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Experimental design, validation and computational 
modeling uncover DNA damage sensing by DNA-PK 
and ATM 

R. J. Flassiga*, G. Maubachb*, C. Tägerb, K. Sundmacherac and M. Naumannb ,  

Reliable and efficient detection of DNA damage constitutes a vital capability of human cells to maintain 

genome stability. Following DNA damage, the histone variant H2AX becomes rapidly phosphorylated 

by the DNA damage response kinases DNA-PKcs and ATM. H2AX phosphorylation plays a central role 

in signal amplification leading to chromatin remodeling and DNA repair initiation. The contribution of 

DNA-PKcs and ATM to H2AX phosphorylation is however puzzling. Although ATM is required, DNA-

PKcs can substitute for it. Here we analyze the interplay between DNA-PKcs and ATM with a 

computational model derived by an iterative workflow: Switching between experimental design, 

experiment and model analysis, we generated an extensive set of time-resolved data and identified a 

conclusive dynamic signaling model out of several alternatives. Our work shows that DNA-PKcs and 

ATM enforce a biphasic H2AX phosphorylation. DNA-PKcs can be associated to the initial, and ATM to 

the succeeding phosphorylation phase of H2AX resulting into a signal persistence detection function for 

reliable damage sensing. Further, our model predictions emphasize that DNA-PKcs inhibition 

significantly delays H2AX phosphorylation and associated DNA repair initiation. 
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1. Introduction 

Cells are constantly affected by DNA damage, resulting from 

ionizing γ-irradiation (IR), genotoxic or replication stress and 

reactive oxygen species. DNA damage, including single and 

double strand breaks (DSB), base modification, deletions or 

point mutations, seriously affects genome stability and cell 

integrity if not properly detected and repaired by the DNA 

damage response (DDR) 1.  

Upon DNA damage detection, higher order chromatin has to be 

made accessible by various modifications before DSB can be 

repaired 2. Among several DNA-damage associated histone 

modifications, phosphorylation of H2AX is widely accepted as 

an indicator of DSB. H2AX becomes rapidly phosphorylated at 

serine 139 (γH2AX) to generate foci at the DSB site 3. The 

assembly of chromatin remodeling complexes at the DSB site 

greatly depends on γH2AX and enables the accessibility of the 

damaged DNA to repair proteins 4.  

Depending on the stimulus, γH2AX is induced by different 

members of the phosphoinositide 3-kinase like kinase (PIKK) 

family; ataxia telangiectasia mutated (ATM), ataxia 

telangiectasia and Rad3-related (ATR) and DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs). ATR 

phosphorylates H2AX upon replicative stress 5, whereas ATM 

and DNA-PKcs are responsible for this phosphorylation upon 

DNA DSB, which are induced by IR 6. ATM and DNA-PKcs 

have been studied on a qualitative basis focusing on their 

impact of repair pathway choice for rebuilding damaged DNA 

either via rapid (classical) non-homologous end joining cNHEJ 

and/or slow homologous recombination repair (HR) pathway 7, 

8. As for the pathway choice, the interplay between ATM and 

DNA-PKcs regarding IR-induced H2AX phosphorylation 

remains puzzling. Because although ATM is required 9, DNA-

PKcs can substitute for it 10.  

In this work we follow a model-based approach to analyze the 

contribution of DNA-PKcs and ATM to H2AX phosphorylation 

during the initial DNA damage sensing stage. Cucinotta et al. 11 

have created a dynamic model solely focused on DNA-PKcs to 

predict dose and dose-rate effects on γH2AX dynamics. Very 

recently, a mechanistic model describing DNA damage 

complexity dependent sub-pathway choice in cNHEJ repair has 

been presented 12. Although several other mechanistic models 

of DNA-PKcs and cNHEJ repair exist 13-16, mechanistic 

modeling of ATM dynamics in the context of DNA damage is 

rare 17. 

A computational model for ATM and DNA-PKcs interactions 

with regard to γH2AX activation integrating biochemical time 

course data is missing so far. We describe an iterative workflow 

to identify a predictive dynamic model involving ATM/DNA-

PKcs mediated H2AX phosphorylation. Starting from several 

models, optimal experimental design (OED) was applied to 

optimize experiments for model identification. The identified 

model was used to analyze the dynamic contribution of ATM 

and DNA-PKcs to H2AX phosphorylation. 

 

2. Results 

2.1 Model Identification 

2.1.1 Defining network structures for γH2AX activation 

upon IR  

The network structures (Figure 1A) have been constructed 

based on meta-analysis 7, 17-20 focusing on the initial activation 

dynamic within the nucleus and the interplay between ATM 

and DNA-PKcs. DDR initiates with recognition of damaged 

DNA (DDNA1). Ku70/80 as a sensor for cNHEJ associates to 

the damage site (RC11) forming the DNA-PK complex (RC12) 
21. Then, the catalytic subunit of DNA-PK is either 

phosphorylated by active ATM or/and autophosphorylated at 

the T2609 cluster to initiate cNHEJ 8. The MRN complex 

(Mre11-Rad50-Nbs1), a sensor for the HR pathway, can also 

co-localize to the damage site to promote ATM 

autophosphorylation at Ser1981. 

Page 2 of 12Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal	
  Name	
   ARTICLE	
  

This	
  journal	
  is	
  ©	
  The	
  Royal	
  Society	
  of	
  Chemistry	
  2012	
   J.	
  Name.,	
  2012,	
  00,	
  1-­‐3	
  |	
  3 	
  

Failure of DNA repair via cNHEJ potentially allows HR 

proteins to access the damage site. This is modeled by splitting 

the initial DSB pool (DDNA) into DDNA1 and DDNA2, 

whereby DDNA2 is associated to HR and/or alternative non-

homologous end joining (aNHEJ) 22. Phosphorylation of H2AX 

can be achieved by active DNA-PKcs or active ATM. We 

generated four alternative models describing various interplays 

between ATM, DNA-PKcs and γH2AX (Figure 1A). 

	
  

Figure 1:	
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2.1.2 Experimental design for model calibration and 

identification 

For model calibration purpose, an initial time course of H2AX 

phosphorylation in response to IR was studied in MDCK cells 

in a dose-dependent manner using 0.5, 1, 2, 5, 40 Gy. γH2AX 

levels increased with IR dose, while concurrently signal 

attenuation was delayed (Figure 1B). These results agree with 

data from Burma et al. 9. From the competing network 

structures, we derived ordinary differential equation models and 

calibrated them (see Materials and Methods). Simulations of 

the initial data set for all models are shown in Figure 1C. Based 

on χ2 statistics, none of the models could be rejected at a 

significance level of α0.05=0.05 (Table 1, OED 0). P-values of 

Anderson-Darling (AD) residual statistics also indicated that all 

models seemed adequate for the initial data.  

To discriminate between models, we subsequently designed (i) 

an IR double-pulse (Figure 2A-D) and (ii) an IR double-pulse 

in combination with kinase inhibitors (Figure 2F-H). The IR 

double-pulse was parameterized with 2 design variables, 

namely inter-pulse time D1 and second pulse dose D2, whereas 

the first pulse was fixed at 1 Gy. The objective was to 

maximizeO = [Tred V S ]T . Herein Tred  is the reduced, 

modified T criterion to measure discriminative power 23, 

whereas V , S  represent mean model prediction variance 

and variance-entropy. The latter two criteria measure parameter 

information and distribution within the γH2AX signal (see 

Materials and Methods). 

For OED I, the optimal design D*
I was chosen by trading off 

Tred , V  and S  (Figure 2B). Recalibration of all models to 

data from OED 0 and I, and additional inclusion of p53-P data 

(Figure 2C-E) from titration experiments did not allow for 

model discrimination (all p-values > α0.05 for both fit statistics; 

Table 1), but reduced prediction variances (Table 2). 

Kinase inhibitors were employed for OED II to better dissect 

DNA-PKcs and ATM contributions. Titration of two highly 

specific inhibitors, namely Nu7441 and Ku55933 for DNA-

PKcs and ATM, respectively, identified the optimal 

concentration for each. Further, we used the phosphorylation of 

p53 at S15 as a read-out to show the specificity of the 

inhibitors. Two successive pulses with different intensities (1 

and 20 Gy) show in the immunoblot that the contribution of 

DNA-PKcs to this particular phosphorylation of p53 is marginal 

(Figure 2E). This confirms earlier data 24, 25.  

OED II was designed for three different inhibitor settings, 

namely Nu7441 and/or Ku55933. The estimated optimal design 

D*
II potentially allowed for discrimination (Table 2, Tred

* >>1 , 

Figure 3A). The initial γH2AX peak showed a comparable 

reduction for both inhibitors. Phosphorylation of H2AX after 

the second pulse seemed to decay more rapidly for inhibited 

ATM compared to inhibited DNA-PKcs. Both inhibitors 

Table 1 Fit statistics for initial (OED 0) and optimized experiments (OED I and II) Anderson-Darling p-values are indicated as AD. 

AD3σ indicates p-values of AD statistics where residuals larger than 3σ have been excluded. The number of data points Ndata do not 

include the time point t=0 [min]. Nθ and NS indicate the number of estimated kinetic and scaling parameters.	
  

OED Ndata Nθ NS Fit Statistics Model A1 Model A2 Model B1 Model B2 

0 114 19 2 χ2	
   93.45 91.74 92.79 91.69 
    p-value χ2 4.09E-01 4.59E-01 4.28E-01 4.60E-01 

 
   p-value AD3σ 3.44E-02 1.21E-02 3.04E-02 2.32E-02 

 
   p-value AD 3.44E-02 1.21E-02 3.04 E-02 2.32E-02 

I 147 19 7 χ2 135.98 131.53 125.84 125.64 

    p-value χ2 1.37E-01 2.04E-01 3.16E-01 3.21E-01 

 
   p-value AD3σ 1.38E-01 1.84E-01 9.22E-02 5.64E-02 

 
   p-value AD 2.12E-01 1.84E-01 9.22E-02 5.64E-02 

II 237 19 8 χ2 290.60 208.2 286.22 479.10 

    p-value χ2 1.35E-04 4.83E-01 2.60E-04 0.00 

 
   p-value AD3σ 1.97E-05 6.52E-02 3.11E-02 1.12E-01 

 
   p-value AD 3.86E-08 5.22E-29 3.21E-32 5.46E-14 
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together showed synergistic effects on γH2AX (Figure 3B).  

According to the fit statistics of OED II (Table 1) only model  

A2 cannot be rejected in terms of χ2. However, we find 

significant AD p-values for all four models, whereas models 

A2 and B2 have non-significant AD3σ p-values, which 

account only for residuals smaller than 3σ. This behavior may 

be attributed to outliers in one of the experimental conditions 

(Figure 3C) owing to experimental variations or deficits of the 

models in describing experimental conditions of OED II. We 

selected model A2 as the final model for further analysis, 

since it was the only model with p-values of χ2 and AD3σ 

statistics exceeding α0.05 for all 3 experimental runs. 

	
  

Table 2 Design criteria for OED and  represent mean 
variance and variance-entropy over all models, time points and 
specific experimental conditions (initial=subscript 0, OED I, II). 

 OED I OED II 

Criterion Prediction Final Prediction Final 

 |  107.13 | 6.5 45.1 | 0.3 4.6E03 | 44.7 1.5E03 | 51.5 

 |  0.05 | 3E-3 0.02 | 1E-04 28.2 | 0.3 9.3 | 0.3 

 |  1.53 | 4E-08 0.52 | 2E-07 2.2 | 6E-08 0.6 | 1e-05 

 |  7.05 | 2.26 7 | 2.29 20.1 | 7.5 5.1 | 3.1 
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2.2 Model Predictions 

2.2.1 Biphasic control of H2AX phosphorylation by DNA-

PKcs and ATM 

To investigate the contribution of DNA-PKcs and ATM to 

H2AX phosphorylation, we analyze their times of maximal 

peak activity post irradiation. We simulated a single IR pulse 

from 1 mGy to 100 Gy (Figure 4A-C). Active DNA-PKcs 

(DNA-PKcs-P) responds directly after irradiation within 2-10 

minutes and shows fast signal attenuation. Response time of 

active ATM (ATM-P) in terms of maximal activity is delayed  

with respect to γH2AX and much more dose-dependent ranging 

from 10 to 56 minutes. These model predictions are in line with 

the literature: DNA-PKcs activation peaks at 10 minutes after IR 

treatment, whereas ATM has its peak activity at around 20 

minutes 26. 

According to the model predictions, phosphorylation of H2AX 

is biphasic, following a dose-independent temporal activation 

order: The first activation phase of γH2AX right after 

stimulation is associated to DNA-PKcs, whereat the second 

phase is linked to ATM-P (Figure 4A). The γH2AX signal 

decays on the scale of hours and correlates with ATM-P. This 

dynamics of fast initial and prolonged response is known from 

coherent feed forward loops, which serve as a signal persistence 

detector 27. At doses below 1 dGy peak level of γH2AX is 

dominated by DNA-PKcs, whereas ATM dominates above 1 

dGy (Figure 4B, C). For larger dose levels, ATM auto-

phosphorylation results into a prolonged activation phase, with 

γH2AX peak activity shifted from 10 minutes at 10 Gy to 40 

minutes at 100 Gy.  
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2.2.2 DNA-PKcs compensates inhibited ATM  

Simulations of γH2AX dynamics with inhibited DNA-PKcs 

or/and ATM show that exclusive inhibition of ATM is nearly 

compensated by DNA-PKcs replacing the ATM associated 

activation phase of γH2AX by a prolonged DNA-PKcs 

associated phase (Figure 5A left; 5B black vs. magenta). In 

contrast, DNA-PKcs inhibition results into loss of the DNA-PKcs 

associated activation phase. Owing to slower activation 

kinetics, ATM cannot compensate this delay (Figure 5A left; 

5B black vs. red). At doses where DNA-Pkcs dominates, 

γH2AX peak activity is delayed by roughly 45 minutes. 

Simulations of simultaneous inhibition of DNA-PKcs and ATM 

show a 3- to 10-fold reduction in γH2AX peak level, depending 

on IR dosage, whereas exclusive inhibition of either DNA-PKcs 

or ATM is not as much affecting peak activity of γH2AX 

(Figure 5A right). For all inhibition scenarios, the biphasic 

phosphorylation kinetics of H2AX is lost. 

 

3. Materials and Methods 
3.1 Cell culture and treatment with g-irradiation 

MDCK cells (ATCC CCL-34) were routinely cultured in 

RPMI-1640 supplemented with 10% fetal calf serum, glutamine 

and 100 U/mL penicillin and 100 µg/mL streptomycin, and 

incubated at 37°C in a 5% CO2 humidified incubator. The 

MDCK cells were seeded at a density of 2 x 106 per 10 cm 

culture dish and cultured for 24 hours. The cells were irradiated 

with the Biobeam GM 2000 (Gamma-Service Medical GmbH, 

	
  

cs

cs

cs

cs
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Germany) at a dose rate of 3.332 Gy/min using either single or 

double pulse conditions. After a single pulse of 40, 5, 2, 1 or 

0.5 Gy, the cells were harvested at 30, 90, 180, 300 and 720 

minutes. The double pulse consists of a single pulse of 1 Gy, 

followed 6 hours later by a second pulse of 20 Gy. The cells 

were harvested at 15, 35, 60, 160, 240, 370, 420 and 450 

minutes. The inhibitors, Ku55933 (ATM, Tocris Bioscience, 

Germany) and Nu7441 (DNA-PKcs, Tocris Bioscience, 

Germany), used in the double pulse setting, were added 30 

minutes before first irradiation at a final concentration of 1µM, 

either alone or together. The titration of the inhibitors were 

performed at 0, 0.1, 1 10 and 0, 0.01, 0.1, 1 µM for Ku55933 

and Nu7441, respectively. Both inhibitors belong to the class of 

ATP competitive inhibitors 10, 28. 

 

3.2 Nuclear extraction, SDS-PAGE and Immunoblot 

Cells were lysed in hypotonic cell lysis buffer (20 mM Tris/HCl 

pH7.9, 10 mM KCl, 1.5 mM MgCl2, 10 mM K2HPO4, 10% 

glycerol, 0.5 mM DTT) supplemented with 0.5 mM AEBSF, 1 

mM sodium vanadate, 1 mM sodium molybdate, 10 mM 

sodium fluoride, 20 mM 2-phosphoglycerate and protease 

inhibitor mix (complete, Roche Germany). After addition of 

1.25% NP-40, the cytosolic fraction was obtained by 

centrifugation at 13000 x g for 10 minutes. The nuclear pellet 

was resolved in 20 mM Tris/HCl pH7.9, 420 mM KCl, 1.5 mM 

MgCl2, 10 mM K2HPO4, 10% glycerol, 0.2mM EDTA, 0.5 

mM DTT supplemented with the same inhibitors as before. The 

sample was incubated for 40 minutes on ice and centrifuged for 

10 minutes at 13000 x g. The insoluble nuclear fraction was 

achieved by digesting the resulting pellet with nuclease 

(Calbiochem, Germany) at 37°C for 30 minutes. The protein 

concentration was estimated using the BCA protein assay kit 

(Perbio Science, Germany). The samples were separated in 

Tris-Glycine gels (15%), transferred onto PVDF membranes 

(Millipore, Germany) and blocked for 1 h at room temperature 

with 5% skim milk in TBS-Tween (TBS-T). The primary 

antibodies were incubated overnight in 5% skim milk in TBS-T 
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at 4°C. The membranes were washed thrice in TBS-T. The 

appropriate HRP-conjugated secondary antibody was added at a 

dilution of 1:5000 in 5% skim milk in TBS-T for 1 hour at 

room temperature, followed by three washes in TBS-T. The 

membranes were developed using a chemiluminiscence 

substrate (Millipore, Germany). The respective bands were 

visualized using the ChemoCam Imager (Intas, Germany), 

followed by the estimation of the band intensities using ImageJ 
29. 

Antibodies used in this work were as follows: LaminB2 (sc-

133722) and HDAC1 (sc-7872) were obtained from Santa Cruz 

(USA, CA). γH2AX (ab26350) was from Abcam (UK). The 

secondary anti-rabbit-HRP or anti-mouse-HRP antibodies were 

from Jackson ImmunoResearch Laboratories Inc. (USA, PA). 

 

3.3 Building of a dynamic signaling model network of γH2AX 

activation 

Initially, 4 dynamic models in the form of ordinary differential 

equation systems were derived from the network structures in 

Figure 1A and implemented in MATLAB using the solver 

CVODES 30. Details on the choice of kinetic rate laws are given 

in the supplementary section 2. After the poor discrimination 

performance of OED I, we extended the models to contain also 

p53. The tumor suppressor p53 is an important effector protein 

during DDR. Phosphorylation of p53 at Ser15 by ATM 

promotes its release from MDM2 and results in p53 activation 
24, 31. Activation of p53 by DNA-PKcs has also been described 
32. However, DNA-PK-/- MEFs show normal p53 activation 25. 

We did not find evidence for a DNA-PKcs contribution to the 

p53 phosphorylation (Figure 2E), which agrees with earlier data 
33. Therefore, we implemented the p53 activation as an ATM-

dependent process only. As described in detail in the 

supplementary information, 19 kinetic and 8 scaling parameters 

were estimated by maximizing the likelihood function, whereas 

variance has been estimated from data replicates. Parameter 

estimation was performed for each model in an iterative 

manner, according to the 3 datasets, OED 0/I/II. Optimization 

of the likelihood function was performed iteratively, using a 

hybrid strategy. We combined a genetic algorithm (‘ga’ 

function from the global optimization toolbox of MATLAB), 

which was used to obtain a population of suitable starting 

solutions for a local, gradient-based optimization. Here we used 

an interior-point algorithm (‘fmincon’ function from the 

optimization toolbox of MATLAB). 

Before analyzing DNA-PKcs, ATM and γH2AX dynamics with 

model A2, we performed an identifiability analysis based on the 

profile likelihood to assess the uniqueness of the model 

prediction and to also derive prediction uncertainty bands (see 

Figure 4B/C). This analysis revealed that 8 kinetic parameters 

were not fully identifiable for the given optimization 

constraints, i.e. upper and lower bounds restricting the 

parameters to fall within 4 orders of magnitude. Six of these 

parameters were non-significant at the upper bound, whereas 

the other two were non-significant at the lower bound. One 

parameter was structurally non-identifiable. The non-

identifiable parameters were not decisive for the question of 

kinase contribution to H2AX phosphorylation. More details on 

the identifiability analysis, parameter dependencies and impact 

on the prediction power are given in the supplementary material 

in section 2. 

 

3.4 Experimental design criteria for model identification 

Model identification is the process of comparing plausibility 

amongst models from a pool of competing computational 

models in the light of given experimental data. Plausibility is 

typically derived from some kind of lack-of-fit measure, for 

instance χ2 statistics. Experimental design for model 

identification aims at generating new experimental conditions 

and therefore data, to support this identification process in an 

optimal way using the models at hand. In the early phase of 

modeling a biochemical system with ODEs, parameters are 

typically very uncertain. Consequently, model predictions 

including design criteria are uncertain as well. Accounting for 

these uncertainties during design robustifies the optimal 

experiment against these uncertainties. In this work we use a 

multi criterion approach to identify optimal stimulus designs for 

model identification. We use three criteria that measure 

discriminative power, parameter information and its 

distribution along the time points of the model predictions for 

γH2AX. The discriminative power is measured with the 

reduced, modified T criterion 23, Tred =
1

NMNt

Tij (D)j=i+1

NM∑i=1

NM −1∑ , 

with Tij (D) =
ysim,i (tl,D) − ysim, j(tl,D)( )

2

2σ exp
2 (tl )+σ sim,i

2 (tl,D)+σ sim, j
2 (tl,D)l=1

Nt∑ , 
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where ysim,i (tl,D)  represents the expected prediction of 

γH2AX of model i (total number NM) at time point tl (total 

number Nt). Measurement variances σ!"#! (𝑡!) are interpolated 

sample variances averaged over all available experimental 

conditions. Expected model predictions and their variances 

σ sim,i
2 (tl,D)  have been derived with the sigma point method as 

shown in Flassig and Sundmacher 34. Expectation is taken with 

respect to the parameters, whereas parameter variance-

covariances were derived from the χ2 Hessian. Parameter 

information was measured by the mean variance over time 

points of model predictions according to 

V =
1

NtNM

σ sim, j
2 (ti,D)j=1

NM∑i=1

Nt∑ . Shannon’s entropy is used to 

measure the variance distribution over time points and model 

predictions according to 

 S = − σ sim, j
2 (ti,D)i=1

Nt∑ log σ sim, j
2 (ti,D)j=1

NM∑  with normalized 

variances according to σ sim, j
2 (ti,D) =1i=1

Nt∑j=1

NM∑ . In each 

experimental design, we chose the best design point as the 

trade-off between maximalTred , V  and S . Maximal Tred  

yields best discrimination, maximal V  ensures large 

sensitivity of the parameters and maximal S  represents 

maximal homogenous variance distribution along time points 

and model predictions. 

The evaluation of the objective in OED I was based on time 

points t = [0 15 35 60 160 240 370 420 450]T minutes. The first 

6 time points were chosen from simulating OED 0 conditions to 

fully capture rising and falling flanks of the initial γH2AX 

peak, whereas the remaining time points were placed based on 

the estimated second signal peak. For OED II design criteria 

were evaluated at the time points used in OED I. 

 

4. Conclusions 

Here we report an iterative workflow combining experimental 

work, computational modeling and experimental design 

methodologies to shed light on the interplay of two PIKK 

family members (DNA-PKcs and ATM) to the rapid histone 

H2AX phosphorylation in the context of DNA damage sensing 

upon γ-irradiation. By performing optimized dynamic 

stimulation experiments, we generated an extensive set of time-

resolved data to identify a computational model for analyzing 

DNA-PKcs-P, ATM-P and γH2AX dynamics. A parameter 

identifiability analysis revealed that the computational model 

can be used to predict internal state dynamics, e.g. 

phosphorylation of DNA-PKcs and ATM. With a predictive 

model at hand, we could then investigate the fast 

phosphorylation kinetics of DNA-PKcs, ATM and H2AX post 

irradiation without the need of direct kinase activity 

measurements, thus reducing confounding effects from 

experimental manipulations. 

Our model simulations show that H2AX phosphorylation is 

biphasic, with initial and succeeding phases associated to DNA-

PKcs and ATM, respectively, in which the individual 

contributions to peak level of γH2AX are dose-dependent. It is 

tempting to link the dose-dependent biphasic response of 

γH2AX observed in silico to the known biphasic signaling 

responses of cNHEJ and HR, that is fast DNA-PKcs- and slower 

ATM-related repair activity 22. In fact, following DNA-PKcs 

inhibition Davidson et al. 35 have shown that HR activity is 

increased. Further, Neal et al. 8 showed that DNA-PKcs 

enzymatic activity inhibits HR in a titratable fashion. From 

simulating DNA-PKcs inhibition we hypothesize that this is a 

consequence of delayed γH2AX activation, associated 

chromatin remodeling and DNA repair initiation of cNHEJ. We 

further conclude that DNA-PKcs and ATM have distinct roles in 

H2AX phosphorylation equipping cells with a signal 

persistence detection function, i.e. fast initial response (DNA-

PKcs) and delayed signal attenuation (ATM). This ensures 

reliable damage detection and repair signaling. 
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