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The microRNAs or miRNAs are short, endogenous RNAs having ability to regulate mRNA expression at the post-transcriptional
level. Various studies have revealed that miRNAs tend to cluster on chromosomes. The members of a cluster that are at close
proximity on chromosome are highly likely to be processed asco-transcribed units. Therefore, a large proportion of miRNAs
are co-expressed. Expression profiling of miRNAs generatesa huge volume of data. Complicated networks of miRNA-mRNA
interaction increase the challenges of comprehending and interpreting the resulting mass of data. In this regard, thispaper
presents a clustering algorithm in order to extract meaningful information from miRNA expression data. It judiciouslyintegrates
the merits of rough sets, fuzzy sets,c-means algorithm, and normalized range-normalized city block distance to discover co-
expressed miRNA clusters. While the membership functions offuzzy sets enable efficient handling of overlapping partitions
in noisy environment, the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and
incompleteness in cluster definition. The city block distance is used to compute the membership functions of fuzzy sets and to
find initial partition of a data set, and thereby helps to handle minute differences between two miRNA expression profiles. The
effectiveness of the proposed approach, along with a comparison with other related methods, is demonstrated on severalmiRNA
expression data sets using different cluster validity indices. Moreover, the gene ontology is used to analyze the functional
consistency and biological significance of generated miRNAclusters.

1 Introduction

MicroRNAs or miRNAs are a class of short approximately 22-
nucleotide non-coding RNAs found in many plants and ani-
mals. They often act post-transcriptionally to inhibit mRNA
expression. Hence, miRNAs are related to diverse cellu-
lar processes and regarded as important components of the
mRNA regulatory network. Recent genome wide surveys on
non-coding RNAs have revealed that a substantial fraction of
miRNAs is likely to form clusters. However, the evolutionary
and biological function implications of clustered miRNAs are
still elusive.

The genes of miRNAs are often organized in clusters in
the genome. It has been reported that at a very conserva-
tive maximum inter-miRNA distance of 1kb, over 30% of all
miRNAs are organized into clusters1. Expression analyses
showed strong positive correlations among the closely located
miRNAs, indicating that they may be controlled by common
regulatory element(s). In fact, experimental evidence demon-
strated that clustered miRNA loci form an operon-like gene
structure and that they are transcribed from common promoter.
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Existence of co-expressed miRNAs is also demonstrated us-
ing expression profiling analysis in2. Several miRNA clus-
ters have been experimentally shown by RT-PCR or North-
ern blotting3,4. These findings suggest that members of a
miRNA cluster, which are at a close proximity on a chromo-
some, are highly likely to be processed as co-transcribed units.
Expression data of miRNAs can be used to detect clusters of
miRNAs as it is suggested that co-expressed miRNAs are co-
transcribed, so they should have similar expression pattern.

A miRNA expression data set can be represented by an ex-
pression table, where each row corresponds to one particular
miRNA, each column to a sample or time point, and each entry
of the matrix is the measured expression level of a particular
miRNA in a sample or time point, respectively. The com-
plex networks of miRNA-mRNA interaction greatly increase
the challenges of comprehending and interpreting the result-
ing mass of data5. A first step towards addressing this chal-
lenge is the use of clustering techniques, which is essential in
the pattern recognition process to reveal natural structures and
identify interesting patterns in the underlying data6.

Cluster analysis is a technique for finding natural groups
present in the miRNA set. It divides a given miRNA set into a
set of clusters in such a way that two miRNAs from the same
cluster are as similar as possible and the miRNAs from differ-
ent clusters are as dissimilar as possible7. To understand the
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role of miRNAs in different cellular processes and diseases,
and the mechanism of repression of mRNA translation, clus-
tering techniques have proven to be helpful. The co-expressed
miRNAs, that is, miRNAs with similar expression patterns and
co-transcribed, can be clustered together having similar cel-
lular functions. This approach may further understanding of
the functions of many miRNAs for which information has not
been previously available8.

In this background, several authors used hierarchical clus-
tering algorithms5,9,10 and self organizing maps11 to group
miRNAs having similar function. Other clustering tech-
niques such ask-means algorithm12, graph theoretical ap-
proaches13–16, model based clustering17–20, and density based
approach21, which have been widely applied to find co-
expressed gene clusters, can also be used to group co-
expressed miRNAs from microarray data.

However, one of the main problems in expression data anal-
ysis is uncertainty. Some of the sources of this uncertainty
include imprecision in computations and vagueness in class
definition. In this background, the possibility concept in-
troduced by fuzzy sets22 and rough sets23 provides a math-
ematical framework to capture uncertainties associated with
human cognition process6,24. Also, the empirical study has
demonstrated that miRNA expression data are often highly
connected, and the clusters may be highly overlapping with
each other or even embedded one in another. Moreover, ex-
pression data often contains a huge amount of noise due to
the complex procedures of microarray experiments. There-
fore, fuzzyc-means25 and different rough-fuzzy clustering al-
gorithms such as rough-fuzzyc-means26 can be used to effec-
tively handle these situations and to find co-expressed miRNA
clusters.

In general, the quality of generated clusters is always rel-
ative to a certain distance measure. Different distance mea-
sures may lead to different clustering results. However, ev-
ery distance measure tries to compute the dissimilarity among
miRNAs present in different clusters. Several similarity or dis-
similarity measures such as Euclidean distance, Jaccard index,
Pearson correlation coefficient, and city block distance (CBD)
are used in various clustering algorithms. The performanceof
a clustering algorithm highly depends on the distance measure
used. One of the important properties of the CBD, not shared
by Euclidean distance, is dimensional additivity, that is,the
total distance is a sum of the distances per dimension. More-
over, the time required to calculate the CBD is less than the
time required to calculate the Euclidean distance.

In this regard, the paper presents a rough-fuzzy clustering
algorithm, integrating the concepts of lower and upper approx-
imations of rough sets, probabilistic and possibilistic mem-
berships of fuzzy sets,c-means algorithm, and normalized
range-normalized city block distance (NRNCBD), to discover
groups of co-expressed miRNAs from huge miRNA expres-

sion data. While the integration of both membership functions
of fuzzy sets enables efficient handling of overlapping parti-
tions in noisy environment, the concept of lower and upper ap-
proximations of rough sets deals with uncertainty, vagueness,
and incompleteness in cluster definition. Moreover, the useof
the NRNCBD helps to handle minute differences between two
miRNA expression profiles. Each cluster is represented by a
set of three parameters, namely, a cluster prototype or cen-
troid, a possibilistic lower approximation, and a probabilis-
tic boundary. The cluster prototype depends on the weighting
average of the possibilistic lower approximation and proba-
bilistic boundary. The NRNCBD is used to calculate both
possibilistic and probabilistic membership functions as well
as to find initial partition of a data set. The effectiveness of
the NRNCBD over Pearson distance and Euclidean distance
is presented in this paper. The performance of the proposed
miRNA clustering algorithm, along with a comparison with
other related methods, is demonstrated on four miRNA ex-
pression data sets using standard cluster validity indices. Bio-
logical validation of the clustering solutions is also doneusing
gene ontology based analysis.

The rest of this paper is organized as follows: Section 2 re-
ports the miRNA expression data sets used, while Section 3
presents the basic concepts of city block distance, method for
selection of initial cluster prototypes, and the proposed rough-
fuzzy clustering algorithm. Implementation details, experi-
mental results, discussions, and a comparison among different
clustering algorithms are presented in Section 4. Finally,con-
cluding remarks are given in Section 5.

2 Data Sets Used

In this work, publicly available four miRNA expression
data sets are used to compare the performance of differ-
ent clustering methods. This section gives a brief de-
scription of the following four miRNA expression data
sets, which are downloaded from Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/).

1. GSE16473: It is the analysis to evaluate the role of
miRNAs in skeletal muscle regeneration27. Hence,
global miRNA expression is measured during muscle cell
growth and differentiation. This data set contains 231
miRNAs and 7 time points.

2. GSE17155: It is the analysis to test the hypothesis that
there is a specific miRNA expression signature which
characterizes male breast cancers. The miRNA microar-
ray analysis was performed in a series of male breast can-
cers and compared them to cases of male gynecomastia
and female breast cancers28. This data set contains 774
miRNAs and 38 time points.
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3. GSE29495:The miRNA profiling of kidney tissue from
C57BL/6 mice that received a 30 minute ischemic injury
compared with control kidney tissue from mice that re-
ceived sham operation only has been conducted. The
number of miRNAs and time points are 574 and 17, re-
spectively.

4. GSE35074: It is the analysis to identify miRNAs par-
ticipating in SNAI1-orchestrated regulatory pathways, a
time-resolved microarray data of SNAI1-induced EMT
is analyzed, obtained during conditional expression of
SNAI1 in a Tet-Off MCF7-SNAI1 breast carcinoma cell
model29. It contains 837 miRNAs and 21 time points.

3 Proposed Clustering Method

This section describes the proposed miRNA clustering algo-
rithm. It is developed by integrating judiciously rough sets,
fuzzy sets,c-means algorithm, and the CBD.

3.1 City Block Distance

The CBD, also known as the Manhattan distance or taxi dis-
tance, is closely related to the Euclidean distance. Whereas
the Euclidean distance corresponds to the length of the short-
est path between two points, the CBD is the sum of distances
along each dimension. The distance between two objectsxi

andx j is defined as follows:

CBD(xi,x j) =
m

∑
k=1

|xik − x jk| (1)

wherem is the number of features of the objectsxi andx j. As
for the Euclidean distance, the expression data are subtracted
directly from each other, and therefore should be made sure
that they are properly normalized. There are many variants of
the CBD. The normalized CBD (NCBD) is defined as follows:

NCBD(xi,x j) =
1
m

m

∑
k=1

|xik − x jk| (2)

while the range-normalized CBD (RNCBD) is defined as fol-
lows:

RNCBD(xi,x j) =
m

∑
k=1

[

|xik − x jk|

kmax − kmin

]

(3)

wherekmax andkmin denote the maximum and minimum val-
ues along thekth feature, respectively. On the other hand, the
normalized RNCBD (NRNCBD) is defined as follows:

N (xi,x j) =
1
m
×RNCBD(xi,x j). (4)

From the above discussions, following properties can be de-
rived:

1. 0≤ N (xi,x j)≤ 1.

2. N (xi,x j) = N (x j,xi).

3. N (xi,xi) = 0.

4. N (xi,x j)≤ N (xi,xk)+N (xk,x j).

The first three axioms are trivial: the first presents the range of
the NRNCBD and says that it is always positive. The second
says that the NRNCBD fromxi to x j is the same with that
from x j to xi; in other words, the measure is symmetric. The
third says that the distance is necessarily 0 when two objects
are identical. The fourth axiom, called the triangle inequality,
may also seem intuitively obvious but is the more difficult one
to satisfy.

3.2 Selection of Initial Cluster Prototypes

A limitation of any c-means algorithm is that it can only
achieve a local optimum solution that depends on the initial
choice of the cluster prototypes. Consequently, computingre-
sources may be wasted in that some initial centers get stuck
in regions of the input space with a scarcity of data points
and may therefore never have the chance to move to new lo-
cations where they are needed. To overcome this limitation,
the proposed algorithm begins with the selection ofc distinct
miRNAs from the given miRNA expression data set using the
NRNCBD, which enables the algorithm to converge to an op-
timum or near optimum solutions.

The algorithm starts by computing the NRNCBD between
pairs of miRNAs of a given microarray data set. If the
NRNCBD N (xi,x j) between two miRNAsxi andx j is less
than a predefined thresholdλ , then they are considered as sim-
ilar to each other. After computing the NRNCBD, the total
number of similar miRNAs for each miRNAxi is computed.
After that, the miRNAs are sorted according to their similarity
values. If the miRNAxi has higher similarity value than an-
other miRNAx j and they are similar to each other with respect
to the thresholdλ , then the miRNAxi is considered as the po-
tential candidate for the set of initial centers and the miRNA x j

is not included in this set. Finally,c initial centers are selected
from the reduced set as potential initial centers. Hence, the
initialization method helps to identify different dense regions
present in the data set. The identified dense regions ultimately
lead to discovering natural groups present in the data set. The
whole approach is, therefore, data dependent. The main steps
for selection of initial miRNAs are as follows:

1. For each miRNAxi, calculateN (xi,x j) between itself
and the miRNAx j, ∀n

j=1.
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2. Calculate similarity score between two miRNAsxi and
x j as follows:

S(xi,x j) =

{

1 if N (xi,x j)≤ λ
0 otherwise.

(5)

3. For each miRNAxi, calculate total number of similar
miRNAs of xi as

N(xi) =
n

∑
j=1

S(xi,x j). (6)

4. Sortn miRNAs according to their values of N(xi) such
that N(x1)> N(x2)> · · ·> N(xn).

5. If N(xi) > N(x j) andN (xi,x j) ≤ λ , thenx j cannot be
considered as an initial cluster center, resulting in a re-
duced set of miRNAs to be considered forc initial cluster
centersvi, i = 1,2, · · · ,c.

6. Stop.

3.3 Rough-Fuzzy Clustering

The proposed rough-fuzzy clustering algorithm adds the con-
cepts of fuzzy memberships, both probabilistic and possibilis-
tic, of fuzzy sets, lower and upper approximations of rough
sets, and the NRNCBD intoc-means algorithm. While the in-
tegration of both probabilistic and possibilistic memberships
of fuzzy sets enables efficient handling of overlapping clus-
ters in noisy environment, the rough sets deal with uncertainty,
vagueness, and incompleteness in cluster definition.

Let X = {x1, · · · ,x j, · · · ,xn} be the set ofn objects andV =
{v1, · · · ,vi, · · · ,vc} be the set ofc centroids, wherex j ∈ ℜm

andvi ∈ ℜm. Each of the clustersβi is represented by a cluster
centervi, a lower approximationA(βi) and a boundary region
B(βi) = {A(βi) \A(βi)}, whereA(βi) denotes the upper ap-
proximation of clusterβi. The proposed clustering algorithm
partitionsX into c clusters by minimizing the following objec-
tive function:

J =







ωA1+(1−ω)B1 if A(βi) 6= /0, B(βi) 6= /0
A1 if A(βi) 6= /0, B(βi) = /0
B1 if A(βi) = /0, B(βi) 6= /0

(7)

where A1 =
c

∑
i=1

∑
x j∈A(βi)

(νi j)
ḿ2N (vi,x j)

+
c

∑
i=1

ηi ∑
x j∈A(βi)

(1−νi j)
ḿ2; (8)

and B1 =
c

∑
i=1

∑
x j∈B(βi)

(µi j)
ḿ1N (vi,x j). (9)

The parametersω and (1−ω) correspond to the relative im-
portance of lower and boundary regions, respectively. Hence,
to have the clusters and the centroids a greater degree of
freedom to move, 0< (1− ω) < ω < 1. The parameters
ḿ1 ∈ [1,∞) and ´m2 ∈ [1,∞) are the probabilistic and possi-
bilistic fuzzifiers, respectively. Note thatµi j ∈ [0,1] is the
probabilistic membership function as that in fuzzyc-means25

andνi j ∈ [0,1] represents the possibilistic membership func-
tion that has the same interpretation of typicality as in possi-
bilistic c-means30.

In the proposed rough-fuzzy clustering algorithm, each
cluster is represented by a centroid, a possibilistic lowerap-
proximation, and a probabilistic boundary. The lower approx-
imation influences the fuzziness of final partition. Accord-
ing to the definitions of lower approximation and boundary of
rough sets23, if an objectx j ∈ A(βi), thenx j /∈ A(βk),∀k 6= i,
and x j /∈ B(βi),∀i. That is, the objectx j is contained inβi

definitely. Hence, the memberships of the objects in lower ap-
proximation of a cluster should be independent of other cen-
troids and clusters. Also, the objects in lower approximation
should have different influence on the corresponding centroid
and cluster. From the standpoint of “compatibility with the
cluster prototype”, the membership of an object in the lower
approximation of a cluster should be determined solely by
how far it is from the prototype of the cluster, and should
not be coupled with its location with respect to other clus-
ters. As the possibilistic membershipνi j depends only on the
distance of objectx j from clusterβi, it allows optimal mem-
bership solutions to lie in the entire unit hypercube ratherthan
restricting them to the hyperplane given by equation (11). On
the other hand, ifx j ∈ B(βi), then the objectx j possibly be-
longs to clusterβi and potentially belongs to another cluster.
Hence, the objects in boundary regions should have different
influence on the centroids and clusters, and their memberships
should depend on the positions of all cluster centroids. So,
in the proposed clustering algorithm, the membership func-
tion of the object in lower approximation is given by equation
(12), which is identical to possibilisticc-means, while that of
boundary region is given by equation (10), which is same as
fuzzy c-means. Solving equation (7) with respect toµi j and
νi j, we get

µi j =

[

c

∑
k=1

(

N (vi,x j)

N (vk,x j)

)
1

ḿ1−1
]−1

; (10)

subject to
c

∑
i=1

µi j = 1,∀ j, and 0<
n

∑
j=1

µi j < n,∀i, (11)

νi j =

[

1+

{

N (vi,x j)

ηi

}
1

(ḿ2−1)

]−1

; (12)
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subject to 0<
n

∑
j=1

νi j ≤ n,∀i; max
i
{νi j}> 0,∀ j; and (13)

ηi =

n

∑
j=1

(νi j)
ḿ2N (vi,x j)

n

∑
j=1

(νi j)
ḿ2

; (14)

which represents the zone of influence or size of the clusterβi.
The centroid is calculated based on the weighting average of

the possibilistic lower approximation and probabilistic bound-
ary. Computation of the centroid is modified to include the
effects of both fuzzy memberships, probabilistic and possi-
bilistic, and lower and upper bounds. The centroid calculation
for the proposed clustering algorithm is obtained by solving
equation (7) with respect tovi:

vi =







ωC1+(1−ω)D1 if A(βi) 6= /0, B(βi) 6= /0
C1 if A(βi) 6= /0, B(βi) = /0
D1 if A(βi) = /0, B(βi) 6= /0

(15)

where C1 =

∑
x j∈A(βi)

(νi j)
ḿ2x j

∑
x j∈A(βi)

(νi j)
ḿ2

; (16)

and D1 =

∑
x j∈B(βi)

(µi j)
ḿ1x j

∑
x j∈B(βi)

(µi j)
ḿ1

. (17)

Hence, the cluster prototypes or centroids depend on the
parameterω, and fuzzifiers ´m1 andḿ2 rule their relative in-
fluence. The performance of the proposed clustering algo-
rithm also depends on the values of two thresholdsδ1 andδ2,
which determine the cluster labels of all the miRNAs. In other
words, the proposed clustering algorithm partitions the data
set into two classes, namely, lower approximation and bound-
ary, based on the values ofδ1 andδ2. The thresholdsδ1 and
δ2 control the size of granules of the proposed clustering algo-
rithm. In practice, the following definitions work well:

δ1 =
1
n

n

∑
j=1

(νi j −νk j) (18)

wheren is the total number of miRNAs,νi j andνk j are the
highest and second highest memberships of objectx j. That
is, the value ofδ1 represents the average difference of two
highest possibilistic memberships of all the miRNAs in the
data set. A good clustering procedure should make the value

of δ1 as high as possible. On the other hand, the miRNAs with
(νi j −νk j)≤ δ1 are used to calculate the thresholdδ2:

δ2 =
1
ń

ń

∑
j=1

νi j (19)

whereń is the number of miRNAs those do not belong to lower
approximations of any cluster andνi j is the highest member-
ship of miRNAx j. That is, the value ofδ2 represents the av-
erage of highest memberships of ´n miRNAs in the data set.
The main steps of the proposed clustering algorithm proceed
as follows:

1. Selectc initial cluster prototypes using the NRNCBD
based initialization method.

2. Choose values for fuzzifiers ´m1 and ḿ2, and calculate
thresholdsδ1 andδ2. Set iteration countert = 1.

3. Computeνi j by equation (12) forc clusters andn objects.

4. If νi j andνk j are the highest and second highest possi-
bilistic memberships of objectx j and (νi j − νk j) > δ1

thenx j ∈ A(βi).

5. Otherwise,x j ∈ B(βi) andx j ∈ B(βk) if νi j > δ2. Fur-
thermore,x j is not part of any lower bound.

6. Computeµi j for the objects lying in boundary regions for
c clusters using equation (10).

7. Compute new centroid as per equation (15).

8. Repeat Steps 3 to 7, by incrementingt, until no more new
assignments can be made.

9. Stop.

In this regard, it should be noted that different distance mea-
sures such as the Pearson distance and Euclidean distance can
also be used in equation (5) for the selection of initial cluster
prototypes as well as in equations (8), (9), (10), (12), and (14)
for rough-fuzzy clustering of miRNA data sets. In general,
the square of Euclidean distance is used in rough-fuzzy clus-
tering24, while the normalized Euclidean distance is used for
the selection of initial clusters.

The Euclidean distance between two objectsxi and x j is
defined as

dE(xi,x j) =

√

m

∑
k=1

(xik − x jk)2, (20)

while the Pearson distance is defined as

dP(xi,x j) = 1−|ρ |, (21)

whereρ represents the Pearson correlation coefficient, which
is the ratio between the covariance of two vectors(xi,x j) of
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expression values of two objects and product of their standard
deviations and is given by

ρ(xi,x j) =
Cov(xi,x j)

σxiσx j

; (22)

that is, ρ(xi,x j) =

m

∑
k=1

(xik − x̄i)(x jk − x̄ j)

√

m

∑
k=1

(xik − x̄i)2

√

m

∑
k=1

(x jk − x̄ j)2

, (23)

where ¯xi and x̄ j are the means ofxik andx jk, respectively. It
considers each miRNA as a random variable withm observa-
tions and measures the similarity between the two miRNAs by
calculating the linear relationship between the distributions of
the two corresponding random variables.

4 Results and Discussions

In this section, the performance of the proposed method is
compared with that of hardc-means (HCM)12, fuzzyc-means
(FCM)31, rough-fuzzyc-means (RFCM)26, cluster identifi-
cation via connectivity kernels (CLICK)15, and self orga-
nizing map (SOM)32. The performance of the NRNCBD
over Pearson distance and Euclidean distance is also pre-
sented. The results are reported on four miRNA microarray
data sets, namely, GSE16473, GSE17155, GSE29495, and
GSE35074. For each data set, the number of clustersc is de-
cided by using the CLICK15 algorithm. Each miRNA data set
is pre-processed by standardizing each feature or time point
to zero mean and unit variance. The values of two fuzzi-
fiers are set to 2.0, that is, ´m1 = 2.0 and ḿ2 = 2.0. All
the results are reported using four cluster validity indices,
namely, Silhouette index33, Dunn index34, Davies-Bouldin
index35, andβ index36. The biological analysis of the ob-
tained miRNA clusters is also studied using the gene ontol-
ogy. The source code of the proposed algorithm is available at
www.isical.ac.in/∼bibl/results/cbd-rrfcm/cbd-rrfcm.html.

4.1 Quantitative Measures

Following quantitative indices are used to evaluate the perfor-
mance of different clustering algorithms for grouping func-
tionally similar miRNAs from microarray expression data
sets.

4.1.1 Davies-Bouldin Index:The Davies-Bouldin (DB)
index35 is a function of the ratio of sum of within-cluster dis-
tance to between-cluster separation and is given by

DB =
1
c

c

∑
i=1

max
i 6=k

{

S(vi)+S(vk)

d(vi,vk)

}

(24)

for 1 ≤ i,k ≤ c. The DB index minimizes the within-cluster
distanceS(vi) and maximizes the between-cluster separation
d(vi,vk). Therefore, for a given data set andc value, the higher
the similarity values within the clusters and the between-
cluster separation, the lower would be the DB index value. A
good clustering procedure should make the value of DB index
as low as possible.

4.1.2 Silhouette Index:Let an objectxi ∈ βr, i = 1, ...,nr

andnr is the cardinality of clusterβr. For each objectxi let
ai be the average distance between objectxi and rest of the
objects ofβr, that is,

ai = davg(xi,βr −{xi}) (25)

wheredavg(., .) denotes the average distance measure between
an object and a set of objects. For any other clusterβp 6=
βr, let davg(xi,βp) denote the average distance of objectxi

to all objects ofβp. The scalarbi is the smallest of these
davg(xi,βp), p = 1, · · · ,c, p 6= r, that is,

bi = min
p=1,··· ,c,p 6=r

{

davg(xi,βp)
}

. (26)

The Silhouette width of objectxi is then defined as33

s(xi) =
bi −ai

max{bi,ai}
(27)

where−1 ≤ s(xi) ≤ 1. The value ofs(xi) close to 1 implies
that the distance of objectxi from the clusterβr where it be-
longs is significantly less than the distance betweenxi and its
nearest cluster excludingβr, which indicates thatxi is well
clustered. On the other hand, the value ofs(xi) close to -1 im-
plies that the distance betweenxi andβr is significantly higher
than the distance betweenxi and its nearest cluster excluding
βr, which indicates thatxi is not well clustered. Finally, the
values ofs(xi) close to 0 indicate thatxi lies close to the bor-
der between the two clusters. Based on the definition ofs(xi),
the Silhouette of the clusterβk (k = 1, · · · ,c) is defined as

S(βk) =
1
nk

∑
xi∈βk

s(xi) (28)

wherenk is the cardinality of the clusterβk. The global Sil-
houette index is defined as

Sc =
1
c

c

∑
k=1

S(βk) (29)

whereSc ∈ [−1,1]. Also, the higher the value ofSc, the
better the corresponding clustering is.

6 | 1–16

Page 6 of 16Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

D
u
n
n
 
I
n
d
e
x

Threshold λ Value
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14
D
u
n
n
 
I
n
d
e
x

Threshold λ Value
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

D
u
n
n
 
I
n
d
e
x

Threshold λ Value

Fig. 1 Variation of Dunn index over different values of thresholdλ for GSE16473, GSE17155, and GSE29495 data sets

4.1.3 β Index: The β index36 is defined as the ratio of
total variation and within-cluster variation, and is givenby

β =
N
M

; where N=
c

∑
i=1

ni

∑
j=1

||xi j − v||2;

M =
c

∑
i=1

ni

∑
j=1

||xi j − vi||
2; and

c

∑
i=1

ni = n; (30)

ni is the number of objects in theith cluster (i = 1,2, · · · ,c),
n is the total number of objects,xi j is the jth object in cluster
βi, vi is the mean or centroid ofith cluster, andv is the mean
of n objects. For a given data set andc value, the higher the
homogeneity within the clusters, the higher would be theβ
value. The value ofβ also increases withc.

4.2 Optimum Values ofλ and ω Parameters

The thresholdλ plays an important role to generate the initial
cluster centers. It controls the degree of dissimilarity among
the miRNAs present in microarray data. In effect, it has a di-
rect influence on the performance of the initialization method
used. Also, the performance of the proposed clustering algo-
rithm depends on the weight parameterω.

Let Φ= {λ ,ω} be the set of parameters andΦ⋆ = {λ ⋆,ω⋆}
is the set of optimal parameters. To find out the optimum set
Φ⋆, containing optimum values ofλ ⋆ andω⋆, the Dunn’s clus-
ter validity index34 is used here. Dunn’s (D) index34 is de-
signed to identify sets of clusters that are compact and well
separated. Dunn’s (D) index maximizes

D = min
i

{

min
k 6=i

{

d(vi,vk)

maxl S(vl)

}}

(31)

for 1≤ i,k, l ≤ c, wherevi is the centroid of clusterβi, S(vl)
is the within-cluster distance,d(vi,vk) is the between-cluster
separation, andc is the number of clusters.

For four miRNA microarray data sets, the value ofλ is var-
ied from 0.0 to 0.15, while the value ofω is varied from 0.51
to 0.99. The optimum values ofλ ⋆ andω⋆ for each microarray
data set are obtained using the following relation:

Φ⋆ = argmax
Φ

{D}. (32)

The proposed clustering algorithm with the NRNCBD dis-
tance measure achieves optimum values ofλ using equation
(32) at 0.13, 0.10, 0.03, and 0.15 for GSE16473, GSE17155,
GSE29495, and GSE35074 data sets, respectively, while the
optimum value ofω = 0.99 for all the data sets. Fig. 1 rep-
resents the variation of Dunn index with respect to different
values ofλ consideringω⋆ = 0.99 on GSE16473, GSE17155,
and GSE29495 data sets. From the results reported in Fig. 1,
it is seen that as the thresholdλ increases, the Dunn index
value increases and attains its maximum value at a particular
value ofλ ⋆. After that the Dunn index value decreases with
the increase in the value ofλ .

On the other hand, the optimum values ofλ and ω for
the proposed clustering algorithm with Pearson distance for
four data sets, namely, GSE16473, GSE17155, GSE29495,
and GSE35074, are{0.08,0.65}, {0.00,0.51}, {0.09,0.99},
and{0.03,0.95}, respectively. However, the proposed clus-
tering algorithm with Euclidean distance achieves optimum
values ofλ using equation (32) at 0.14, 0.15, 0.13, and 0.14
for GSE16473, GSE17155, GSE29495, and GSE35074 data
sets, respectively, while the optimum value ofω = 0.99 for all
the data sets.

4.3 Performance of Different C-Means Algorithms and
Distance Measures

Tables 1 and 2 provide the comparative performance analysis
of differentc-means algorithms with respect to three distance
measures, namely, Pearson distance (PD), Euclidean distance
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Table 1Comparative Performance of Different C-Means Algorithms and Distance Measures on GSE16473 and GSE17155 Data Sets

Validity Distance GSE16473 GSE17155
Index Measure HCM FCM RFCM Proposed HCM FCM RFCM Proposed

PD -0.011 -0.086 -0.091 0.198 -0.203 -0.184 -0.168 -0.150
Silhouette ED 0.314 0.238 0.252 0.687 0.192 0.122 0.180 0.181

NRNCBD 0.920 0.258 0.920 0.943 0.190 0.054 0.117 0.299
PD 10.998 14.441 3.208 1.727 26.769 109.406 29.003 22.244

DB ED 1.897 4.406 3.299 0.206 1.628 25.020 1.367 0.793
NRNCBD 0.015 15.856 0.0156 0.007 1.562 176.277 1.159 0.658

PD 0.070 0.032 0.172 0.258 0.030 0.007 0.017 0.021
Dunn ED 0.168 0.064 0.207 4.815 0.685 0.018 0.869 1.269

NRNCBD 34.696 0.000 33.558 81.200 0.702 0.003 1.017 1.671
PD 1.087 0.995 0.805 10.843 1.300 1.297 1.367 1.729

β ED 1.483 1.528 1.283 5.918 8.058 6.976 5.710 12.450
NRNCBD 2.204 1.114 2.174 6.281 7.606 4.823 6.699 17.649

Table 2Comparative Performance of Different C-Means Algorithms and Distance Measures on GSE29495 and GSE35074 Data Sets

Validity Distance GSE29495 GSE35074
Index Measure HCM FCM RFCM Proposed HCM FCM RFCM Proposed

PD -0.377 -0.365 -0.369 0.214 -0.035 -0.063 -0.060 -0.034
Silhouette ED 0.675 0.519 0.664 0.796 -0.111 -243 0.045 -0.125

NRNCBD 0.549 0.080 0.609 0.907 0.051 -0.212 0.062 0.119
PD 34.508 18.710 35.781 3.465 10.689 122.896 5.941 4.561

DB ED 0.158 1.182 0.351 0.122 3.638 150.648 2.110 1.379
NRNCBD 0.385 568.563 0.501 0.092 4.112 186.976 1.360 0.772

PD 0.004 0.012 0.011 0.010 0.104 0.003 0.148 0.161
Dunn ED 4.532 0.085 1.816 5.200 0.275 0.000 0.512 0.586

NRNCBD 0.558 0.000 0.281 4.721 0.268 0.000 0.905 1.402
PD 1.273 0.868 0.101 5.908 1.201 1.072 0.846 1.200

β ED 28.072 24.356 11.669 35.438 1.641 0.754 1.481 2.585
NRNCBD 23.651 9.891 30.072 963.320 1.596 1.000 1.158 2.769

(ED), and the NRNCBD, on four miRNA microarray data sets.
The results of differentc-means algorithms are reported for
their optimal values ofλ ⋆ andω⋆. In most of the cases, the
NRNCBD is found to improve the performance in terms of
Silhouette, DB, Dunn, andβ indices, irrespective of thec-
means algorithms. Out of total 64 comparisons, the NRNCBD
is found to provide significantly better results in 34 cases com-
pared to both Pearson distance and Euclidean distance. On
the other hand, the Pearson distance and Euclidean distance
achieve better results in 5 and 25 cases, respectively.

From the results reported in Tables 1 and 2, it can also be
seen that, out of total 16 cases, the HCM algorithm with Eu-
clidean distance and the NRNCBD performs better in 9 and
7 cases, respectively. Similarly, the FCM with Euclidean dis-
tance attains better results in 11 cases out of total 16 cases,
while it achieves better results in 4 and 1 cases, respectively,
with Pearson distance and the NRNCBD. On the other hand,
the RFCM algorithm with the NRNCBD and Euclidean dis-
tance performs better in 12 and 4 cases, respectively. Also,

the proposed rough-fuzzy clustering algorithm attains better
results in 14, 1, and 1 cases using the NRNCBD, Pearson dis-
tance, and Euclidean distance, respectively. Hence, the per-
formance of differentc-means algorithms deteriorates with
Pearson distance. All the results reported above establishthe
fact that the Euclidean distance is an appropriate choice for
both HCM and FCM, while both existing RFCM and pro-
posed rough-fuzzy clustering algorithm perform significantly
better using the NRNCBD compared to other two distance
measures. Also, the NRNCBD based proposed clustering al-
gorithm achieves better performance in 14 cases out of total
16 comparisons, irrespective of thec-means algorithms, clus-
ter validity indices, distance measures, and miRNA data sets
used.

Moreover, it is also seen that the proposed rough-fuzzy clus-
tering algorithm achieves better results than that obtained us-
ing existing RFCM algorithm, irrespective of the data sets,dis-
tance measures, and quantitative indices used. Out of total48
comparisons, the proposed algorithm attains better results in
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46 cases. In existing RFCM, each cluster is represented by
a cluster prototype, a crisp lower approximation and a proba-
bilistic boundary. The crisp lower approximation of a miRNA
cluster in existing RFCM is usually assumed to be spherical
in shape, which restricts to find arbitrary shapes of miRNA
clusters and forces to extract circular shaped miRNA clusters.
On the other hand, in the proposed rough-fuzzy clustering al-
gorithm, each cluster is represented by a cluster prototype, a
possibilistic lower approximation, and a probabilistic bound-
ary. The possibilistic lower approximation of the proposed
algorithm helps to extract miRNA groups of any shape. In ef-
fect, the chance of inclusion of noisy miRNAs becomes more
in the existing RFCM as compare to the proposed rough-fuzzy
clustering algorithm. Hence, the possibilistic lower approxi-
mation of the proposed algorithm helps in discovering clusters
of miRNAs that are highly similar to each other.

Table 3Performance of Different Clustering Algorithms
Validity Methods/ Data Sets / GSE
Index Algorithms 16473 17155 29495 35074

CLICK 0.005 -0.101 -0.634 0.038
Silhouette SOM 0.059 -0.112 -0.540 0.009

Proposed 0.971 0.471 0.928 0.415
CLICK 2.277 13.016 450.689 8.929

DB SOM 10.128 39.558 455.345 19.875
Proposed 0.007 0.658 0.092 0.772
CLICK 0.101 0.003 0.000 0.007

Dunn SOM 0.011 0.001 0.000 0.003
Proposed 81.200 1.671 4.721 1.402
CLICK 0.175 0.090 0.171 0.185

β SOM 0.360 0.205 0.385 0.306
Proposed 6.281 17.649 963.320 2.769

4.4 Performance of Different Clustering Algorithms

Table 3 presents the performance of different clustering algo-
rithms. The results and subsequent discussions are presented
with respect to the Silhouette, DB, Dunn, andβ indices. From
Table 3, it can be observed that the proposed method outper-
forms other clustering algorithms, irrespective of the quantita-
tive indices and miRNA data sets used. The best performance
of the proposed clustering algorithm is achieved due to the
following reasons:

1. the city block distance based dissimilarity measure used
for initial partition of data set enables the algorithm to
converge to an optimum or near optimum solutions;

2. the city block distance, used to calculate possibilistic
and probabilistic membership functions, provides effec-
tive values for degree of belongingness of the miRNAs;

3. probabilistic membership function of the proposed clus-
tering algorithm handles efficiently overlapping parti-
tions, while the possibilistic membership function of

lower approximation of a cluster helps to discover arbi-
trary shaped cluster; and

4. the concept of possibilistic lower approximation and
fuzzy boundary of the proposed algorithm deals with un-
certainty, vagueness, and incompleteness in class defini-
tion.

4.5 Qualitative Performance Analysis

This section presents the visual representation of the clus-
tering solutions obtained by different clustering algorithms.
The Eisen plots37 are generated for each clustering solu-
tion of each data set. In the present representation, the
miRNAs are ordered before plotting so that the miRNAs
that belong to the same cluster are placed one after another.
The cluster boundaries are identified by white colored blank
rows. The miRNA clusters produced by the SOM, HCM,
FCM, RFCM, and proposed algorithms on four data sets
are visualized by TreeView software, which is available at
http://rana.lbl.gov/EisenSoftware and the plots for fourdata
sets are reported in Fig. 2 as examples.

From the Eisen plots presented in Fig. 2, it is evident that
the expression profiles of the miRNAs in a cluster are similar
to each other and they produce similar color pattern, whereas
the miRNAs from different clusters differ in color patterns.
Also, the results obtained by both RFCM and proposed algo-
rithms are more promising than that by both HCM and FCM
algorithms. From the plots presented in Fig. 2, it is clearlyev-
ident that the proposed method generates the Eisen plots hav-
ing similar color pattern within the cluster as compare to other
clustering algorithms.

4.6 Functional Consistency of Clustering Result

DIANA microT v3.038, a miRNA target prediction algorithm,
is used to predict miRNA target genes for all miRNA clusters
generated by different clustering algorithms. For each miRNA
cluster, genes that are targeted by at leastt percentage (%) of
miRNAs in a cluster are used for further analysis. Here, the
value oft is varied from 10 to 75.

In order to evaluate the functional consistency of the genes
targeted by miRNAs of a cluster, the biological annotationsof
those genes of different clusters are considered in terms ofthe
gene ontology (GO). The annotation ratios of each targeted
gene cluster in three GO ontologies are calculated using the
GO Term Finder39. The GO term is searched in which most
of the genes of a particular cluster are enriched40. The anno-
tation ratio, also termed as cluster frequency, of a gene cluster
is defined as the number of genes in both the assigned GO
term and the cluster divided by the number of genes in that
cluster. A higher value of annotation ratio indicates that the
majority of genes in the cluster are functionally more closer to
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(a) GSE16473:n = 231,m = 7,c = 4

(b) GSE17155:n = 774,m = 38,c = 10

(c) GSE29495:n = 574,m = 17,c = 10

(d) GSE35074:n = 837,m = 21,c = 13

Fig. 2 Eisen plots of different clusters generated by SOM, HCM, FCM, RFCM, and proposed algorithms

each other and miRNAs targeting these genes are involved in
common cellular processes, while a lower value signifies that
the cluster contains much more noises or irrelevant genes and
the miRNAs targeting these genes are just randomly clustered.
After computing the annotation ratios of all gene clusters for a
particular ontology, the sum of all annotation ratios is treated
as the final annotation ratio. A higher value of final annotation
ratio indicates that the corresponding clustering result is better
than other, that is, the genes are better clustered by function,
indicating a more functionally consistent clustering result 41.

Fig. 3 presents the comparative performance analysis of the
NRNCBD, Pearson distance, and Euclidean distance with re-
spect to the proposed clustering algorithm. The final annota-
tion ratios generated by three distance measures for molecular
functions (MF), biological processes (BP), and cellular com-
ponents (CC) ontologies on four miRNA microarray data sets

are shown in this figure. Here, the results are presented for
those genes that are targeted by at least 10% to 75% miR-
NAs in a cluster. From all the results reported in Fig. 3, it is
seen that in most of the cases the NRNCBD performs better
than both Pearson distance and Euclidean distance. For the
proposed clustering algorithm, the NRNCBD performs bet-
ter than both Pearson distance and Euclidean distance in 65
cases, out of total 120 comparisons. However, the Pearson
distance and Euclidean distance perform better in 31 and 24
cases, respectively. The dimension additivity property ofthe
NRNCBD, that is, the total distance is a sum of the distances
per dimension, leads to better functionally consistent cluster-
ing solutions as compared to Pearson distance and Euclidean
distance.

The genes that are targeted by at least 50% miRNAs of
a cluster are further analyzed and the results are reported in
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Fig. 3 Biological annotation ratios obtained using proposed algorithm with NRNCBD,Pearson and Euclidean distances on four data sets

Fig. 4. The upper portion of Fig. 4 presents the compara-
tive results of the RFCM and proposed clustering algorithm,in
terms of final annotation ratio or cluster frequency, for theMF,
BP, and CC ontologies on four miRNA expression data sets.
All the results reported here confirm that the proposed method
provides higher or comparable final annotation ratios than that
obtained using the RFCM algorithm in most of the cases. Out
of 12 cases, the proposed method provides higher final anno-
tation ratio in 11 cases. On the other hand, the RFCM with
Pearson distance attains better result for the BP ontology.

The middle portion of Fig. 4 reports the comparative final
annotation ratio of the HCM, FCM, and the proposed algo-
rithm on four data sets. From the results reported in this por-
tion, it is seen that out of total 12 comparisons, the proposed
algorithm attains highest final annotation ratio than that ob-
tained using otherc-means algorithms in 1, 3, and 3 cases for
the MF, BP, and CC ontologies, respectively. On the other
hand, the HCM provides it in only one case using Pearson dis-
tance. Also, the FCM generates higher final annotation ratio
in 1, 2 and 1 cases using Pearson distance, Euclidean distance,
and the NRNCBD, respectively.

Finally, the lower portion of Fig. 4 compares the final anno-
tation ratios obtained using the CLICK, SOM, and proposed
clustering algorithm. From the results reported in this portion,
it can be seen that the final annotation ratio obtained using
the proposed algorithm is higher than that obtained using both
CLICK and SOM in 11 cases out of 12 cases. However, the

SOM generates higher final annotation ratio in only 1 case
for the MF ontology. Hence, the majority of genes in a clus-
ter produced by the proposed algorithm are functionally more
closer to each other than those by other algorithms, while the
clusters obtained using existing algorithms include much more
noises or irrelevant genes.

4.7 Biologically Significant Gene Clusters

The genes that are targeted by at least 50% miRNAs are used
to calculate the number of significant gene clusters. Fig. 5
presents the results for the MF, BP, and CC ontologies on four
data sets. The GO Term Finder is used to determine the sta-
tistically significant gene clusters produced by differentalgo-
rithms for all the GO terms from the MF, BP, and CC ontolo-
gies. If any cluster of genes generates a p-value smaller than
0.05, then that cluster is considered as a significant cluster.
The upper portion of Fig. 5 presents the comparative results
of the RFCM and proposed algorithm for the MF, BP, and CC
ontologies, respectively. From the results, it is seen thatthe
proposed algorithm generates more or comparable number of
significant gene clusters in all the 12 cases.

The middle portion of Fig. 5 reports the number of signifi-
cant gene clusters generated by the HCM, FCM, and proposed
algorithm for the MF, BP, and CC ontologies for all microarray
data sets, respectively. All the results reported in this portion
establish the fact that the proposed algorithm generates more
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Fig. 4 Biological annotation ratios obtained using different clustering algorithms

or comparable number of significant gene clusters than that of
otherc-means algorithms in most of the cases. For the MF,
BP, and CC ontologies, the proposed method generates more
or comparable number of significant gene clusters in 3, 3, and
4 cases, respectively. That is, out of total 12 cases, it provides
better results in 10 cases. However, the FCM algorithm with
the NRNCBD generates better result in one case each for both

MF and BP ontologies, respectively.

Finally, the performance of CLICK, SOM, and proposed al-
gorithm is compared in lower portion of Fig. 5 with respect to
the number of significant gene clusters generated for MF, BP,
and CC ontologies, respectively. From the results reportedin
this portion, it is seen that the proposed algorithm generates
more or comparable number of significant gene clusters com-
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Fig. 5 Biologically significant gene clusters obtained using different clustering algorithms

pared to both CLICK and SOM algorithms in all the cases.
From Fig. 5, it can also be seen that the proposed clustering
algorithm produces better results irrespective of the distance
measures, ontologies, and data sets used. Hence, it can be con-
cluded that the proposed clustering algorithm generates highly
compact and functionally enriched clusters.

4.8 Biological Interpretation of Gene/miRNA Clusters

This section presents the biological interpretation of some
gene clusters those are generated only by the proposed algo-
rithm, but not generated by any other clustering algorithms.
Table 4 presents the unique GO terms obtained using the pro-
posed algorithm for GSE17155, GSE29495, and GSE35074
data sets, along with the corresponding cluster index and fre-
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Table 4Unique GO Terms Obtained Using Proposed Algorithm for Different Data Sets

Data Set Ontology Cluster GO Term / Gene Cluster Frequency P-Value FDR (%)
Molecular 7 nucleic acid binding transcription factor activity 1.000 1.27E-004 0.00

GSE17155 Function 9 nucleic acid binding transcription factor activity 0.467 2.28E-007 0.00
Biological Process 3 regulation of cellular process 0.659 4.08E-011 0.00

Cellular Component 9 nucleus 0.864 7.15E-007 0.00
Molecular Function 9 beta-catenin binding 0.111 1.41E-002 2.00

1 RNA metabolic process 0.714 7.73E-003 0.00
GSE29495 Biological 6 multicellular organismal development 0.375 6.26E-007 0.00

Process 7 regulation of macromolecule metabolic process 0.444 3.80E-017 0.00
9 regulation of DNA binding 0.167 2.13E-003 0.00

GSE35074 Molecular Function 5 nucleic acid binding 1.000 8.34E-003 4.00
Biological Process 4 negative regulation of biological process 1.000 2.40E-002 0.00

quency, p-value, and false discovery rate (FDR). The FDR is
a multiple-hypothesis testing error measure indicating the ex-
pected proportion of false positives among the set of signifi-
cant results. It is particularly useful in the analysis of high-
throughput data such as microarray miRNA expression.

The biological interpretation for GSE17155 data set is re-
ported in this section as an example. This data set con-
tains specific miRNA expression signature, which character-
izes male breast cancers. Hence, the unique GO terms gen-
erated by the proposed clustering algorithm should reflect the
processes related to breast cancer. This section discussesthe
importance of the genes corresponding to the unique GO term
in breast cancer. The relation between the set of miRNAs cor-
responding to the unique GO term and breast cancer is also
established in subsequent discussion.

It has been observed in42 that the DNA binding activity of
few transcriptional factors acts as one of the major causes
of breast cancer43. The partial or complete loss of a tran-
scription factor is a common event in a breast cancer tumor
or cell lines. Transcription factors are gene regulatory pro-
teins endowed with sequence-specific DNA recognition and
the ability to positively or negatively influence the rate and
efficiency of transcript initiation at a gene containing thefac-
tors cognate recognition sequence, or DNA response element.
Since transcription factors lie at the heart of almost everyfun-
damental developmental and homeostatic organismal process
including DNA replication and repair, cell growth and divi-
sion, control of apoptosis and cellular differentiation, it is not
surprising that inherited or acquired defects in transcription
factor structure and function contribute to human carcinogen-
esis. From several studies, it can be seen that this growing
body of transcription factors and the development-specificand
issue-restricted gene programs under their control represent a
rich and diverse source of mechanisms which, if disrupted, can
lead to various types of malignancy including breast cancer.

The unique GO term “nucleic acid binding transcription
factor activity” corresponding to clusters 7 and 9 identified

by the proposed method reflect this activity of cancerous cell.
There are total 10 genes, namely,NFIA , LCOR , CSRNP3,
KLF12 , ZFHX4 , KLF3 , SOX4, RUNX1T1, TSHZ2, and
ZEB2, present in these two clusters. These genes act as tran-
scription factors. TheNFIA gene was found to involve in an
NFIA/EHF chimeric fusion in one breast cancer cell line out
of 24 breast tumors analyzed: 9 cell lines and 15 primary tu-
mors44. However, its role as either a passenger event or a
direct, albeit infrequent, contributor to breast cancer devel-
opment, remains uncertain. TheLCOR represents a class
of corepressor that attenuates agonist-activated nuclearrecep-
tor signaling by multiple mechanisms. TheLCOR transcript
raises in breast carcinoma cells45. It has been discovered that
multiple polymorphic variations in theKLF12 , which encodes
a zinc finger repressor factor and a region surrounding the
gene, are associated with the occurrence of cancer, in partic-
ular breast cancer46. Important function ofSOX4 in the pro-
gression of breast cancer by orchestrating the EMT (epithelial-
to-mesenchymal transition) has been shown in47, and this
gene product has been implicated as a marker of poor progno-
sis in this disease. The mechanism of regulation of transcrip-
tion in breast cancer cell line byTSHZ2 has been shown in48.
The EMT plays an important role during normal embryogen-
esis, and it has been implicated in cancer invasion and metas-
tasis. An aberrant expression of homeobox gene may lead to
the activation of a developmentally regulated EMT pathway
in human breast cancer. TheZEB2 regulates developmental
EMT and also play roles in tumor progression49.

On the other hand, there are total 15 miRNAs, namely,hsa-
miR-211, hsa-miR-30a, hsa-miR-21, hsa-miR-299-5p, hsa-
miR-626, hsa-miR-132, hsa-miR-32, hsa-miR-369-3p, hsa-
miR-605, hsa-miR-616, hsa-miR-373, hsa-miR-626, hsa-
miR-622, hsa-miR-33b, andhsa-miR-138, which are associ-
ated with clusters 7 and 9. The importance ofhsa-miR-211in
the progression of breast cancer has been shown in50,51. This
miRNA downregulatesRunX2 and IL11 genes that leads to
progression of breast cancer. Zeng et al.52 have shown that
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downregulation ofhsa-miR-30ain human plasma lead to the
overexpression of the genesCEA and CA153. Hence, the
hsa-miR-30aacts as a novel marker for breast cancer. In53,
it has been reported that thehsa-miR-21regulates breast can-
cer invasion partly by targeting tissue inhibitor of metallopro-
teinase 3TIMP3 gene expression. Also, the decreased level
of hsa-miR-299-5pplays a critical role by increasing the level
of OPN protein that enhance proliferation, tumorigenicity and
the ability to display vasculogenic mimicry of the spheroid-
forming cells54. It has been observed that thehsa-miR-626is
highly expressed in luminal cell lines lackingERBB2 overex-
pression. Upregulation ofhsa-miR-132that leads to suppres-
sion of p120RasGAPin human breast cancer cells has been
reported in55. Downregulated expression ofhsa-miR-32 in
breast carcinoma cells has been observed in56. An enrichment
test analysis reported in28 has shown the involvement ofhsa-
miR-369-3p, hsa-miR-605, andhsa-miR-616 in the breast
cancer. Huang et al.57 have demonstrated thathsa-miR-373
promotes tumor invasion and metastasis in breast cancer. An
association betweenhsa-miR-626and breast cancer has been
demonstrated in58. The miRNAhsa-miR-622is linked to en-
hanced tumorigenesis in breast cancer58. Overexpression of
hsa-miR-33bin breast carcinoma cell lines has been observed
in59. The miRNAhsa-miR-138has been found differentially
expressed in human male breast cancer60.

Hence, the biological interpretation of some unique clusters
identified by the proposed rough-fuzzy clustering algorithm
reported above establishes the fact that the algorithm gener-
ates significant miRNA clusters those are biologically relevant
with respect to the given microarray data sets.

5 Conclusion

The paper presents a new miRNA clustering algorithm, in-
tegrating judiciously the merits of rough sets, fuzzy sets,c-
means algorithm, and normalized range-normalized city block
distance. The proposed algorithm is used to find groups of co-
expressed miRNAs from microarray data. While the concept
of lower and upper approximations of rough sets deals with
uncertainty, vagueness, and incompleteness in cluster defini-
tion, the membership functions of fuzzy sets enable efficient
handling of overlapping clusters in noisy environment. The
city block distance is useful to find initial partition of a miRNA
data set and helps to handle minute differences between two
miRNA expression profiles.

The effectiveness of the proposed clustering algorithm,
along with a comparison with other clustering algorithms, has
been demonstrated on four miRNA microarray data sets us-
ing some cluster validity indices and gene ontology. The ex-
tensive experimental results show that the proposed algorithm
produces better clustering results than do the conventional al-
gorithms in terms of Silhouette index, DB index, Dunn index,

β index, final annotation ratios, and significant gene clusters.
The proposed method attains better performance in more than
87.50% cases as compare to otherc-means algorithms. Also,
the dimension additivity property of city block distance leads
to better clustering solutions compared to both Pearson and
Euclidean distances; thereby successful in effectively circum-
venting the initialization and local minima problems of itera-
tive refinement clustering algorithms likec-means.

Moreover, the city block distance based proposed rough-
fuzzy clustering algorithm achieves better results than that ob-
tained using two popular clustering algorithms. The proposed
algorithm also generates more number of biologically signif-
icant miRNA clusters than the existingc-means and other
clustering algorithms. The biological interpretation of unique
clusters identified by the proposed algorithm also establishes
the fact that the algorithm generates significant miRNA clus-
ters those are biologically relevant with respect to the given
microarray data sets.
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