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The microRNAs or miRNAs are short, endogenous RNAs haviilgyato regulate mRNA expression at the post-transcripsb
level. Various studies have revealed that miRNAs tend teteluon chromosomes. The members of a cluster that are at clos
proximity on chromosome are highly likely to be processed@sranscribed units. Therefore, a large proportion of NAR

are co-expressed. Expression profiling of miRNAs generatasge volume of data. Complicated networks of miRNA-mRNA
interaction increase the challenges of comprehending rtedpreting the resulting mass of data. In this regard, phiser
presents a clustering algorithm in order to extract medulngformation from miRNA expression data. It judicioushtegrates
the merits of rough sets, fuzzy setsmeans algorithm, and normalized range-normalized cibglblistance to discover co-
expressed miRNA clusters. While the membership functionfsiofy sets enable efficient handling of overlapping pantii

in noisy environment, the concept of lower and upper appnations of rough sets deals with uncertainty, vagueness, an
incompleteness in cluster definition. The city block distars used to compute the membership functions of fuzzy set$a
find initial partition of a data set, and thereby helps to hamdinute differences between two miRNA expression prafildse
effectiveness of the proposed approach, along with a cdsgrawith other related methods, is demonstrated on seng@RNA
expression data sets using different cluster validityaedi Moreover, the gene ontology is used to analyze theifunadt
consistency and biological significance of generated miRN&ters.

1 Introduction Existence of co-expressed miRNAs is also demonstrated us-
ing expression profiling analysis 4n Several miRNA clus-
MicroRNAs or miRNAs are a class of short approximately 22-ters have been experimentally shown by RT-PCR or North-
nucleotide non-coding RNAs found in many plants and ani-ern blotting®*. These findings suggest that members of a
mals. They often act post-transcriptionally to inhibit MRN  miRNA cluster, which are at a close proximity on a chromo-
expression. Hence, miRNAs are related to diverse cellusome, are highly likely to be processed as co-transcribis.un
lar processes and regarded as important components of tigpression data of miRNAs can be used to detect clusters of
MRNA regulatory network. Recent genome wide surveys omiRNAs as it is suggested that co-expressed miRNAs are co-
non-coding RNAs have revealed that a substantial fractfon otranscribed, so they should have similar expression patter

mIRNAs is likely to form clusters. However, the evolutiopar 5 iRNA expression data set can be represented by an ex-
and biological function implications of clustered mIRNA®a ) qqjon table, where each row corresponds to one particula
still elusive. _ o _ MIRNA, each column to a sample or time point, and each entry
The genes of mMRNAs are often organized in clusters iny¢ e matrix is the measured expression level of a particula
the genome. It has been reported that at a very COnsenvgyipna in a sample or time point, respectively. The com-
tive maximum inter-miRNA distance of 1kb, over 30% of all oy networks of MIRNA-MRNA interaction greatly increase

MIRNAs are organized into clustéis Expression analyses challenges of comprehending and interpreting the tresul
showed strong positive correlations among the closelytéata ing mass of data A first step towards addressing this chal-

miRNAs, indicating that they may be controlled by common o g6 s the use of clustering techniques, which is esdéntia
regulatory element(s). In fact, experimental evidenceafem the pattern recognition process to reveal natural strastand

strated that clustered miRNA Ioc_l form an operon-like 9eneigentify interesting patterns in the underlying data
structure and that they are transcribed from common pramote o . -
Cluster analysis is a technique for finding natural groups

Biomedical Imaging and Bicinformatics Lab, and Machine Intelligence ~ Presentin the miRNA set. It divides agiyen miRNA setinto a
Unit, Indian Satistical Institute, Kolkata, 700 108, India.  E-mail: set of clusters in such a way that two miRNAs from the same
{sushmita_t,pmaji} @isical.ac.in cluster are as similar as possible and the miRNAs from differ

T This work is partially supported by the Indian National $ce Academy, feaiml
New Delhi (grant no. SP/YSP/68/2012) ent clusters are as dissimilar as possibl&o understand the
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role of mMiRNAs in different cellular processes and diseasession data. While the integration of both membership funation
and the mechanism of repression of mMRNA translation, clusef fuzzy sets enables efficient handling of overlappingipart
tering techniques have proven to be helpful. The co-exptess tions in noisy environment, the concept of lower and upper ap
mMiRNAs, that is, miRNAs with similar expression patternd an proximations of rough sets deals with uncertainty, vagasne
co-transcribed, can be clustered together having siméar ¢ and incompleteness in cluster definition. Moreover, theafise
lular functions. This approach may further understandihg othe NRNCBD helps to handle minute differences between two
the functions of many miRNAs for which information has not miRNA expression profiles. Each cluster is represented by a
been previously availabfe set of three parameters, namely, a cluster prototype or cen-
In this background, several authors used hierarchical clugtroid, a possibilistic lower approximation, and a probisbil
tering algorithms:91% and self organizing map$ to group  tic boundary. The cluster prototype depends on the weightin
miRNAs having similar function. Other clustering tech- average of the possibilistic lower approximation and proba
niques such ag-means algorithrt?, graph theoretical ap- bilistic boundary. The NRNCBD is used to calculate both
proache$3-16 model based clusteridg 2% and density based possibilistic and probabilistic membership functions aallw
approack!, which have been widely applied to find co- as to find initial partition of a data set. The effectivenets o
expressed gene clusters, can also be used to group cthe NRNCBD over Pearson distance and Euclidean distance
expressed miRNAs from microarray data. is presented in this paper. The performance of the proposed
However, one of the main problems in expression data anaMiRNA clustering algorithm, along with a comparison with
ysis is uncertainty. Some of the sources of this uncertaintpther related methods, is demonstrated on four miRNA ex-
include imprecision in computations and vagueness in clasBression data sets using standard cluster validity indiBes
definition. In this background, the possibility concept in- logical validation of the clustering solutions is also doiseng
troduced by fuzzy sefé and rough sef$ provides a math- gene ontology based analysis.
ematical framework to capture uncertainties associat¢d wi ~ The rest of this paper is organized as follows: Section 2 re-
human cognition proce§$4 Also, the empirical study has ports the miRNA expression data sets used, while Section 3
demonstrated that miRNA expression data are often highlypresents the basic concepts of city block distance, metiod f
connected, and the clusters may be highly overlapping wittselection of initial cluster prototypes, and the proposeajh-
each other or even embedded one in another. Moreover, eflzzy clustering algorithm. Implementation details, expe
pression data often contains a huge amount of noise due f@ental results, discussions, and a comparison amongetitfer
the complex procedures of microarray experiments. Thereclustering algorithms are presented in Section 4. Finedy-
fore, fuzzyc-mean$® and different rough-fuzzy clustering al- cluding remarks are given in Section 5.
gorithms such as rough-fuzzymeang® can be used to effec-
gma;ﬁ::ndle these situations and to find co-expressed IRN 2 Data Sets Used

In general, the quality of generated clusters is always rely,, thig work, publicly available four miRNA expression
ative to a certain distance measure. Different distance megy 14 sets are used to compare the performance of differ-
sures may lead to different clustering results. HOwever, &Vgn: clystering methods.  This section gives a brief de-
ery distance measure tries to compute the dissimilarityr@mo scription of the following four miRNA expression data

mMiRNAs present in different clusters. Several similaritylis- sets, which are downloaded from Gene Expression Omnibus
similarity measures such as Euclidean distance, Jacaded,in (www.ncbi.nim.nih.gov/geoy).

Pearson correlation coefficient, and city block distande
are used in various clustering algorithms. The performafice

) s g ] 1. GSE16473: It is the analysis to evaluate the role of
a clustering algorithm highly depends on the distance nreasu

miRNAs in skeletal muscle regeneratidn Hence,

used. One of the important properties of the CBD, not shared
by Euclidean distance, is dimensional additivity, thattise

total distance is a sum of the distances per dimension. More-
over, the time required to calculate the CBD is less than the

time required to calculate the Euclidean distance. 2.

In this regard, the paper presents a rough-fuzzy clustering
algorithm, integrating the concepts of lower and upper ayppr
imations of rough sets, probabilistic and possibilisticnme
berships of fuzzy sets;-means algorithm, and normalized
range-normalized city block distance (NRNCBD), to disaove
groups of co-expressed miRNAs from huge miRNA expres-

global miRNA expression is measured during muscle cell
growth and differentiation. This data set contains 231
miRNAs and 7 time points.

GSE17155:1t is the analysis to test the hypothesis that
there is a specific miRNA expression signature which
characterizes male breast cancers. The miRNA microar-
ray analysis was performed in a series of male breast can-
cers and compared them to cases of male gynecomastia
and female breast cancé®s This data set contains 774
miRNAs and 38 time points.

2| Journal Name, 2010, [vol] 1-16

This journal is @ The Royal Society of Chemistry [year]



Page 3 of 16 Molecular BioSystems

3. GSE29495:The miRNA profiling of kidney tissue from 1 0< A (%,X)) < 1.
C57BL/6 mice that received a 30 minute ischemic injury
compared with control kidney tissue from mice that re- 2. 4/ (x;,x}) = A4 (X}, %)
ceived sham operation only has been conducted. The
number of miRNAs and time points are 574 and 17, re- 3. _y/(x, x) =0.
spectively.

4. GSE35074: It is the analysis to identify miRNAs par- 4 4 (X)) < A7(%,%0) + 4 (% %)
ticipating in SNAI1-orchestrated regulatory pathways, a . . o ]
time-resolved microarray data of SNAI1-induced EMT The first three axioms are trivial: the first presents the eaofg
is analyzed, obtained during conditional expression ofthe NRNCBD and says that it is always positive. The second

SNAIL in a Tet-Off MCF7-SNAIL breast carcinoma cell SayS that the NRNCBD from to x; is the same with that
modeP®. It contains 837 miRNAs and 21 time points. from x; to x;; in other words, the measure is symmetric. The

third says that the distance is necessarily 0 when two abject
. are identical. The fourth axiom, called the triangle indifya
3 Proposed Clustering Method may also seem intuitively obvious but is the more difficuleon

. . . . . to satisfy.
This section describes the proposed miRNA clustering algo- fy

rithm. It is developed by integrating judiciously rough et
fuzzy setsc-means algorithm, and the CBD. 3.2 Selection of Initial Cluster Prototypes

3.1 City Block Distance A limitation of any c-means algorithm is that it can only
achieve a local optimum solution that depends on the initial
The CBD, also known as the Manhattan distance or taxi disghgice of the cluster prototypes. Consequently, computng
tance, is closely related to the Euclidean distance. Whereagyyrces may be wasted in that some initial centers get stuck
the Euclidean distance corresponds to the length of the-shorj, regions of the input space with a scarcity of data points
est path between two points, the CBD is the sum of distancegnd may therefore never have the chance to move to new lo-
along each dimension. The distance between two objects cations where they are needed. To overcome this limitation,

andx; is defined as follows: the proposed algorithm begins with the selectior dfstinct
m miRNAs from the given miRNA expression data set using the
CBD(x,%j) =} [Xik — Xik| (1)  NRNCBD, which enables the algorithm to converge to an op-
K=1 timum or near optimum solutions.
wherem is the number of features of the objegtandx;. As The algorithm starts by computing the NRNCBD between

for the Euclidean distance, the expression data are stiatrac Pairs of miRNAs of a given microarray data set. |If the
directly from each other, and therefore should be made surRNCBD /" (x;,x}) between two miRNAsq andx; is less
that they are properly normalized. There are many varigts ohan & predefined threshold then they are considered as sim-

the CBD. The normalized CBD (NCBD) is defined as follows: I1ar t0 each other. After computing the NRNCBD, the total
number of similar miRNAs for each miRN#& is computed.

After that, the miRNAs are sorted according to their siniijar
values. If the miRNAX has higher similarity value than an-
other miRNAX; and they are similar to each other with respect
while the range-normalized CBD (RNCBD) is defined as fol- to the thresholad , then the miRNAx; is considered as the po-

1 m
NCBD(x,xj) = — > [Xik— Xkl (2)
k=1

lows: m ' . tential candidate for the set of initial centers and the mAR
RNCBD(x;,Xj) = Z {'X'k_xl"'} (3) is not included in this set. Finallg,ini_tiql_ centers are selected
&1 [ Kmex — Kmin from the reduced set as potential initial centers. Henae, th

wherekmayx andkqin denote the maximum and minimum val- initialization method helps to identify different densgians
ues along théth feature, respectively. On the other hand, thePresent in the data set. The identified dense regions uélyat

normalized RNCBD (NRNCBD) is defined as follows: lead to discovering natural groups present in the data $et. T
whole approach is, therefore, data dependent. The maia step
N (%, X)) = 1 x RNCBD(X;,X; ). (4) for selection of initial mMiIRNAs are as follows:

From the above discussions, following properties can be de- 1. For each miRNAx;, calculate.#"(x;,x;) between itself
rived: and the miRNAXj, Vi_;.

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 |3
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. Calculate similarity score between two miRN#gsand
X; as follows:

1 if </V(XhXj) <A
0 otherwise

six.x) = { )

. For each miRNAx;, calculate total number of similar
miRNAs of x; as

N(xi):iS(xi,xj). (6)
=1

. Sortn miRNAs according to their values of(M) such
that N(x1) > N(x2) > --- > N(Xn).

. 1FN(X) > N(xj) and .4 (x,Xj) < A, thenx; cannot be

The parametere and (1— w) correspond to the relative im-
portance of lower and boundary regions, respectively. Eenc
to have the clusters and the centroids a greater degree of
freedom to move, & (1— w) < w < 1. The parameters
My € [1,0) andn, € [1,0) are the probabilistic and possi-
bilistic fuzzifiers, respectively. Note that;; € [0,1] is the
probabilistic membership function as that in fuzzyneang®
andyv;j € [0,1] represents the possibilistic membership func-
tion that has the same interpretation of typicality as inspos
bilistic c-means®.

In the proposed rough-fuzzy clustering algorithm, each
cluster is represented by a centroid, a possibilistic loser
proximation, and a probabilistic boundary. The lower appro
imation influences the fuzziness of final partition. Accord-
ing to the definitions of lower approximation and boundary of

considered as an initial cluster center, resulting in a rerough set83, if an objectx; € A(B), thenx; ¢ A(Bx), vk #1,

duced set of miRNAs to be considered éanitial cluster
centersy;,i=1,2,---,cC.

6. Stop.

3.3 Rough-Fuzzy Clustering

The proposed rough-fuzzy clustering algorithm adds the con
cepts of fuzzy memberships, both probabilistic and poksibi
tic, of fuzzy sets, lower and upper approximations of rough
sets, and the NRNCBD intomeans algorithm. While the in-
tegration of both probabilistic and possibilistic memlngps

of fuzzy sets enables efficient handling of overlapping clus
ters in noisy environment, the rough sets deal with unastai
vagueness, and incompleteness in cluster definition.

LetX = {xq,---,Xj, -+ ,Xn} be the set oh objects and/ =
{v1,---,vi, -+ ,Vc} be the set ot centroids, where; € O™
andyv; € O™. Each of the cluster§; is represented by a cluster
centerv;, a lower approximatiod\(f3;) and a boundary region
B(B) = {A(B) \ A(Bi)}, whereA(B) denotes the upper ap-
proximation of clustef3;. The proposed clustering algorithm
partitionsX into c clusters by minimizing the following objec-
tive function:

wei+(1-w)%1 it A(B)#0,B(B)#0
J= e if A(B) #0,B(B)=0  (7)

P if A(B) =0,B(B) #0

where o = i > (Vi)™ (vi, X))
1=1xjcA(B)
s i (L—wij)™; (8)
i; XJG%(Bi) J

i)™ (i, Xg). 9)

and %, = (
! i;xjeg

andx;j ¢ B(B),Vi. That is, the objeck; is contained inf
definitely. Hence, the memberships of the objects in lower ap
proximation of a cluster should be independent of other cen-
troids and clusters. Also, the objects in lower approxiorati
should have different influence on the corresponding ce&htro
and cluster. From the standpoint of “compatibility with the
cluster prototype”, the membership of an object in the lower
approximation of a cluster should be determined solely by
how far it is from the prototype of the cluster, and should
not be coupled with its location with respect to other clus-
ters. As the possibilistic membershig depends only on the
distance of objeck; from clusterf3;, it allows optimal mem-
bership solutions to lie in the entire unit hypercube rathan
restricting them to the hyperplane given by equation (11). O
the other hand, ik; € B(f3), then the objeck; possibly be-
longs to clusteiB; and potentially belongs to another cluster.
Hence, the objects in boundary regions should have differen
influence on the centroids and clusters, and their memigershi
should depend on the positions of all cluster centroids. So,
in the proposed clustering algorithm, the membership func-
tion of the object in lower approximation is given by equatio
(12), which is identical to possibilisticmeans, while that of
boundary region is given by equation (10), which is same as
fuzzy c-means. Solving equation (7) with respecti and

Vij, we get
1 -1
m-1
- [§ ()]

C n
subjectto § i =1,Vj, and 0< Y i <n Vi, (11)
2H oy

1 {2tamy )

N (Vi, X))

N (Vi Xj) (10)

2

k=1

JV(Vi,Xj)

V":
ij n

(12)

4|  Journal Name, 2010, [vol] 1-16
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n . . . .
; - ‘. f & as high as possible. On the other hand, the miRNAs with
bject t < Vi i} >0vj;and (13) ©
subjectto 0< Z Vi =nvl miax{v.,} >0.¥j;and  (13) (vij — Wj) < & are used to calculate the threshéjd

n 1 i}
S v ) PR @
=" = = ; (14) _ _
Z vij)™e wheren'is the number of miRNAs those do not belong to lower

approximations of any cluster ang is the highest member-

. ) ship of mMiRNAX;. That is, the value o, represents the av-
which represents the zone of influence or size of the clydster erage of highest memberships mfriRNAs in the data set.

The centroid is calculated based on the weighting average 6fe main steps of the proposed clustering algorithm proceed
the possibilistic lower approximation and probabilistaind- 45 follows:

ary. Computation of the centroid is modified to include the
effects of both fuzzy memberships, probabilistic and possi 1. Selectc initial cluster prototypes using the NRNCBD
bilistic, and lower and upper bounds. The centroid calootat based initialization method.

for the proposed clustering algorithm is obtained by s@vin

equation (7) with respect a: 2. Choose values for fuzzifiemrsy ‘and my, and calculate

thresholdsd; andd,. Set iteration counter= 1.

w1+ (1-w)21 if A(B) #0,B(B) # 0 3. Computey;j by equation (12) foc clusters anah objects.
Vi = €1 if A(B)#0,B(B)=0 (15)
D if A(B)=0,B(B)#0 4. If vij and v are the highest and second highest possi-
bilistic memberships of object; and (vij — vj) > &
) thenx; € A(3).
(Vij)"™xj . :
X <AL 5. Otherwisex; € B(f;) andx; € B(B«) if vij > &. Fur-
where 61 = — L ; (16) thermorex; is not part of any lower bound.
ij
X €A(B) 6. Computgy;; for the objects lying in boundary regions for
c clusters using equation (10).
z (Mj)mlxj 7. Compute new centroid as per equation (15).
€B(Bi . .
and 7, = 25 B e a7) 8. Repeat Steps 3 to 7, by incrementingntil no more new
(Kij) assignments can be made.
Xj€B(Bi)
9. Stop.
Hence, the cluster prototypes or centroids depend on the
parameter&), and fuzziﬁerg‘ni and m2 rule their relative in- In this regal’d, it should be noted that different distanca-me

fluence. The performance of the proposed clustering algosures such as the Pearson distance and Euclidean distance ca

rithm also depends on the values of two threshdidand &, also be used in equation (5) for the selection of initial @us
which determine the cluster labels of all the miRNAs. In othe Prototypes as well as in equations (8), (9), (10), (12), a4l (
words, the proposed clustering algorithm partitions theada for rough-fuzzy clustering of miRNA data sets. In general,
set into two classes, namely, lower approximation and beundthe square of Euclidean distance is used in rough-fuzzy clus
ary, based on the values di andéz The thresho|d§l and terlng Whlle the normalized Euclidean distance is used for
& control the size of granules of the proposed clustering-algothe selection of initial clusters.

rithm. In practice, the following definitions work well: The Euclidean distance between two objegtaindx; is
defined as

10 /m
== Z Vij — Vkj) (18) E(Xi,Xj) = z Xik — Xjk)? (20)

wheren is the total number of miRNAsy;; and vy; are the while the Pearson distance is defined as

highest and second highest memberships of objgctThat de(x, %) = 1—|p|, (21)

is, the value ofd; represents the average difference of two

highest possibilistic memberships of all the miRNAs in thewherep represents the Pearson correlation coefficient, which
data set. A good clustering procedure should make the valuis the ratio between the covariance of two vectogsx;) of

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 |5



Molecular BioSystems Page 6 of 16

expression values of two objects and product of their stahda for 1 < i,k < c. The DB index minimizes the within-cluster

deviations and is given by distanceS(v;) and maximizes the between-cluster separation
d(vi, ). Therefore, for a given data set andalue, the higher

p(%,%j) = M, (22)  the similarity values within the clusters and the between-

Ox; Ox; cluster separation, the lower would be the DB index value. A

good clustering procedure should make the value of DB index

m as low as possible.
X.k— D) (Xjk —Xj)
that is, p(x,X;j) = . (23) 4.1.2 Silhouette Index:Let an object; € Br,i=1,...,n,
v andn;, is the cardinality of clustef;. For each objeck; let
\/Z Xic— % \/Z (Xjkc=X;) g be the average distance between objeand rest of the

objects off3;, that is,
wherex; andx; are the means ofy andxj, respectively. It
considers each miRNA as a random variable witbbserva- a = davg(Xi, Br — {X}) (25)
tions and measures the similarity between the two miRNAs by

calculating the linear relationship between the distidng of Wheredavg(_’ ) denotes the average distance measure between

the two corresponding random variables. an object and a set of objects. For any other clugtes
B, let davg(Xi,Bp) denote the average distance of objgct
4 Results and Discussions to all objects off3,. The scalar; is the smallest of these

dan(Xth)» p= 17 ,C, p7£ r, that iS,
In this section, the performance of the proposed method is
compared with that of harctmeans (HCM$2, fuzzy c-means bi= min {davg(X,Bp)}- (26)
(FCM)3!, rough-fuzzyc-means (RFCM3®, cluster identifi- p=l.Cp7T
e O o e, The Silhouete widh of objeat is then defined &3
over Pearson distance and Euclidean distance is also pre-
sented. The results are reported on four miRNA microarray s(xi) =
data sets, namely, GSE16473, GSE17155, GSE29495, and
GSE35074. For each data set, the number of clustersle-
cided by using the CLICR® algorithm. Each miRNA data set
is pre-processed by standardizing each feature or time poi
to zero mean and unit variance. The values of two fuzzi-
fiers are set to 2.0, that is;y = 2.0 andny, = 2.0. All
the results are reported using four cluster validity indjce
namely, Silhouette inde®, Dunn indexX*, Davies-Bouldin
index®®, and B index3®. The biological analysis of the ob-
tained miRNA clusters is also studied using the gene ontol!
ogy. The source code of the proposed algorithm is availdble a
www.isical.ac.in/-bibl/results/cbd-rrfcm/cbd-rrfcm.html.

bi—g
max{b;, &} @7)
where—1 < s(x) < 1. The value of5(x;) close to 1 implies
hat the distance of objegt from the clustei; where it be-
longs is significantly less than the distance betwgend its
nearest cluster excluding, which indicates thak; is well
clustered. On the other hand, the values(of) close to -1 im-
plies that the distance betwegrandf; is significantly higher
than the distance betweanand its nearest cluster excluding
By, which indicates thak; is not well clustered. Finally, the
values ofs(x;) close to 0 indicate thag lies close to the bor-
%er between the two clusters. Based on the definitis)of,
the Silhouette of the clusté (k=1,--- ,c) is defined as

4.1 Quantitative Measures

SO =2 Y sx) (28)

Following quantitative indices are used to evaluate théoper K % €By

mance of different clustering algorithms for grouping func

tionally similar miRNAs from microarray expression data whereny is the cardinality of the clustgB,. The global Sil-
sets. houette index is defined as

4.1.1 Davies-Bouldin Index: The Davies-Bouldin (DB)

Cc
index®® is a function of the ratio of sum of within-cluster dis- _1 z (29)
tance to between-cluster separation and is given by C&
[ . .
DB — 1 Zlmax S(vi) + S(w) (24) where 7 € [-1,1]. Also, the higher the value of’¢, the
C 4 i#k d(vi, w) better the corresponding clustering is.

6| Journal Name, 2010, [vol]1-16 This journal is © The Royal Society of Chemistry [year]
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Dunn Index
Dunn Index
Dunn Index

i . . . ! . . . . . . . . . . . .
0 0.02 0.04 0.06 0.08 01 0.12 0.14 0 0.02 0.04 0.06 0.08 01 012 0.14 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
Threshold A Value Threshold A Value Threshold A Value

Fig. 1 Variation of Dunn index over different values of threshaldor GSE16473, GSE17155, and GSE29495 data sets

4.1.3 B Index: The B index® is defined as the ratio of For four miRNA microarray data sets, the valuelois var-

total variation and within-cluster variation, and is givan ied from 0.0 to 0.15, while the value oj is varied from 0.51
¢ n t0 0.99. The optimum values af andw* for each microarray
B= N, where N= z' [1%; —v))% data set are obtained using the following relation:
M ’ Z ’
i=1]=1
¢ n . ®* =arg rr(})ax{D}. (32)
M =3 3 lxi—vll’ and 5 n=n (30) , o |
i=1j=1 i= The proposed clustering algorithm with the NRNCBD dis-

) ) o ] tance measure achieves optimum valueg afsing equation
nj is the number of objects in thién cluster (= 1,2,---,¢), (32 4t 0.13, 0.10, 0.03, and 0.15 for GSE16473, GSE17155,
nis the total number of objects;; is the jth object in cluster  GsE29495, and GSE35074 data sets, respectively, while the
Bi, vi is the mean or centroid ofh cluster, and/is the mean ot m value ofw = 0.99 for all the data sets. Fig. 1 rep-
of n objects. For a given data set aogalue, the higher the o5ents the variation of Dunn index with respect to differen
homogeneity within the clusters, the higher would be fhe values ofA consideringy* = 0.99 on GSE16473, GSE17155,

value. The value of also increases with and GSE29495 data sets. From the results reported in Fig. 1,
_ it is seen that as the threshoMincreases, the Dunn index
4.2 Optimum Values ofA and w Parameters value increases and attains its maximum value at a particula

N . 4
The threshold\ plays an important role to generate the initial value ofA*. After that the Dunn index value decreases with

cluster centers. It controls the degree of dissimilarityoam the increase in the value 4t

the miRNAs present in microarray data. In effect, it has a di- hOn the otgerl hanq, thel op_tlrr]num .v:lges )ofamgjlw for f
rect influence on the performance of the initialization noetth the proposed clustering algorithm with Pearson distance fo

used. Also, the performance of the proposed clustering algofour data sets, namely, GSE16473, GSE17155, GSE29495,

rithm depends on the weight parameter and GSE35074, arg0.08,0.65}, {0.00,0.51}, {0.09,0.99},
Let® = {A, w} be the set of parameters atd = {A*, w*} and {0.03,0.95}, respectively. However, the proposed clus-
is the set of (;ptimal parameters. To find out the opt’imum sefering algorithm with Euclidean distance achieves optimum

®*. containing optimum values &f andew*, the Dunn’s clus- values ofA using equation (32) at 0.14, 0.15, 0.13, and 0.14
ter validity e e s (D) ind@ o do. for GSE16473, GSE17155, GSE29495, and GSE35074 data

signed to identify sets of clusters that are compact and Welt?hetso'l r?spef{:nvely, while the optimum valuewot= 0.99 for all
separated. Dunn’s (D) index maximizes € gata sets.

D— min{min{ d(vi,vk) }} (31) 4.3 Pgrformance of Different C-Means Algorithms and
kA | max S(vi) Distance Measures

for 1 <i kI <c, wherey; is the centroid of cluste;, S(v|) Tables 1 and 2 provide the comparative performance analysis
is the within-cluster distancel(vi,vy) is the between-cluster of differentc-means algorithms with respect to three distance
separation, andis the number of clusters. measures, hamely, Pearson distance (PD), Euclidean distan

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 |7
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Table 1 Comparative Performance of Different C-Means Algorithms and begdMeasures on GSE16473 and GSE17155 Data Sets

Validity Distance GSE16473 GSE17155
Index Measure | HCM FCM | RFCM | Proposed| HCM FCM RFCM | Proposed
PD -0.011 | -0.086 | -0.091 0.198 -0.203 | -0.184 | -0.168 | -0.150
Silhouette ED 0.314 | 0.238 | 0.252 0.687 0.192 0.122 0.180 0.181

NRNCBD | 0.920 | 0.258 | 0.920 0.943 0.190 [ 0.054 | 0.117 0.299
PD 10.998| 14.441| 3.208 1.727 | 26.769| 109.406| 29.003| 22.244

DB ED 1.897 | 4.406 | 3.299 0.206 1.628 | 25.020 | 1.367 0.793
NRNCBD | 0.015 | 15.856| 0.0156| 0.007 1562 | 176.277]| 1.159 0.658

PD 0.070 | 0.032 | 0.172 0.258 0.030 0.007 0.017 0.021

Dunn ED 0.168 | 0.064 | 0.207 4.815 0.685 0.018 0.869 1.269
NRNCBD | 34.696( 0.000 | 33.558| 81.200 | 0.702 0.003 1.017 1.671

PD 1.087 | 0.995 | 0.805 10.843 | 1.300 1.297 1.367 1.729

B ED 1.483 | 1.528 | 1.283 5.918 8.058 6.976 5.710 12.450

NRNCBD | 2.204 | 1.114 | 2.174 6.281 7.606 4.823 6.699 17.649

Table 2 Comparative Performance of Different C-Means Algorithms and begdMeasures on GSE29495 and GSE35074 Data Sets

Validity Distance GSE29495 GSE35074
Index Measure | HCM FCM RFCM | Proposed] HCM FCM RFCM | Proposed
PD -0.377 | -0.365 | -0.369 0.214 -0.035 | -0.063 | -0.060 | -0.034
Silhouette ED 0.675 | 0.519 0.664 0.796 -0.111 -243 0.045 -0.125

NRNCBD | 0.549 [ 0.080 0.609 0.907 0.051 | -0.212 | 0.062 0.119
PD 34508 | 18.710 | 35.781| 3.465 10.689| 122.896| 5.941 4.561

DB ED 0.158 1.182 0.351 0.122 3.638 | 150.648( 2.110 1.379
NRNCBD | 0.385 | 568.563| 0.501 0.092 4112 | 186.97/6| 1.360 0.772

PD 0.004 0.012 0.011 0.010 0.104 0.003 0.148 0.161

Dunn ED 4.532 0.085 1.816 5.200 0.275 0.000 0.512 0.586
NRNCBD | 0.558 0.000 0.281 4.721 0.268 0.000 0.905 1.402

PD 1.273 0.868 0.101 5.908 1.201 1.072 0.846 1.200

B ED 28.072| 24.356 | 11.669| 35.438 | 1.641 0.754 1.481 2.585

NRNCBD | 23.651| 9.891 | 30.072| 963.320 [ 1.596 1.000 1.158 2.769

(ED), and the NRNCBD, on four miRNA microarray data sets.the proposed rough-fuzzy clustering algorithm attainsebet
The results of different-means algorithms are reported for results in 14, 1, and 1 cases using the NRNCBD, Pearson dis-
their optimal values ofA* and w*. In most of the cases, the tance, and Euclidean distance, respectively. Hence, the pe
NRNCBD is found to improve the performance in terms of formance of differentc-means algorithms deteriorates with
Silhouette, DB, Dunn, an@ indices, irrespective of the- Pearson distance. All the results reported above estabish
means algorithms. Out of total 64 comparisons, the NRNCB[Xact that the Euclidean distance is an appropriate choice fo
is found to provide significantly better results in 34 cassa¢ both HCM and FCM, while both existing RFCM and pro-
pared to both Pearson distance and Euclidean distance. Quosed rough-fuzzy clustering algorithm perform signifitan

the other hand, the Pearson distance and Euclidean distanbetter using the NRNCBD compared to other two distance
achieve better results in 5 and 25 cases, respectively. measures. Also, the NRNCBD based proposed clustering al-

From the results reported in Tables 1 and 2, it can also bgorlthm achieves better performance in 14 cases out of total

seen that, out of total 16 cases, the HCM algorithm with Eu- 6 co:lr;parllsc&r)s, wrz;pecﬂve of theneans a:}llgorlthmsaclus-
clidean distance and the NRNCBD performs better in 9 anc}er \(/ja| Ity indices, distance measures, and miRNA dats set
7 cases, respectively. Similarly, the FCM with Euclideast di sed.

tance attains better results in 11 cases out of total 16 cases Moreover, itis also seen that the proposed rough-fuzzy clus
while it achieves better results in 4 and 1 cases, respégtive tering algorithm achieves better results than that obthirse
with Pearson distance and the NRNCBD. On the other handng existing RFCM algorithm, irrespective of the data seéis,

the RFCM algorithm with the NRNCBD and Euclidean dis- tance measures, and quantitative indices used. Out of48tal
tance performs better in 12 and 4 cases, respectively. Alsaomparisons, the proposed algorithm attains better segult

8| Journal Name, 2010, [vol]1-16 This journal is © The Royal Society of Chemistry [year]



Page 9 of 16 Molecular BioSystems

46 cases. In existing RFCM, each cluster is represented by lower approximation of a cluster helps to discover arbi-
a cluster prototype, a crisp lower approximation and a proba trary shaped cluster; and

bilistic boundary. The crisp lower approximation of a miRNA
cluster in existing RFCM is usually assumed to be spherical 4.
in shape, which restricts to find arbitrary shapes of miRNA
clusters and forces to extract circular shaped miRNA ctaste

On the other hand, in the proposed rough-fuzzy clustering al
gorithm, each cluster is represented by a cluster protoiype
possibilistic lower approximation, and a probabilistizubd- 4.5 Qualitative Performance Analysis
ary. The possibilistic lower approximation of the proposed
algorithm helps to extract miRNA groups of any shape. In ef-
fect, the chance of inclusion of noisy miRNAs becomes mor
in the existing RFCM as compare to the proposed rough-fuz
clustering algorithm. Hence, the possibilistic lower ap@r
mation of the proposed algorithm helps in discovering elsst
of miRNAs that are highly similar to each other.

the concept of possibilistic lower approximation and
fuzzy boundary of the proposed algorithm deals with un-
certainty, vagueness, and incompleteness in class defini-
tion.

This section presents the visual representation of the clus
tering solutions obtained by different clustering aldamit.
Zel'he Eisen plotd’ are generated for each clustering solu-
Yion of each data set. In the present representation, the
miRNAs are ordered before plotting so that the miRNAs
that belong to the same cluster are placed one after another.
The cluster boundaries are identified by white colored blank
rows. The miRNA clusters produced by the SOM, HCM,

Table 3 Performance of Different Clustering Algorithms FCM, RFCM, and proposed algorithms on four data sets
Validity Methods/ Data Sets / GSE are visualized by TreeView software, which is available at
Index | Algorithms || 16473 | 17155 | 29495 [ 35074 http://rana.lbl.gov/EisenSoftware and the plots for fdata
. CLICK )| 0005 | -0.101 | -0.634 | 0.038 sets are reported in Fig. 2 as examples.
Silhouette [~ SOM 0.059 | -0.112 | -0.540 | 0.009 . S L .
Proposed J[ 0071 | 0471 | 0028 | 0415 From the Eisen plots presented in Fig. 2, it is evident that
CLICK 5277 | 13.016 | 450.680| 8.929 the expression profiles of the miRNAs in a cluster are similar
DB SOM 10.1287 39.558 | 455345 19.875 to each other and they produce similar color pattern, wiserea
Proposed || 0.007 | 0.658 | 0.092 | 0.7/2 the miRNAs from different clusters differ in color patterns
Bunn CS"C')CMK 8:3(& g:ggi 8:383 8:83; Also, the results obtained by both RFCM and proposed algo-
Proposed || 81.200 | 1.671 1701 T.202 rithms are more promising than that by both HCM and FCM
CLICK 0.175 | 0.090 | 0.171 | 0.185 algorithms. From the plots presented in Fig. 2, it is cleaxly
B SOM 0.360 | 0.205 | 0.385 [ 0.306 ident that the proposed method generates the Eisen plots hav

Proposed 6.281 | 17.649| 963.320| 2.769

ing similar color pattern within the cluster as compare tteot
clustering algorithms.

4.4 Performance of Different Clustering Algorithms 4.6 Functional Consistency of Clustering Result

Table 3 presents the performance of different clusterigg-al DIANA microT v3.0%8, a miRNA target prediction algorithm,

rithms. The results and subsequent discussions are pﬂeelsenﬁs used to predict miRNA target genes for all mMiRNA clusters

with respect to the Silhouette, DB, Dunn, sfithdices. From enerated by different clustering algorithms. For eachMAiR
Table 3, it can be gb served. that the propo_sed methoq outpe luster, genes that are targeted by at legstrcentage (%) of
forms other clustering algorithms, irrespective of thengiia- '

T . mMiRNAs in a cluster are used for further analysis. Here, the
tive indices and miRNA data sets used. The best performan(‘\(;alue oft is varied from 10 to 75 y

]?f”the_ proposed (.:Iustermg algorithm is achieved due to the ., o jer 16 evaluate the functional consistency of the genes
ollowing reasons. targeted by miRNAs of a cluster, the biological annotatiohs
1. the city block distance based dissimilarity measure usethose genes of different clusters are considered in terrigeof
for initial partition of data set enables the algorithm to gene ontology (GO). The annotation ratios of each targeted
converge to an optimum or near optimum solutions; gene cluster in three GO ontologies are calculated using the
. . ... GO Term Findef®. The GO term is searched in which most
2. the city block distance, used to calculate possibilistic . .
L ) . . of the genes of a particular cluster are enricled’he anno-
and probabilistic membership functions, provides effec-

tive values for dearee of belondinaness of the MIRNAS: tation ratio, also termed as cluster frequency, of a gersaiu
9 ging " is defined as the number of genes in both the assigned GO

3. probabilistic membership function of the proposed clusterm and the cluster divided by the number of genes in that
tering algorithm handles efficiently overlapping parti- cluster. A higher value of annotation ratio indicates thnet t
tions, while the possibilistic membership function of majority of genes in the cluster are functionally more ctdse

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 |9
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(a) GSE16473n=231m=7,c=4

BT $ 0
BN e
(b) GSE17155n =774 m=238,c=10

A T ) { o | R T W A S N
1 11
(c) GSE29495n = 574m= 17,c = 10

(d) GSE35074n = 837,m= 21 c= 13

Fig. 2 Eisen plots of different clusters generated by SOM, HCM, FCM, RFGi,@oposed algorithms

each other and miRNAs targeting these genes are involved iare shown in this figure. Here, the results are presented for
common cellular processes, while a lower value signifies thathose genes that are targeted by at least 10% to 75% miR-
the cluster contains much more noises or irrelevant gergs arNAs in a cluster. From all the results reported in Fig. 3, it is
the miRNAs targeting these genes are just randomly cluktere seen that in most of the cases the NRNCBD performs better
After computing the annotation ratios of all gene clustersaf  than both Pearson distance and Euclidean distance. For the
particular ontology, the sum of all annotation ratios istesl  proposed clustering algorithm, the NRNCBD performs bet-
as the final annotation ratio. A higher value of final annotati ter than both Pearson distance and Euclidean distance in 65
ratio indicates that the corresponding clustering resideiter  cases, out of total 120 comparisons. However, the Pearson
than other, that is, the genes are better clustered by dmcti distance and Euclidean distance perform better in 31 and 24
indicating a more functionally consistent clustering t&€u cases, respectively. The dimension additivity propertjhef

. . ) NRNCBD, that is, the total distance is a sum of the distances
Fig. 3 presents the comparative performance analysis of thee; gimension, leads to better functionally consistensteiu

NRNCBD, Pearson distance, and Euclidean distance with req, so|utions as compared to Pearson distance and Euclidean
spect to the proposed clustering algorithm. The final annotayisiance.

tion ratios generated by three distance measures for niafecu
functions (MF), biological processes (BP), and cellulameo The genes that are targeted by at least 50% miRNAs of
ponents (CC) ontologies on four miRNA microarray data setsa cluster are further analyzed and the results are repanted i

10| Journal Name, 2010, [vol], 1-16 This journal is © The Royal Society of Chemistry [year]
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Fig. 3Biological annotation ratios obtained using proposed algorithm with NRNGRiarson and Euclidean distances on four data sets

Fig. 4. The upper portion of Fig. 4 presents the comparaSOM generates higher final annotation ratio in only 1 case
tive results of the RFCM and proposed clustering algoritinm, for the MF ontology. Hence, the majority of genes in a clus-
terms of final annotation ratio or cluster frequency, forkie ter produced by the proposed algorithm are functionallyenmor
BP, and CC ontologies on four miRNA expression data setscloser to each other than those by other algorithms, whde th
All the results reported here confirm that the proposed nikthoclusters obtained using existing algorithms include muohem
provides higher or comparable final annotation ratios thaht noises or irrelevant genes.

obtained using the RFCM algorithm in most of the cases. Out

of 12 cases, the proposed method provides higher final anno- ] ] o

tation ratio in 11 cases. On the other hand, the RFCM withf*7  Biologically Significant Gene Clusters

Pearson distance attains better result for the BP ontology. The genes that are targeted by at least 50% miRNAs are used
The middle portion of Fig. 4 reports the comparative finalto calculate the number of significant gene clusters. Fig. 5
annotation ratio of the HCM, FCM, and the proposed algo-presents the results for the MF, BP, and CC ontologies on four
rithm on four data sets. From the results reported in this pordata sets. The GO Term Finder is used to determine the sta-
tion, it is seen that out of total 12 comparisons, the propgosetistically significant gene clusters produced by differalgo-
algorithm attains highest final annotation ratio than that o rithms for all the GO terms from the MF, BP, and CC ontolo-
tained using othec-means algorithms in 1, 3, and 3 cases forgjes. If any cluster of genes generates a p-value smallar tha
the MF, BP, and CC ontologies, respectively. On the othe 05, then that cluster is considered as a significant cluste
hand, the HCM provides itin only one case using Pearson disthe upper portion of Fig. 5 presents the comparative results
tance. AISO, the FCM generates hlgher final annotation ratIQ)f the RFCM and proposed a|gorithm for the MF, BP, and CC
in1, 2and 1 cases using Pearson distance, Euclidean distangntologies, respectively. From the results, it is seen that
and the NRNCBD, respectively. proposed algorithm generates more or comparable number of
Finally, the lower portion of Fig. 4 compares the final anno-significant gene clusters in all the 12 cases.
tation ratios obtained using the CLICK, SOM, and proposed The middle portion of Fig. 5 reports the number of signifi-
clustering algorithm. From the results reported in thigipor ~ cant gene clusters generated by the HCM, FCM, and proposed
it can be seen that the final annotation ratio obtained usinglgorithm for the MF, BP, and CC ontologies for all microgrra
the proposed algorithm is higher than that obtained usitig bo data sets, respectively. All the results reported in thigipo
CLICK and SOM in 11 cases out of 12 cases. However, theestablish the fact that the proposed algorithm generates mo

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 | 11
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Fig. 4 Biological annotation ratios obtained using different clustering algorithms

or comparable number of significant gene clusters than that dMF and BP ontologies, respectively.

otherc-means algorithms in most of the cases. For the MF,

BP, and CC ontologies, the proposed method generates moreFinally, the performance of CLICK, SOM, and proposed al-
or comparable number of significant gene clusters in 3, 3, anforithm is compared in lower portion of Fig. 5 with respect to
4 cases, respectively. That is, out of total 12 cases, itigesv the number of significant gene clusters generated for MF, BP,
better results in 10 cases. However, the FCM algorithm witr2Nd CC ontologies, respectively. From the results reported

the NRNCBD generates better result in one case each for botRiS portion, it is seen that the proposed algorithm gererat
more or comparable number of significant gene clusters com-

12| Journal Name, 2010, [vol], 1-16 This journal is © The Royal Society of Chemistry [year]
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pared to both CLICK and SOM algorithms in all the cases.4.8 Biological Interpretation of Gene/miRNA Clusters
From Fig. 5, it can also be seen that the proposed clustering

algorithm produces better results irrespective of theadist

This section presents the biological interpretation of som

measures, ontologies, and data sets used. Hence, it can-be c8ene clusters those are generated only by the proposed algo-

cluded that the proposed clustering algorithm generatggyhi
compact and functionally enriched clusters.

rithm, but not generated by any other clustering algorithms

Table 4 presents the unique GO terms obtained using the pro-
posed algorithm for GSE17155, GSE29495, and GSE35074
data sets, along with the corresponding cluster index asd fr

This journal is © The Royal Society of Chemistry [year]
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Table 4 Unigue GO Terms Obtained Using Proposed Algorithm for Different Data S

Data Set Ontology Cluster | GO Term / Gene Cluster Frequency| P-Value | FDR (%)
Molecular 7 nucleic acid binding transcription factor activity 1.000 1.27E-004 0.00
GSE17155 Function 9 nucleic acid binding transcription factor activity 0.467 2.28E-007 0.00
Biological Process 3 regulation of cellular process 0.659 4.08E-011 0.00
Cellular Component 9 nucleus 0.864 7.15E-007 0.00
Molecular Function 9 beta-catenin binding 0.111 1.41E-002 2.00
1 RNA metabolic process 0.714 7.73E-003 0.00
GSE29495 Biological 6 multicellular organismal development 0.375 6.26E-007 0.00
Process 7 regulation of macromolecule metabolic proceps 0.444 3.80E-017 0.00
9 regulation of DNA binding 0.167 2.13E-003 0.00
GSE35074| Molecular Function 5 nucleic acid binding 1.000 8.34E-003 4.00
Biological Process 4 negative regulation of biological process 1.000 2.40E-002 0.00

quency, p-value, and false discovery rate (FDR). The FDR idy the proposed method reflect this activity of cancerous cel

a multiple-hypothesis testing error measure indicatirgetke - There are total 10 genes, namelEIA, LCOR, CSRNP3
pected proportion of false positives among the set of signifiKLF12, ZFHX4, KLF3, SOX4, RUNX1T1, TSHZ2, and

cant results. It is particularly useful in the analysis ajtki ~ ZEB2, present in these two clusters. These genes act as tran-
throughput data such as microarray miRNA expression. scription factors. Th&FIA gene was found to involve in an

The biological interpretation for GSE17155 data set is reNFIA/EHF chimeric fusion in one breast cancer cell line out
ported in this section as an example. This data set corof 24 breast tumors analyzed: 9 cell lines and 15 primary tu-
tains specific mMiRNA expression signature, which charactermors*®. However, its role as either a passenger event or a
izes male breast cancers. Hence, the unique GO terms gefil'ect, albeit infrequent, contributor to breast canceretie
erated by the proposed clustering algorithm should reftect t Opment, remains uncertain. TH&€OR represents a class
processes related to breast cancer. This section disdimeses Of corepressor that attenuates agonist-activated nueeap-
importance of the genes corresponding to the unique GO teri#®r signaling by multiple mechanisms. Th€OR transcript
in breast cancer. The relation between the set of miRNAs cortaises in breast carcinoma céfts It has been discovered that

responding to the unique GO term and breast cancer is alg®ultiple polymorphic variations in th€LF12, which encodes
established in subsequent discussion. a zinc finger repressor factor and a region surrounding the

It has been observed4Athat the DNA binding activity of gene, are associated with the occurrence of cancer, ircparti
few transcriptional factors acts as one of the major causedlar breast cancé®. Important function oSOX4in the pro-
of breast cancé?. The partial or complete loss of a tran- 9ression of breast cancer by orchestrating the EMT (efethel

. 7 . .
scription factor is a common event in a breast cancer tumof0-Mesenchymal transition) has been showfY,irand this
or cell lines. Transcription factors are gene regulatory-pr 9€ne product has been implicated as a marker of poor progno-

teins endowed with sequence-specific DNA recognition and'S I this disease. The mechanism of regulation of trapscri
the ability to positively or negatively influence the ratedan tion in breast cancer cell line BYSHZ2 has been shown fis
efficiency of transcript initiation at a gene containing tae- 1€ EMT plays an important role during normal embryogen-
tors cognate recognition sequence, or DNA response elemerftS'S: and it has been |mpI|c_ated in cancer invasion and metas
Since transcription factors lie at the heart of almost eeny ~ t@Sis. An aberrant expression of homeobox gene may lead to
damental developmental and homeostatic organismal pocef€ activation of a developmentally regulated EMT pathway
including DNA replication and repair, cell growth and divi- In human breast cancer. TEEB2 regulates developmental
sion, control of apoptosis and cellular differentiatiarisinot ~ EMT and also play roles in tumor progressfdn

surprising that inherited or acquired defects in transicip On the other hand, there are total 15 miRNAs, nantedg-
factor structure and function contribute to human carogmg  mjiR-211, hsa-miR-303 hsa-miR-21, hsa-miR-299-5p hsa-
esis. From several studies, it can be seen that this growingjr-626, hsa-miR-132 hsa-miR-32 hsa-miR-369-3p hsa-
body of transcription factors and the development-speaiftt  miR-605, hsa-miR-616 hsa-miR-373 hsa-miR-626 hsa-
issue-restricted gene programs under their control reptes  miR-622, hsa-miR-33h andhsa-miR-138 which are associ-
rich and diverse source of mechanisms which, if disruptad, ¢ ated with clusters 7 and 9. The importancéisé-miR-211in
lead to various types of malignancy including breast cancer the progression of breast cancer has been sho#¥InThis
The unique GO term “nucleic acid binding transcription miRNA downregulatefunX2 andIL11 genes that leads to
factor activity” corresponding to clusters 7 and 9 identifie progression of breast cancer. Zeng ebZahave shown that

14| Journal Name, 2010, [vol], 1-16 This journal is © The Royal Society of Chemistry [year]
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downregulation ohsa-miR-30ain human plasma lead to the S index, final annotation ratios, and significant gene clgster
overexpression of the gen€&EA and CA153. Hence, the The proposed method attains better performance in more than
hsa-miR-30aacts as a novel marker for breast canceP3In 87.50% cases as compare to otbeneans algorithms. Also,

it has been reported that thea-miR-21regulates breast can- the dimension additivity property of city block distancadis

cer invasion partly by targeting tissue inhibitor of matplio-  to better clustering solutions compared to both Pearson and
teinase 3TIMP3 gene expression. Also, the decreased leveEuclidean distances; thereby successful in effectivetyuon-

of hsa-miR-299-5pplays a critical role by increasing the level venting the initialization and local minima problems ofrie

of OPN protein that enhance proliferation, tumorigenicity and tive refinement clustering algorithms likemeans.

the ability to display vasculogenic mimicry of the spheroid  Moreover, the city block distance based proposed rough-
forming cells**. It has been observed that thea-miR-626is  fuzzy clustering algorithm achieves better results than b-
highly expressed in luminal cell lines lackiBRBB2 overex-  tained using two popular clustering algorithms. The prepos
pression. Upregulation dfsa-miR-132that leads to suppres- g|gorithm also generates more number of biologically $igni
sion of p120RasGAPin human breast cancer cells has beenjcant miRNA clusters than the existingmeans and other
reported i?°. Downregulated expression bsa-miR-32in  ¢jystering algorithms. The biological interpretation oigue
breast carcinoma cells has been observefl ian enrichment  ¢jysters identified by the proposed algorithm also estadatis
test analysis reported f has shown the involvement bfa- e fact that the algorithm generates significant miRNAclus

miR-369-3p, hsa-miR-605 and hsa-miR-616in the breast ters those are biologically relevant with respect to theegiv
cancer. Huang et &' have demonstrated thasa-miR-373  microarray data sets.

promotes tumor invasion and metastasis in breast cancer. An
association betwedmsa-miR-626and breast cancer has been
demonstrated itf. The miRNAhsa-miR-622is linked to en-
hanced tumorigenesis in breast cartéerOverexpression of
hsa-miR-33bin breast carcinoma cell lines has been observed1 v, Alwvia, P. Landgraf, G. Lithwick, N. Elefant, S. PfeffeA. Aravin,
in%°, The miRNAhsa-miR-138has been found differentially M. J. Brownstein, T. Tuschl and H. Margalifjucleic Acids Research,
expressed in human male breast cafizer 2 zsocéségsérzvt?ﬁa;igog. P. Bartd®NA, 2005,11, 241247

. He.n.ce’ the b|olog|cal Interpretation of some umque chs;ste 3 X. Cai, C. H. Hagedorn and B. R.,Culleﬁ,\lA‘, 2004,10, 1957-1966.
identified by the prop(_)sed rough-fuzzy clusterlng_algmth 4 Y. Lee, M. Kim, J. Han, K. H. Yeom. S. Lee, S. H. Baek and V. N. Kim,
reported above establishes the fact that the algorithmrgene  the EMBO Journal, 2004,23, 4051-4060.

ates significant miRNA clusters those are biologicallyvaie 5 E. Enerly, |. Steinfeld, K. Kleivi, S. K. Leivonen, M. R. Aer H. G.

with respect to the given microarray data sets. Russnes, J. A. Ronneberg, H. Johnsen, R. Navon, E. RodlaiMhkela,
B. Naume, M. Perala, O. Kallioniemi, V. N. Kristensen, Z. Yakhand

A. L. B. Dale,PLoSONE, 2011,6, e16915.
5 Conclusion 6 P. Maji and S. K. PalRough-Fuzzy Pattern Recognition: Applications
in Bioinformatics and Medical Imaging, Wiley-IEEE Computer Society

The paper presents a new miRNA clustering algorithm, in- Press, New Jersey, 2012.
paper p g aig » IN= 2 E. DomanyJournal of Satistical Physics, 2003,110, 1117-1139.

tegrating JUd_|C|OUSIy the me”_ts of roth sets, fuzzy _sets, 8 S. Tavazoie, D. Hughes, M. J. Campbell, R. J. Cho and G. M. cbhur
means algorithm, and normalized range-normalized citgiblo Nature Genetics, 1999,22, 281-285.
distance. The proposed algorithm is used to find groups of co-9 J. Lu, G. Getz, E. A. Miska, E. A. Saavedra, J. Lamb, D. PeckSA.
expressed miRNAs from microarray data. While the concept ~Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. DownifigJacks,
of lower and upper approximations of rough sets deals wit H.R. Horvitz and T. R. Golubiature Letters, 2005,435, 834-838.

. PP PP . 9 ) ) . 10 C.Wang, S. Yang, G. Sun, X. Tang, S. Lu, O. Neyrolles and&®, oS
uncertainty, vagueness, and incompleteness in clusteri-defi  ong 20116, 1-11.
tion, the membership functions of fuzzy sets enable efficien11 R. Bargaje, M. Hariharan, V. Scaria and B. PilRIjA, 2010,16, 16—25.
handling of overlapping clusters in noisy environment. Thel2 L. J. Heyer, S. Kruglyak and S. YoosepBenome Research, 1999, 9,
city block distance is useful to find initial partition of aRWA 1106-1115. Shamir and dirdournal of G ol Big
data set and helps to handle minute differences between twd’ %nygég(g’ g Shamir and 2. Yakhinieurnal of Computational Biol-
MIRNA expre_ssmn profiles. ) ) 14 E. Hartuv and R. Shamimformation Processing Letters, 2000,76, 175—

The effectiveness of the proposed clustering algorithm, 181.
along with a comparison with other clustering algorithnss h 15 R. Shamirand R. Sharan, Proceedings of the 8th Intermé@onference
been demonstrated on four miRNA microarray data sets us- ©n Intelligent Systems for Molecular Biology, 2000, pp. 38T
ing some cluster validity indices and gene ontology. The ex-° E-P-Xingand R. M. Karioinformatics, 201,17, 306-315.
tensive experimental results show that the proposed #hgori 17 C. Fraley and A. E. Rafterjihe Computer Journal, 199841, 578-588.
p : prop . 18 D. Ghosh and A. M. ChinnaiyaBjoinformatics, 2002,18, 275-286.

produces better clustering results than do the conventadna 19 . J. McLachlan, R. W. Bean and D. Peibinformatics, 2002,18, 413—

gorithms in terms of Silhouette index, DB index, Dunn index,  422.
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