corresponding transcriptomics data throughout the IDC.  

Prediction of time-dependent precursor synthesis 

In addition to the production of macromolecules, P. falciparum synthesizes a number of critical 

small-molecule precursors which function as cofactors in different biological processes.
16

 Figure 

4 shows the results of our time-dependent prediction of the precursor synthesis classified into 
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four general groups. Groups I, II, and III include the metabolites mainly produced during the 

early (ring stage), middle (trophozoite and early schizont stages), and late (schizont stage) 

periods of the IDC, respectively, whereas Group IV includes the metabolites for which the 

production/uptake rate was roughly constant throughout the IDC. 

Group I: The early IDC synthesis included pyridoxal 5-phosphate, the active form of vitamin B6, 

and NAD, a ubiquitous redox intermediate. The timing of these syntheses suggests that they play 

a key biological role during this period, although both molecules are known to be important in a 

variety of biological processes. Pyridoxal 5-phosphate is a cofactor for more than 100 known 

enzymes,
37

 including 13 P. falciparum enzymes suggested as potential druggable targets by 

Kronenberger et al.
38

 Given the predicted high production levels of pyridoxal 5-phosphate in the 

ring stage, we examined the stage-specific expressions of 11 out of the 13 enzymes for which the 

related gene expression data were available.
9
 We could categorize all enzymes into stage-specific 

activities, except for lysine decarboxylase (PFD0285c), which peaked during 26-36 hours, i.e., 

overlapping with the late trophozoite and early schizont stages. Thus, we found one, five, and 

four enzymes linked to the ring, trophozoite, and schizont stage, respectively. Supplemental 

Table S1 provides information for each enzyme. In particular, we could stage-match the 

production of pyridoxal 5-phosphate with a cysteine desulfurase (encoded by MAL7P1.150 

[IscS]) at the late ring stage. This suggests an initial functional link between pyridoxal 5-

phosphate and the iron-sulfur complex in the mitochondria, which potentially affects electron 

transfer, catalysis, and regulatory processes.
39

  

Group II: Concomitant with the RNA and protein syntheses during the trophozoite and early 

schizont stages, a number of precursors were also preferentially produced during this time, 

suggesting a role for them in protein production or other activities during the mid-IDC. For 
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example, de-novo-synthesized heme was demonstrated to be a requirement for optimal protein 

syntheses.
40, 41

 Figure 4 also shows that the polyamines (spermidine and putrescine) were 

predicted to achieve peak production levels during mid-IDC, yet they are involved in a wide 

range of functions, including the stabilization of DNA, RNA, and proteins.
42

 However, our 

prediction of their preferential synthesis during mid-IDC is supported by the experimental 

observation that inhibition of polyamine syntheses had no visible effect during the ring stage but 

caused morphological growth arrest in the trophozoite stage.
42

 Finally, our prediction of the 

time-dependent synthesis of 10-formyltetrahydrofolate coincided with protein synthesis, tied to 

its function of donating its formyl moiety to produce formylmethionine, the initiator of mRNA 

translation.
43

  

Group III: Figure 4 shows that the peak production of the precursors included in this group 

roughly coincided with the enhanced production of DNA and phospholipids during the schizont 

stage. In this group, the predicted synthesis of ubiquinone was confirmed by noting that the 

highest experimental ubiquinone concentration occurred in the schizont stage.
44

 

The observed time dependency among this group of molecules also allowed us to hypothesize 

about their biological role. For example, S-adenosyl L-methionine involves both the trophozoite-

stage polyamine syntheses
42

 and DNA methylation, an important step in cell division during the 

schizont stage.
45

 Based on our predictions of an increased production of S-adenosyl L-

methionine during the late IDC, we hypothesized that the primary function of this molecule 

might be involved in DNA methylation. A further example was coenzyme A, whose inclusion in 

Group III suggests that its function is related to schizont-stage activities. Coenzyme A is 

reported to be necessary for DNA replication and cell division in fission yeast,
46

 but its 

hypothesized role in DNA replication of P. falciparum remains to be confirmed. Conversely, 
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coenzyme A biosynthesis is a valid antimicrobial drug target and, based on its essentiality for P. 

falciparum in red blood cells and different biochemical characteristics from its counterpart in 

humans,
47

 may be considered as a potential anti-malarial drug-development target. 

Group IV: This group includes molecules for which we predicted roughly constant 

production/uptake rates throughout the IDC. Because the production/uptake rates were driven by 

altered gene transcription profiles, our model did not capture other time- and stage-specific 

processes. Similarly, any lack of a direct gene-reaction relationship in our model would prevent 

us from modeling such a reaction. For example, in the network model, riboflavin was directly 

taken up by the parasite and used for biomass production.
16

 However, as no gene was associated 

with this process, we did not model any time-dependent variation in riboflavin accumulation.  

Prediction of energy production and consumption 

It has long been proposed that P. falciparum obtains energy by anaerobically metabolizing 

glucose into lactate through the glycolysis pathway.
4
 However, it remains unclear whether other 

metabolic pathways contribute appreciably to energy production and what biological processes 

use the produced energy. Using our model, we calculated the time-dependent ATP production 

from glycolysis, the production and consumption by other metabolic pathways, and the 

consumption by non-metabolic activities (i.e., conversion of ATP to ADP). Figure 5 shows that 

compared to glycolysis, other metabolic pathways produced negligible amounts of ATP, and that 

these non-glycolytic pathways consumed much less ATP than non-metabolic activities. In 

addition, these ATP production and consumption pathways reached their highest levels during 

the trophozoite and late schizont stages, indicating that P. falciparum relied almost exclusively 

on the glycolysis pathway to generate energy during the IDC, most of which was used for non-

metabolic activities, such as RNA production, protein syntheses, and cellular growth. 

Page 14 of 39Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems 

 

This journal is © The Royal Society of Chemistry [year] Mol. BioSyst., [year], [vol], 00–00  |  15 

 

Prediction and analysis of metabolite fluxes in the TCA cycle 

P. falciparum possesses a mitochondrial compartment and encodes all of the enzymes in the 

TCA cycle,
5
 indicating the presence of a fully functional TCA cycle. However, the function of 

the cycle still remains unclear, because P. falciparum does not generate the bulk of its energy by 

processing glucose through the TCA cycle.
5, 6

 Instead, P. falciparum metabolizes glucose into 

lactate, which is subsequently secreted.
5, 6

 Here, we predicted the time-series fluxes for all the 

reactions in P. falciparum during the IDC to clarify the metabolic role of the TCA cycle. 

The predicted fluxes through the TCA reactions shared some common features. For example, 

Figure 6A shows that all reaction fluxes were in the oxidative direction, which was consistent 

with isotope profiling experiments.
5, 6

 In addition, Figures 6B and 6C show that the predicted 

flux profiles for all the reactions in the TCA cycle peaked during the schizont stage (30–48 

hours), indicating the importance of these reactions for this stage of the IDC.  

The TCA reaction fluxes also showed different time-dependent profiles, suggesting that we 

could identify individual segments with different biological functions. Figure 6B shows that the 

fluxes through the reactions catalyzed by citrate synthase (CS), aconitate hydratase (ACONT), 

and isocitrate dehydrogenase (ICDH) were much lower than other reactions. This segment of the 

TCA cycle involves the detoxification of superoxide leaked from the mitochondrial respiration 

chain where the leaked superoxide is converted by dismutase into hydrogen peroxide, which is 

subsequently reduced to water.
48

 This reduction of hydrogen peroxide oxidizes NADPH into 

NADP, which, in turn, is reduced by ICDH.
48, 49

 Furthermore, the similarity in the flux profiles 

of α-ketoglutarate dehydrogenase, succinate-coenzyme A ligase, and succinate dehydrogenase 

(AKGDH, SUCOAS, and SUCD in Figure 6, respectively) enabled us to group these reactions 

into one segment, which we linked to oxidation of 2-oxoglutarate generated from glutamate and 
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glutamine.
5
 This oxidation is continued by fumarase (FUM in Figure 6),

5
 which also metabolizes 

fumarate from the purine pathway.
50

 Finally, we predicted that part of the produced L-malate 

was transported out of mitochondria while the remaining L-malate was converted in the TCA 

cycle into oxaloacetate by L-malate dehydrogenase (MDH in Figure 6). 
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Conclusion 

The IDC represents the major growth-through-replication phase of malaria parasites in humans, 

and its roughly 48-hour cycle corresponds to the well-known recurring host-fever attacks. During 

this phase, the merozoite undergoes three distinct transformations that allow it to absorb nutrients 

from the infected blood cell and undergoes four or five cycles of replication to produce 16 or 32 

new merozoites, respectively. To examine how P. falciparum executes and adjusts its 

metabolism during this replication phase, we created a genome-scale metabolic network model 

that predicted metabolic fluxes, the biomass production rate, and the production of each biomass 

metabolite at each hour during the IDC. This work builds on and extends the capabilities of the 

existing metabolic models of blood-stage P. falciparum.
16, 17

 In particular, we have extended the 

metabolic network models to 1) predict time-dependent biomass production and 2) allow for a 

time-variable biomass function, so that we could correctly model and capture the stage-specific 

synthesis of each biomass metabolite and capture stage-specific growth phenotypes. Our results 

indicate that the model provides detailed mechanistic links between transcriptomics, metabolism, 

and phenotypically distinct organism development. This lays the foundation for the future 

interpretation and exploration of P. falciparum metabolism under a wide variety of stress 

conditions. 
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Experimental 

Metabolic network of P. falciparum 

From the two recently developed metabolic networks of P. falciparum,
16, 17

 we started our model 

development using the iTH366 gene-protein-reaction formulations, stoichiometric 

representations of all reactions, and biomass objective functions.
16

 Although equivalent in scope, 

the iTH366 network differentiates the reactions catalyzed by isozymes from those by multiple-

unit protein complexes,
16

 while the PlasmoNet network assumes that all of these reactions are 

catalyzed by isozymes.
17

 The more extensive gene-protein-reaction formulation theoretically 

allows for a finer distinction when integrating the gene expression data with the individual 

metabolic reactions.  

Modifications 

We made modifications to the existing iTH366 set of reactions by changing the compartment of 

glutathione reductase from mitochondria to cytosol,
48, 51

 adding the genes encoding 

phosphoethanolamine methyltransferase,
52

 and the enzymes associated with the hemoglobin 

degradation.
30, 53

 We also added a new set of reactions, including serine decarboxylase,
54

 

methylenetetrahydrofolate reductase,
55

 cardiolipin synthase,
56

 the polymerization of hemoglobin-

generated heme, the degradation of the heme by glutathione, mitochondrial thioredoxin reductase, 

and mitochondrial peroxiredoxin.
48, 51, 57

 We only allowed uptake and secretion for the set of 

metabolites that were found to be transported by P. falciparum during the IDC (see the complete 

list in Supplemental Table S2 in Electronic Supplementary Information).
8, 30, 48, 58-70

 We also 

assumed free secretion of CO2 and free transports of H2O and H
+
, and we added sulfate uptake 

and urea secretion to avoid a zero biomass production rate.  
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We redefined the original biomass objective function into a new set of biomass functions 

(denoted by B) to allow for monitoring biomass metabolite production at different times during 

the IDC. Thus, the new formulation B of the biomass function describes the biological activities 

necessary for the biomass production in P. falciparum, through the following equations: 

AAa + tRNAa → AA-tRNAa, a = 1,…,20              (1) 

cAA1AA-tRNA1 + … + cAA20AA-tRNA20 → cAA1tRNA1 + … + cAA20tRNA20 + Protein        (2) 

cATPATP + cCTPCTP + cGTPGTP +cUTPUTP → RNA + (cATP+cCTP+cGTP+cUTP)Diphosphate       (3) 

cdATPdATP + cdCTPdCTP + cdGTPdGTP +cdTTPdTTP  

          → DNA+ (cdATP+cdCTP+cdGTP+cdTTP)Diphosphate  (4) 

cPCPC +cPEPE + cPSPS + cPIPI + cSPHSPH + cCLCL → ϕ            (5) 

ciMi → ϕ (for each metabolite i that was a polyamine, a cofactor, or an inorganic ion)        (6) 

cenergy H2O + cenergy ATP → cenergy ADP + cenergy Phosphate + cenergy H
+
          (7) 

Equations 1 and 2 represent the addition of amino acids for protein syntheses, where AA denotes 

an amino acid, a represents its index, tRNAa denotes tRNA used to transport amino acid a, AA-

tRNAa indicates the complex of amino acid a and its corresponding tRNA, and cAAa is the 

corresponding stoichiometric coefficient for amino acid a. Similarly, Equations 3 and 4 represent 

the use of nucleotides for the syntheses of RNA and DNA, respectively. Equation 5 accounts for 

the addition of the phospholipids phosphatidylcholine, phosphatidylethanolamine, 

phosphatidylserine, phosphatidylinositol, sphingomyelin, and cardiolipin (denoted as PC, PE, PS, 

PI, SPH, and CL in Equation 5, respectively), which are all necessary components of cellular 

membranes.
34, 71

 Equations 6 and 7 denote the utilization of other metabolites (Mi) and energy 

consumption for the biomass production, respectively. In the above equations, c represents the 

coefficient of a metabolite in the original biomass objective function. One should note that 
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carbohydrates are not part of the original biomass objective function, primarily because there are 

no experimental data available. This omission should not be a major limitation for the metabolic 

network formulation for blood-stage malaria, as the parasites do not store energy reserves during 

this stage, but instead rely heavily on glucose uptake (G. Plata, personal communication). Once 

experimental data are available for other metabolites, such as carbohydrates, one could add their 

compositions into the biomass objective function. 

We have provided the constructed model representing P. falciparum metabolism during the IDC 

(in MATLAB format) in the Supplemental Protocol S1 in Electronic Supplementary Information. 

Gene expression data for P. falciparum during the IDC 

To capture time-dependent metabolism as accurately as possible, we used the time-series gene 

expression data at the highest time resolution, collected hourly from synchronized populations of 

P. falciparum HB3 during the IDC.
9, 10

 This data set is measured using two-channel microarrays 

in which the treatment channel contained the sample at one time point, while the control channel 

contained a mixed pool of samples from all time points.
9, 10

 Basing our model construction and 

calculations on data for the HB3 strain
9
 enabled us to validate our results using experimentally 

measured synthesis rates of DNA, RNA, and protein that are only available for this strain.
31

 

Calculation of metabolic fluxes in P. falciparum at each hour during the IDC 

Figure 1 shows the overall scheme for calculating metabolic fluxes of P. falciparum at each time 

point of the IDC. We used a stepwise approach to construct a set of time-series reaction fluxes 

that fluctuated around their nominal values based on corresponding time-series gene expression 

data. 
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Step I. We calculated a set of nominal fluxes that were equal to the most parsimonious 

metabolite flow through the metabolic network, based on the assumption of the most efficient 

utilization of nutrients.
72

 This was done by solving two minimization problems, the first of which 

was the minimization of the overall nutrient uptake rate, 

min 
Tj

jjv /        (8) 

s.t. 0vS   

     ubvlb   

     N

jv    for each Bj , 

where v denotes the flux vector with element vj indicating the flux through reaction j in units of 

mmol/h/gDW, or millimole per hour per gram dry weight of the original merozoite (the asexual 

form of P. falciparum capable of infecting erythrocytes); T represents the set of nutrient uptake 

reactions; αj denotes the human serum concentration
73

 of the nutrient taken up by reaction j; S 

indicates the stoichiometric matrix; lb and ub denote the lower and upper bounds of the fluxes, 

respectively; and μ
N
 represents the average growth rate of P. falciparum during the IDC.  

The coefficients (1/αj) in the objective function ensure a preference to uptake nutrients associated 

with high concentrations. We set the average growth rate based on the observation that during 

the IDC, the organism undergoes an average of four to five cell divisions.
30

 Because the total 

number of divisions is not controlled under experimental conditions, the total mass at the end of 

the IDC is ½×(2
4 

+ 2
5
) or 24 times the initial merozoite mass. This sets the value for μ

N
 to (24-

1)/48 or 0.48 gram new biomass per hour per gram dry weight of the original merozoite weight 

(g/h/gDW). By setting the constraints vj = μ
N
 (for jB), we fixed a certain flux through each 

biomass function, which ensures that the mass of each biomass component at the end of the IDC 
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is 24 times its initial mass, corresponding to the observation that, on average, one merozoite 

generates 24 copies of itself during the IDC.  

Given minimum nutrient uptake, we subsequently minimized the sum of intracellular fluxes by 

solving the following problem: 

min 
Tj

jv ||         (9) 

s.t. 0vS   

     ubvlb   

     N

jv    for each reaction Bj , 

*

jj vv    for each reaction Ti , 

where vj
*
 represents the minimum nutrient uptake rates obtained in Equation (8), and the 

inequalities vj ≤ vj
*
 (for jT) indicate that the nutrient uptakes are constrained by the 

corresponding minimum values vj
*
. 

After the two minimizations, we obtained a set of nominal fluxes v
N
 representative of typical 

physiological fluxes through the reactions. For example, fluxes through the glycolysis pathway 

(including lactate production and secretion) were among the largest, consistent with the well-

established fermentative glucose utilization by the parasite.
4
  

Step II. Next, we processed the time-series gene expression data of P. falciparum during the 

IDC
9
 to obtain an expression level rj

t
 for each reaction j at each time point t. After first 

smoothing the original gene expression data using the locally weighted scatterplot smoothing 

(LOWESS) method with a span parameter of 30%,
9
 we subsequently mapped the resultant gene 

expression data to reactions by established methods.
21, 22

 If a single enzyme catalyzed a reaction, 
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we assigned the corresponding expression level of that gene to that reaction. If a reaction was 

catalyzed by multiple isozymes, we assigned their maximum gene expression level to that 

reaction. If a reaction was catalyzed by a protein complex composed of multiple subunits, we 

assigned their minimum gene expression level to that reaction.  

Time shift between gene transcription and protein translation 

In this article, we have discussed metabolism in terms of when enzymatic reactions occur and 

when the model predicts synthesis of biomaterials. As the available experimental data of gene 

transcription levels do not directly give us protein levels, we time-shifted the available 

transcription levels by a time difference equal to the difference between peak expression levels 

and peak protein abundance levels.
36

 For reactions associated with directly measured time-

dependent protein abundances, the time delays were taken as the differences between the peak 

times of protein abundances and those of the corresponding mRNA levels. If these reactions 

were part of the same metabolic pathway and proteomic data were unavailable for some enzymes 

in the same pathway, the time delay for the reactions with missing data was assigned based on 

the average peak-time differences of the reactions with experimentally available data. For all 

remaining reactions, the time delays were 11 hours, corresponding to the median of peak time 

differences between all the measured protein abundances and the corresponding transcriptomics 

data.
36

 

Linear normalization of expression data 

Finally, we normalized the expression data linearly, so that the mean and minimum of each 

reaction’s time-series expression values were one and zero, respectively. This assumes that the 

minimum expression value corresponded to complete inactivation of the reaction, and the mean 

value corresponded to the nominal flux through the reaction. 
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Step III. Given the nominal fluxes vj
N
 (from Step I) and the expression level rj

t
 for each reaction j 

at each time point t (from Step II), we calculated the reaction fluxes at each time point by first 

minimizing the difference J 
t
 between the reaction fluxes and the product of their nominal fluxes 

and expression values as follows: 

min 



Gj

N

j

t

j

t

j

t vrvJ       (10) 

     s.t. 0vS  t  

      ubvlb  t , 

where v
t
j represents the flux through reaction j at time point t, and G represents the set of 

intracellular irreversible reactions that can be associated with gene expression data. Because the 

expression data of transport (uptake or secretion) reactions are mapped to transport fluxes for 

molecules involved in both metabolic (subject to constraints in our model) and non-metabolic 

processes (not subject to constraints), G does not include these reactions. Examples of transport 

reactions for non-metabolic processes include water for regulation of osmotic pressure
74, 75

 and 

H
+
 transport for maintaining intracellular pH levels.

76, 77
 G also excludes reactions that can carry 

fluxes in both directions, because we cannot unambiguously determine the directions of their 

fluxes. In total, we excluded eight such reactions among the 317 intracellular reactions that were 

associated with gene expression data and not in dead-end pathways. 

Given that the problem formulated in Equation 10 may have multiple solutions, we selected the 

solution closest to the nominal flux distribution, based on the assumption that reaction fluxes 

minimally deviated from their nominal values. We did this by solving the following additional 

optimization problem: 
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min  
j

N

j

t

j vv        (11) 

     s.t. 0vS  t  

      ubvlb  t  

*

t

Gj

N

i

t

j

t

j Jvrv 


 , 

where Jt
*
 is the optimal value for the objective function from the previous optimization problem 

defined by Equation 10, and the last constraint ensures that this solution is one of the optimal 

solutions for Equation 10.  

After solving Equations 10 and 11, we obtained metabolic flux distributions for all time points 

during the IDC. These time-series fluxes varied around their nominal values in time-dependent 

patterns similar to those of the corresponding expression data. If no gene expression data were 

available, we assigned the reaction the time-independent value of the nominal flux distribution. 

The intent of the above approach was to be able to use the relative gene expression level as a 

semi-quantitative indicator that the cell is readying itself to transcribe the produced mRNA into 

proteins to execute or affect some biological/metabolic process. Thus, the metabolic model 

captures time-dependent aspects of when the gene transcripts became available, as well as the 

relative magnitudes of the expression levels. We further accounted for the mRNA/protein 

mismatch by using the experimentally measured time difference between when a gene was 

transcribed and when the synthesized proteins appeared in the organism. The use of relative 

expression levels around the average levels allows the optimization procedure flexibility in 

determining metabolic fluxes consistent with, but not equal to, gene expression levels. 

Step IV. We determined the overall biomass production level μ
t
 at each time point t from 
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








Bj

j

Bj

j

t

j

t

w

wv

 ,       (12) 

where wj indicates the biomass fraction of the metabolite(s) associated with the biomass function 

j. We defined wj as 


i

iij

j

Wc
w

000,1
,      (13) 

where cij represents the coefficient of metabolite i in biomass function j, Wi denotes the 

molecular weight of the metabolite, and the factor 1,000 converts mol into mmol.  

Simulation environment 

We constructed the model and ran the simulations in MATLAB (2012a, MathWorks, Natick, 

MA) using the COBRA toolbox.
78

 The metabolic model of P. falciparum during the IDC (in 

MATLAB format) is provided as Supplemental Protocol S1 in Electronic Supplementary 

Information. 
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Figure Legends 

Figure 1: Schematic description of integrating a metabolic network with time-series gene 

expression data. 

We constructed a set of metabolic states over a time course based on time-series gene expression 

data by altering nominal fluxes obtained from a metabolic network that represent average and 

typical fluxes through each reaction. The example network contains five metabolites (A–E), two 

uptake reactions, three enzymatic reactions, and one biomass reaction. In Step I, we obtained the 

set of nominal fluxes that satisfy the mass balance of each metabolite and the typical biomass 

composition. In Step II, we mapped the time-series gene expression data to their corresponding 

reactions. In Step III, given the nominal fluxes and gene expression data, we calculated a set of 

time-series fluxes. For each reaction, the time-dependent pattern of these fluxes followed that of 

the corresponding gene expression data, while the average of the fluxes was equal to (or as close 

as possible to) the nominal flux. In Step IV, we determined the time-series biomass production 

rate, by adding the production rates of all biomass components. We finally constructed time-

series metabolic states that showed time-dependent alterations of reaction fluxes, biomass 

production, and net production of each biomass component. 

 

Figure 2: The predicted overall biomass production rates μ of Plasmodium falciparum 

during the intraerythrocytic developmental cycle. 

The whole intraerythrocytic developmental cycle was classified into ring, trophozoite, and 

schizont stages.
10

 The unit of the biomass production rate μ is g/h/gDW, denoting gram biomass 

per hour per gram dry weight of the P. falciparum merozoite at the beginning of the cycle.  
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Figure 3: Macromolecule syntheses in Plasmodium falciparum during the intraerythrocytic 

developmental cycle. 

The synthesized amount of RNA (A), Protein (B), DNA (C), and phospholipids (D) during a 

given time interval was equal to the amount of material synthesized during the interval 

normalized by the maximum amount produced during the entire cycle. The predicted amounts 

were compared with the corresponding experimental data for DNA and RNA,
31

 and for 

phospholipids.
32

 The horizontal bars indicate the length of the time intervals. The colors of these 

bars represent the simulation results (blue) and experimental data (green). 

 

Figure 4: The predicted time-dependent production of biomass metabolites of Plasmodium 

falciparum. 

The heat map denotes the predicted time-dependent production levels of each biomass metabolite 

of P. falciparum, in which orange, grey, and blue colors represent high, normal, and low 

production levels, respectively. Based on the time-dependent production, we classified these 

metabolites into four groups. Groups I, II, and III include the metabolites mainly produced 

during the early (ring stage), middle (trophozoite and early schizont stages), and late (schizont 

stage) periods of the intraerythrocytic developmental cycle, respectively, while Group IV 

includes the metabolites for which the production levels were basically constant throughout the 

intraerythrocytic developmental cycle. The vertical dashed lines indicate the boundaries between 

ring, trophozoite, and schizont stages. 

 

Figure 5: Predicted energy production and consumption. 
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(A) Schematic description of energy production and consumption. Energy (in form of ATP) was 

produced from glycolysis and other metabolic pathways, and consumed by non-glycolytic 

metabolism and non-metabolic activity. (B) Predicted time-dependent ATP production and 

consumption with respect to metabolic and non-metabolic processes (excluding ATP used for 

RNA synthesis). The unit of the production or consumption is mmol/h/gDW, denoting millimole 

per hour per gram dry weight of the P. falciparum merozoite at the beginning of the 

intraerythrocytic developmental cycle. 

 

Figure 6: Predicted metabolic fluxes through the tricarboxylic acid cycle. 

(A) Reactions in the Plasmodium falciparum tricarboxylic acid (TCA) cycle. The arrows 

represent the directions of the predicted fluxes and different line styles indicated our 

classification of the TCA cycle into several segments, each of which had a distinct function. (B) 

The predicted time-dependent flux profiles of these reactions during the intraerythrocytic 

developmental cycle (IDC). (C) The rescaled flux profile of aconitate hydratase (ACONT), 

citrate synthase (CS), and isocitrate dehydrogenase (ICDH) during the IDC. The unit of the 

fluxes is mmol/h/gDW, denoting millimole per hour per gram dry weight of the P. falciparum 

merozoite at the beginning of the IDC. AKGDH, α-ketoglutarate dehydrogenase; FUM, 

fumarase; MDH, L-malate dehydrogenase; SUCD, succinate dehydrogenase; and SUCOAS, 

succinate-coenzyme A ligase. 
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Figure 1 
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Figure 2 

 

 

Page 35 of 39 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems 

 

36  |  Mol. BioSyst., [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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