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Uncovering allosteric pathways in caspase-1 with Markov transient

analysis and multiscale community detection†

B Amor∗a,b, S N Yalirakia,b, R Woscholskia,b and M Barahona∗a,c

Allosteric regulation at distant sites is central to many cellular processes. In particular, allosteric sites in proteins are a major

target to increase the range and selectivity of new drugs, and there is a need for methods capable of identifying intra-molecular

signalling pathways leading to allosteric effects. Here, we use an atomistic graph-theoretical approach that exploits Markov

transients to extract such pathways and exemplify our results in an important allosteric protein, caspase-1. Firstly, we use

Markov Stability community detection to perform a multiscale analysis of the structure of caspase-1 which reveals that the active

conformation has a weaker, less compartmentalised large-scale structure as compared to the inactive conformation, resulting in

greater intra-protein coherence and signal propagation. We also carry out a full computational point mutagenesis and identify

that only a few residues are critical to such structural coherence. Secondly, we characterise explicitly the transients of random

walks originating at the active site and predict the location of a known allosteric site in this protein quantifying the contribution

of individual bonds to the communication pathway between the active and allosteric sites. Several of the bonds we find have

been shown experimentally to be functionally critical, but we also predict a number of as yet unidentified bonds which may

contribute to the pathway. Our approach offers a computationally inexpensive method for the identification of allosteric sites and

communication pathways in proteins using a fully atomistic description.

Keywords: allostery, allosteric pathways, community detection, complex networks, random walk, multiscale, caspase-1.

1 Introduction

Allostery describes the widely observed phenomenon by

which a perturbation at one site of a protein has a functional ef-

fect at another, distant site1. Traditionally, studies of allostery

have been linked to the cooperativity observed in large multi-

meric proteins such as haemoglobin. In this context, the clas-

sic ‘induced-fit’ (Koshland-Nemethy-Filmer, KNF)2 and ‘pre-

existing equilibrium’ (Monod-Wyman-Changeaux, MWC)3

models both consider that each monomer has a high-affinity

(‘relaxed’) R-state and a lower affinity (‘tense’) T-state. In the

induced-fit model, binding of one subunit drives the next sub-

unit into its new higher affinity R-conformation. In the MWC

model, the protein ensemble is already in equilibrium between

the T and R states, and binding of the ligand to one subunit

shifts the equilibrium of the ensemble towards the high-affinity

state.

The so-called ‘new’ view of allostery, which is essentially

an extension of the MWC model to general allosteric ef-

fects, regards the allosteric effector as shifting the equilib-

rium of a pre-existing ensemble of conformations towards the

† Electronic Supplementary Information (ESI) available: [details of any

supplementary information available should be included here]. See DOI:

10.1039/b000000x/
a Insititute of Chemical Biology, Imperial College London, South Kensington

Campus, London, SW7 2AZ, UK.
b Department of Chemistry, Imperial College London, South Kensington

Campus, London, SW7 2AZ, UK.
c Department of Mathematics, Imperial College London, South Kensington

Campus, London, SW7 2AZ, UK.

less populated state4. In this sense, any protein could be al-

losteric5, and the perturbation could be anything that changes

the free-energy landscape of the protein (including perturba-

tions which do not induce a visible conformational change6,7).

This perspective views proteins as highly dynamic, with the

ability to sample their active (i.e., less populated) state even in

the absence of a ligand or substrate8.

These thermodynamic models provide a helpful phe-

nomenological description but do not explain how the change

in the energy landscape is induced by the effector, and how

this effect physically propagates between the effector site and

the active site1,9. The idea of allosteric pathways (i.e., sets

of contiguous residues through which a signal propagates10)

has grown in popularity since Lockless and Ranganathan iden-

tified a set of evolutionarily conserved residues linking the

binding site and a distal site in the PDZ family of proteins11.

NMR12,13 and molecular dynamics14,15 studies on members

of this family have suggested other overlapping pathways of

energetically linked residues connecting the binding site to

further distal sites. Further computational studies have used

combinatorial unfolding of protein structures combined with

free energy calculations to find distal regions of proteins which

are ‘energetically coupled’16,17, but do not give a structural in-

terpretation of this coupling.

Recently, residue-residue interaction networks (RRINs)

have been used to model allosteric communication. Using

such coarse-grained representations, Del Sol et al identified

central residues that contribute most to reducing the average

shortest path in the RRIN network18, and showed that central
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residues often lie at the interface of modules in the RRIN19.

These studies used classical extremal network measures such

as betweenness to identify central residues, i.e., these mea-

sures are based on shortest path calculations. However, al-

losteric communication is characterised by multiple major and

minor pathways10. Other studies have used ad hoc determin-

istic approaches to consider these, such as including pathways

within some small distance of the shortest path20,21. Tak-

ing a stochastic perspective, Chennubhotla and Bahar22 (fol-

lowed by others23,24) used hitting and commute times of ran-

dom walks on RRINs to explore intra-protein communication

and linked these measures to the equilibrium fluctuations of

a coarse-grained, residue-based Gaussian Network Model of

the protein22. Stochastic methods14,25 have also been used to

analyse clustering in protein structures.

In this paper, we study the pathways implicated in allosteric

regulation by considering the transients of random walks tak-

ing place on an atomistic graph representation of the protein.

Our approach differs from the above methods in two cru-

cial ways. Firstly, we use an atomistic rather than a residue

level description, i.e., each node in our graph corresponds

to an atom (rather than a residue) with edge weights corre-

sponding to the actual strengths of the bonds between atoms.

This allows us to quantify the contribution of specific atomic

interactions to communication pathways. Secondly, we use

a dynamics-based multiscale method, Markov Stability26, to

analyse the community structure in the protein graph across all

scales in one sway, from chemical groups to protein subunits.

In contrast, other community detection methods (such as Mod-

ularity19,27) find just one partition at a particular scale28, and

suffer from a resolution limit29 that prevents them from identi-

fying the multilayered community structure that exists at dif-

ferent scales in highly organised networks such as proteins.

Our method overcomes this limitation because it scans across

all scales identifying the levels of resolution where there is

strong community structure. This is equivalent to the obser-

vation of a Markov transient over different time scales. Such

transient behaviour can be explicitly used to explore the com-

munication between specific sites in the graph. To do so,

we introduce a measure for intra-protein communication, the

characteristic transient time t1/2, which takes into account all

possible pathways between the communicating sites. We then

use t1/2 to identify groups of atoms that are strongly linked to

the active site, as well as bonds that are key participants in the

communication paths. In contrast to shortest path methods,

our approach considers the contribution of all possible path-

ways between the two sites. Furthermore, the computational

efficiency of our method enables us to carry out full mutational

analyses to evaluate the relevance of all bonds and residues in

the structure.

As a case study, we consider here the cysteine protease

caspase-1, an important enzyme in which extensive exper-

Fig. 1 Three-dimensional structure of the active conformation of

caspase-1 (PDB: 2HBQ) showing the active site residues (in red),

the allosteric binding site residue Cys331 (in blue), and the residues

involved in the hydrogen bonding network (yellow sticks)31. The

structure is a dimer formed by the large p20 subunit (light grey) and

the smaller p10 subunit (dark grey). All protein figures in this paper

were created with PyMol (http://www.pymol.org).

iments have identified an allosteric site30 and details of a

communication pathway between the allosteric and active

sites31. Caspase-1 processes the pro-inflammatory cytokine

interleukin-1β and has specificity for substrates with aspartic

acid adjacent to the peptide bond being broken32. Members of

the caspase family are involved in signalling pathways associ-

ated with apoptosis and inflammatory response, and as such

are promising drug targets33.

Caspase-1 is a dimer composed of a smaller p10 subunit and

a larger p20 subunit34, with experimental indications that two

such dimers might combine to form a (p20)2/(p10)2 tetramer.

Here we consider the dimer structure, which has been well

characterised structurally. The active site spans across both

subunits: residue Cys285 in the p20 subunit is the active site

nucleophile, while the rim of the binding pocket is composed

of residues 283-285 and 236-238 in the larger p20 subunit and

residues 338-343 in the smaller p10 subunit. Scheer et al have

identified experimentally an allosteric binding pocket situated

at the dimer-dimer interface30. Datta et al31 used structural

data to identify a network of hydrogen bonds which link the

allosteric and active sites in the active conformation (Fig. 1),
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but are absent in the inactive conformation. A subset of those

residues were then found to have a significant impact on cat-

alytic activity. In particular, binding of the allosteric ligand

disrupts a salt-bridge between residues Arg286 and Glu390,

and an alanine mutation of either residue greatly reduces the

catalytic activity of the protein.

Our analysis of the active and inactive conformations of

caspase-1 shows that the active conformation has a less com-

partmentalised community structure than the inactive struc-

ture, which leads to increased communication between the ac-

tive site and the rest of the protein. Through computational

exploration of all point mutations, we find that only a few

residues have a strong impact on this increased communica-

tion. We then consider the explicit analysis of transient ran-

dom walks in the structures and find that the region of the

protein with the largest increased connectivity in the active

conformation corresponds to the allosteric site. Our compu-

tational mutational analysis then shows that the bonds that

contribute most to this increased connectivity are formed by

functionally important residues. Our method thus reveals the

location of the allosteric site and the bonds involved in signal

transmission directly from structural data.

2 Materials and methods

2.1 Structural data

We analyse three crystal structures of human caspase-1: one

in unliganded (‘inactive’) form, and two complexed (‘active’)

structures in complex with tetrapeptide substrates at the ac-

tive site. The unliganded structure (PDB ID code: 1SC1) was

obtained by Romanowski et al35 through X-ray crystallogra-

phy at a resolution of 2.6Å. The complexed caspase-1/z-VAD-

FMK (PDB ID code: 2HBQ) was obtained by Scheer et al30

at a resolution of 1.8Å. The structure of caspase-1 in complex

with a tetrapeptide aldehyde inhibitor (PDB ID code: 1ICE)

was obtained by Wilson et al34 at a resolution of 2.6Å. We fol-

low the standard residue numbering as in Ref. Wilson et al. 34 .

2.2 Construction of the atomistic network

In contrast to most network methods for protein analy-

sis18,19,22–25, our method starts by the construction of a fully

atomistic graph representation of the protein. The graph is

built from the structural information contained in the PDB

file36, which contains the Cartesian coordinates of each atom

in the protein. Each node in the graph corresponds to a single

atom and each edge defines a covalent bond or weak interac-

tion (hydrogen bonds, salt bridges, or hydrophobic tethers)37.

Any missing hydrogen atoms are added using the software Re-

duce38. We identify the presence of covalent bonds and weak

interactions using the program FIRST39 with a cutoff of 0.01

kcal/mol for hydrogen bonds and 8Å for hydrophobic inter-

actions. Each edge has a weight which is linearly related to

the bond energy. The bond strengths are obtained from the

DRIEDING force-field40. This protein graph is encoded by

a weighted adjacency matrix A, an N ×N symmetric matrix

(where N is the number of atoms in the protein) in which the

entry Ai j gives the energy of the interaction between atoms i

and j (0 if there is no interaction). For further details of the

network construction, including the force fields used, see the

Supplementary Information and Ref. Delmotte et al. 37 .

2.3 Multiscale community detection with Markov Stabil-

ity for protein structures

Intuition for Markov Stability analysis of atomic pro-

tein graph. Proteins are multiscale biomolecular machines

with structural organisation at scales ranging from chemical

groups, through amino acids, to protein domains, and even

different subunits. This multiscale structural organisation is

encoded in the atomic protein graph described above, which

contains detailed physico-chemical and geometric properties

of the protein. To reveal the organisation of the structure at

different scales, we analyse the generated protein network us-

ing recently developed graph-theoretical techniques.

Markov Stability is a general method for multiscale com-

munity detection in graphs26, and is thus well suited for

the analysis of the protein graph at all scales. In contrast

to other community detection methods (such as Modular-

ity27), Markov Stability finds partitions of a graph into non-

overlapping subgraphs (‘communities’) without imposing a

particular scale a priori. Rather than obtaining a single par-

tition, Markov Stability finds an optimised partition at every

scale and decides if such a partition is significantly robust

by establishing if the communities correspond to subgraphs

where a random walk is likely to remain trapped over a certain

timescale. As we increase this Markov timescale, the method

acts as a zooming lens, scanning across all scales looking for

significant communities at different resolutions. Hence, as the

Markov time progresses, the partitions become coarser. In the

case of the protein graph, this process allows us to scan across

resolutions and find communities involving a few atoms (cor-

responding to chemical groups) at very short Markov times,

through biochemical units (amino acids) and secondary struc-

tures (helical turns) at intermediate Markov times, to commu-

nities corresponding to conformational groupings or protein

subunits at long Markov times. For a detailed description of

the method, see the Supplementary Information and Refs. Del-

venne et al. 26 , Schaub et al. 29 , Delmotte et al. 37 .

Optimal partition of a graph into communities at a given

scale. We now make these notions more precise. A random

walk on a graph is described by a N ×N Markov transition
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Fig. 2 Schematic illustration of random walk analysis. Initially

the probability is distributed only across the source nodes. Through

the iteration of the Markov process (1), the probability spreads across

the other nodes in the protein. We monitor the time evolution of the

probability at a set of target nodes and measure how long it takes for

this set to reach half their stationary value.

matrix M, where N is the number of nodes in the graph:

pt+1 = pt M. (1)

Each element Mi j gives the probability of transitioning from

node i to node j in one time step and pt = (p
(1)
t , . . . , p

(N)
t )

is a 1×N probability vector recording the probability of the

process at each node at time t. M is directly related to the ad-

jacency matrix by M = D−1A, where D is the diagonal matrix

of node degrees, i.e., Dii is the sum of the weights of all edges

incident to node i.

The key matrix for Markov stability is the block ‘autoco-

variance’ matrix26

R(t,H) = HT (ΠMt
−πT π)H. (2)

R is a c × c matrix where c is the number of communities

in the partition, and [R(t)]i j gives the probability of the ran-

dom walker starting in community i and finishing in commu-

nity j after t timesteps. The N × c indicator matrix H en-

codes the membership in the partition, while the 1×N vector

π = (π(1), . . . ,π(N)) is the stationary distribution of the ran-

dom walk (1) and Π = diag(π).
We look for partitions where a random walker is likely to

remain trapped in the same community over the timescale

t. This corresponds to large values of the diagonal elements

[R(t)]ii. Therefore, the Markov Stability of a partition H is

defined as

r(t) = max
H

trace(R(t,H)), (3)

and we search for partitions H that maximise r(t). The ‘time’ t

is a dimensionless quantity that measures the expansion of the

random walk in the network acting as a dynamical resolution

parameter, and does not directly correspond to a biophysical

timespan. To emphasise this difference, we refer to t as the

Markov time throughout. To optimise the Markov Stability

r(t) for any given t, we use the Louvain algorithm41, a highly

efficient greedy algorithm that finds optimised partitions with

high values of r(t) with no guarantees of global optimality (the

problem is NP-hard), but which works well in practice.

Robustness as a measure of significant graph partitions.

At any Markov time t, the above process finds an optimised

partition but there is no a priori reason why this partition need

have any significance. Indeed, it is likely that significant par-

titions will only be found at certain scales (e.g., at the level of

chemical groups or of amino acids). Through the use of surro-

gate chemical randomisations37, we have shown that Markov

Stability is able to detect chemical groups, biochemical units,

as well as structural features such as helical turns. At long

Markov times, we look for significant partitions with the defin-

ing feature of being robust to perturbations42. We use two

measures to quantify this robustness:

1. The length of the Markov time over which the partition is

found optimal is an indication of its persistence for flow

retention under small parametric changes in time. Hence

we look for plateaux in the number of communities ver-

sus Markov time.

2. A widespread similarity between the partitions found by

the optimisation algorithm indicates the robustness of

the partition found. At each Markov time, we obtain

100 optimised partitions using 100 different initial con-

ditions for the optimisation algorithm. We then calcu-

late the average pairwise difference between these 100

partitions using the variation of information (VI)43, an

information-theoretic measure that quantifies the similar-

ity/dissimilarity of two partitions of the same network. A

low VI (or a dip in the VI) reflects greater homogeneity

among the 100 optimised solutions obtained and there-

fore increased robustness to the optimisation.
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In silico mutational analysis to identify significant

residues. Alanine scanning mutagenesis is the systematic ex-

perimental replacement of individual amino acids with alanine

in the primary structure of a protein. We can mimic compu-

tationally the effect of this procedure by removing the graph

edges corresponding to the weak interactions formed by the

side chain of the chosen amino acid. The computational effi-

ciency of our algorithm means we can evaluate the effect on

the Markov Stability partitions of all individual mutations of

each residue in turn. To identify the Markov times at which a

mutation has a significant impact on the robustness of a parti-

tion, we compare the VI(t) graphs of the wild type versus that

of the mutated networks. Gaussian Process Regression44 is

used to obtain a representative VI curve for the ensemble of

mutated and wild-type VI graphs. If the VI graph of a mu-

tated network falls outside the statistical bounds of the ensem-

ble trajectory, it indicates that the robustness of the partition

has been significantly affected (Fig. S2). We identify the point

mutations that lead to significant changes in the structurally

relevant graph partitions. See section S3 for a full discussion

of Gaussian Process Regression.

2.4 Markov transient analysis and signal propagation

To identify special regions in the protein that are significantly

connected to the active site we perform an explicit analysis of

Markov transients from initial conditions localised on a par-

ticular subgraph and establish a measure of the convergence

of another target subgraph towards stationarity.

Source-target transients of the random walk. Consider

the evolution of a random walk described by Eq. (1). To model

the propagation through the network of a perturbation occur-

ring at a particular site, we analyse a random walk originating

at that site and define an initial probability distribution p0 in

which the probability is spread uniformly over a set of source

nodes:

psource
0 p

target
0

p0 =
(

0 . . .

︷ ︸︸ ︷
[

1
Ns
. . . 1

Ns

]

. . .
︷ ︸︸ ︷
[
0 . . .0

]
. . . 0

)

,

where Ns is the number of source nodes. We then monitor sig-

nal propagation between two defined regions of the network

by observing the change in probability at the target nodes:

pt =
(
. . .

[
psource

t

]
. . .

[

p
target
t

]
. . .

)
, (4)

As the Markov time t → ∞, the vector pt converges to the sta-

tionary distribution π . Hence the speed at which the target

nodes reach stationarity can be used as a measure of connec-

tivity between the source and target nodes. See Fig. 2 for a

sketch of this procedure.

Characteristic transient time t1/2 as a measure of signal

propagation between two sites. To measure the connectivity

Fig. 3 Community detection across timescales for caspase-1. a)

Number of communities (solid line) and Markov Stability (dashed

line) between Markov times 100 and 1000 of two conformations of

caspase-1: active (green) and inactive (blue). b) The variation of in-

formation of both conformations over the same time scale indicates

that the 4-way and 2-way partitions of the active conformation are

less robust than for the inactive conformation. c) The dominant 4-

way and 2-way partitions for the two conformations. The inactive

conformation has a single dominant partition, the inactive conforma-

tion flips between several different partitions.

between two sites in the protein, we introduce the character-

istic transient time t1/2, a measure of the speed with which a

random walk originating at one site will propagate to the tar-

get site. Given a set of source atoms, the t1/2 associated with

the target node i is the number of time steps it takes for the
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probability at node i to reach half its stationary value:

t
(i)
1/2

= argmin
t

[

p
(i)
t ≥

π(i)

2

]

.

To measure the connectedness between two sets of atoms, we

average the t
(i)
1/2

over all atoms in the target set (e.g., over the

atoms of a residue or over the atoms of a group of residues)

Measuring changes in signal propagation: the t1/2 ra-

tios. We will be interested in measuring the changes in signal

propagation from the active site to any other residue (or groups

of residues) in the protein as quantified using the characteris-

tic transient time t1/2 defined above. We define three ratios

that allow us to compare the t1/2 under different changes in

the protein:

Conformational t1/2 ratio: measures the change in t1/2 for

each residue for a random walk originating at the active

site when comparing the active and inactive conforma-

tions of the protein

∆CF =
t inactive
1/2

tactive
1/2

. (5)

A high ratio indicates that a residue is more closely cou-

pled to the active site in the active conformation.

Bond-removal t1/2 ratio: measures the contribution of in-

dividual bonds to signal propagation (between the active

site and a target) by comparing the t1/2 before and after

removal of a bond in the graph

∆BR =
tbond-rem
1/2

tactive
1/2

. (6)

Mutational t1/2 ratio: measures the importance of individ-

ual residues to communication between two sites by com-

paring the t1/2 before and after mutation of that residue

(i.e. by removal of all weak interactions formed by that

residue)

∆MT =
tmut
1/2

tactive
1/2

. (7)

3 Results and discussion

3.1 Markov Stability reveals a strongly compartmental

community structure in the inactive conformation of

caspase-1

We have used Markov Stability to analyse the ‘active’ (1ICE)

and ‘inactive’ (1SC1) structures of caspase-1. The 1CE ac-

tive structure is used as it does not have unresolved residues

causing a break in the backbone chain. Note that the ligand in

1ICE is not included in the graph, so as to make the compar-

isons with the unliganded 1SC1 consistent, i.e., the observed

differences between the conformations are due to changes in

graph properties induced on the protein structures and not due

to the extra atoms/bonds of the ligand.

As described above, Markov Stability zooms across differ-

ent levels of resolution to find robust graph communities at all

scales from the atomic graph of the protein. Such communi-

ties can be thought of as groups of atoms behaving coherently

over a particular timescale under a diffusive process. The full

Markov Stability analysis is shown in Fig. S1. Drops in the

variation of information (VI), indicative of robust partitions,

are observed around Markov times 2× 10−3 and 10−1 corre-

sponding to chemical groups and amino acids, respectively,

as discussed elsewhere37. Between Markov times 3× 10−1

and 10, high VI and a lack of plateaux indicates an absence

of significant partitions in the protein structure. The VI curve

begins to fall again after Markov time 10, and around this time

we see the emergence of the secondary structure with alpha-

helices forming communities. These features are observed in

all proteins studied with this method so far37, and confirm that

we uncover the expected structure for proteins at small and

intermediate scales. Consequently, for these short and inter-

mediate Markov time scales, there are no differences between

the active and inactive conformations of caspase-1 since they

share their chemical constituents.

Above Markov time 100, however, the results for the ac-

tive and inactive conformations diverge and we see distinct

features for each conformation of caspase-1 (Fig. 3). In par-

ticular, the inactive conformation exhibits long plateaux in

the number of communities between Markov times 120-300

and 460-800, accompanied by a drop in the VI, indicating the

presence of robust four-way and two-way partitions (Fig. 3).

On the other hand, the active conformation presents much

weaker indications of community structure, i.e., the quanti-

tative Markov Stability curve of the inactive structure (which

measures the strength of the partition) is consistently smaller

and the VI is larger during the plateaux.

In particular, the four-way partition in the inactive confor-

mation is more robust, with an average pairwise VI ≃ 0.0254

in the inactive structure compared to the larger 0.0435 in the

active structure. In the inactive structure there are four clearly

demarcated communities which comprise the four-way parti-

tion (Fig. 3c top left). In contrast, in the active conformation

we identify 7 smaller sub-communities which combine in dif-

ferent ways to form different four-way partitions in a more

flexible manner (Fig. 3c bottom left).

Furthermore, the long-lived, robust (VI ≃ 0.0073) two-way

partition of the inactive conformation splits caspase-1 into its

p10 and p20 subunits (Fig. 3c top right). In the active con-

formation, however, the two subunits are less well defined as
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Fig. 4 Variation of information (VI) as a function of Markov time for mutated structures a) Analysis of all the mutated inactive structures:

(top panel) VI as a function of Markov time with statistical bounds (95% confidence intervals) obtained with GPR applied to the ensemble of

all mutations. Above Markov time 570 (corresponding to the 2-way partition), the VI for mutations of Thr162, Asp336 and Arg383 are well

above the statistical bounds of the ensemble, reflecting a loss of well-defined community structure in the two-way partition similar to what

is observed in the active structure; (bottom panel) The p-value quantifying the likelihood that the mutated structure does not belong in the

ensemble of mutations drops sharply (p < 0.001) over the 2-way plateau. b) Analysis of all the mutated active structures: the VI for mutations

of Cys136A and Cys362A drop below the statistical bounds between Markov times 170 and 400, representing an increased robustness of the

four-way partition observed during this period (top panel). These mutations also induce changes in the robustness of the two-way partition as

is also seen in the p-values shown in the bottom panel.

separate communities (VI ≃ 0.0281): the α − 1/2 helix and

the β −6 strand of the p20 subunit are closely associated with

the p10 subunit (Fig 3c. bottom right), indicating a stronger

interaction between the p10 and p20 subunits in the active con-

formation.

3.2 Computational mutagenesis reveals important

residues for community structure

To mimic in silico the process of alanine mutagenesis, we

remove all edges corresponding to interactions of a given

‘mutated’ residue. We consider all point mutations in turn,

and compute the community structure using Markov Stabil-

ity for each mutated structure. We can then identify the mu-

tations that affect significantly the robustness of the 4-way

and 2-way partitions by analysing the VI of the ensemble of

mutated networks using Gaussian Process Regression44 (see

Section S3). Mutations are classified as significant if the

VI of the mutated structure lies 3 standard deviations out-

side the mean for at least one third of the relevant Markov

time plateaux. Using this criterion, we find that only three

residues (Thr162/Asp336/Arg383) in the inactive conforma-

tion and two residues (Cys136/Cys362) in the active confor-

mation affect the community structure significantly at long

Markov times (Fig. 4).

In the active structure, mutations of residues Cys136 and

Cys362 significantly affect the four-way partition (Fig. 4b).

These residues form a disulphide bond linking the p10 and

p20 subunits in the active structure, which is absent in the in-

active structure (Fig. S4a). Removing this bond by our com-

putational mutation breaks a strong link between the two sub-

units and appears to stabilise the four-way partition (Fig. 3c),
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resulting in the more compartmentalized community structure

characteristic of the inactive conformation. Although exper-

imental mutations of either residue have not been shown to

have an effect on enzyme activity34, they may affect dynami-

cal and structural features of the protein.

The three mutations that have an effect on the large scale

organisation of the inactive structure are Thr162, Asp336

and Arg383. Thr162 lies in the α − 1/2 helix in the p20

subunit and forms hydrogen bonds with Glu223 and Thr226

(Fig. S4b). Removal of these interactions has a significant ef-

fect on the two-way partition of the inactive conformation at

long Markov times (Fig. 4a): instead of a clear two-way par-

tition into the two subunits, we find that the α − 1/2 helix of

the p20 subunit forms a community with the p10 subunit.

Asp336 and Arg383 form a salt bridge (Fig. S4c) and, sim-

ilarly, the removal of this bond by mutation of either residue

causes a greater association of the α − 1/2 helix and the p10

subunit. It has been suggested that the main role of Asp336 is

to stabilise the L3 loop (residues 332-346) containing residue

Arg341, an important residue for substrate-recognition31. Our

results suggest that the Asp336/Arg383 bond may play a role

in stabilising the inactive conformation and that removing this

salt bridge may facilitate adoption of the active conformation.

Romanowksi et al35 suggest that the primary function of the

L4 loop, containing Arg383, may be to stabilise loop L3 in the

inactive conformation. Our analysis suggests that mutation of

this residue may have a global effect on the dynamics of the

enzyme. In section 3.4 we find that this residue may play a

role in active-site to active-site co-operativity.

3.3 Allosteric pathways uncovered by transients of ran-

dom walks on the atomistic graph of the protein

The conformational t1/2 ratio ∆CF reveals the location of

the allosteric site. To investigate signal propagation between

the active site and the rest of the protein, we consider first

the behaviour of a random walk originating at the active site.

The active site is defined as the residues containing an atom

within 4Å of the substrate and comprises residues 179/236-

238/283-285/338-343/345/348/38334. We use the 2HBQ ac-

tive structure for the transient analysis as this structure was

used previously to characterise an allosteric hydrogen bond-

ing network31.

As would be expected from its weaker community struc-

ture, the random walk spreads more rapidly through the pro-

tein in the active conformation. The average characteristic

transient time to any residue in the protein for a random walk

originating at the active site in the active conformation is

(t̄ active
1/2

= 1367), much shorter than that of the inactive con-

formation (t̄ inactive
1/2

= 1663). Crucially, the differences in tran-

sient times between the inactive and active conformations are

not distributed homogeneously across the structure: mapping

Fig. 5 Difference in signal propagation originating from the ac-

tive site between active and inactive conformations. a) Character-

istic transient times t1/2 for random walks originating at the active

site for all residues for the active (green) and inactive (blue) con-

formations (top panel), and the conformational ratio ∆CF defined in

Eq. (5) (bottom panel). The random walk propagates more quickly

in the active conformation with t inactive
1/2

> tactive
1/2

consistently. The red

dashed line corresponds to ∆CF > 2 and identifies the residues shown

in Table 1. b) The conformational ratio ∆CF mapped onto the protein

structure: red areas show the biggest increase of t1/2 in the inactive

conformation with a ‘hot spot’ at the allosteric site (circled). The

source atoms of the random walk (the active site) are coloured black.
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Table 1 Residues with largest conformational ratio ∆CF for random

walks originating at the active site. Residues marked with an asterisk

appear in the hydrogen bonding network identified by Datta et al 31.

Residue tactive
1/2

t inactive
1/2

∆CF

P290 50.57 268.93 5.32

S289 37.55 154.45 4.11

D185 74.50 273.75 3.67

E390∗ 199.60 683.73 3.43

S333∗ 20.09 63.36 3.15

G291 132.57 384 2.90

V292 246.25 538.25 2.19

S332∗ 11.18 23.82 2.13

V293 472.25 950 2.01

A391 674.96 1297.4 1.92

the conformational ratio ∆CF onto the protein structure reveals

a ‘hot spot’ at the allosteric site (Fig. 8). In Table 1, we show

the ten residues with ∆CF > 1.9, corresponding to the largest

change between inactive and active conformations. Three of

these ten residues (Ser332/Ser333/Glu390) are in the hydro-

gen bonding network by Datta et al31. Of these, Glu390 is

notable for being located in the allosteric binding pocket at

the dimer-dimer interface. Glu390 forms a salt bridge with

Arg286, a bond which is known to be disrupted through al-

losteric inhibition. Other residues with large conformational

ratios ∆CF are Asp185 and residues 289-293. The large ∆CF

of residues 289-293, which are located in the highly dynamic

C-terminus of the p20 subunit, is due to the loss of hydrogen

bonds between Ser289 and two active-site residues Asp336

and Val338. Similarly, Asp185 loses a hydrogen bond with

the active site residue 179.

To test the relevance of the allosteric site residues identi-

fied, we performed the transient analysis of the ‘reverse’ ran-

dom walk originating at the residue Glu390 in the allosteric

site. The random walk spreads much more quickly towards

the active site in the active conformation (Fig. 6 and Video 1

in the SI), revealing the existence of a communication path-

way between the allosteric and active sites which is present in

the active conformation and suppressed in the inactive confor-

mation. To identify the scaffold of this communication path-

way, we compute the conformational ratio ∆CF for this reverse

random walk. As shown in Table 2, the largest ∆CF corre-

sponds to residue Arg286, a consequence of the formation of

the salt-bridge with Glu390. Residues 285-291, adjacent to

residue Arg286 and including the catalytic residue Cys285,

also see significant increases. Also notable is residue Ser339

and residue Ser333, which are in the hydrogen bonding net-

work identified by Datta et al.

The bond-removal t1/2 ratio ∆BR identifies bonds in-

volved in the allosteric hydrogen-bonding network. In or-

der to quantify further the contribution of individual bonds to

Table 2 Residues with largest conformational ratio ∆CF for random

walks originating at residue Glu390. Residues marked with an as-

terisk appear in the hydrogen bonding network identified by Datta et

al 31.

Residue tactive
1/2

t inactive
1/2

∆CF

R286∗ 1 493 493

G287 36 729 20.25

D288 65 915 14.08

L258 2 25 12.5

S289 114 1159 10.17

S339∗ 100 930 9.3

C285 36 311 8.64

S333∗ 8 66 8.25

P290 193 1440 7.46

R240 244 1762 7.22

T334 18 127 7.06

G291 274 1672 6.10

W340 213 1265 5.94

this communication pathway, we calculate the bond removal

ratio ∆BR for a random walk originating at Glu390 with tar-

get at the active site. Table 3 shows the bonds whose removal

induce the largest increases in the characteristic transient time

t1/2. The Glu390/Arg286 salt-bridge has the largest impact,

reflecting the importance of this major pathway. Furthermore,

five of the top six bonds identified in Table 3 are formed within

residues known experimentally to have the greatest impact on

catalytic activity31 (Fig. 7a).

However, the spread of the random walk shown in Figure 6

and the high importance of bonds which do not belong to the

previously identified allosteric network points to the existence

of minor pathways between the two sites. In this respect, we

also identify four novel interactions which cause an increase in

t1/2 of a similar magnitude: Ser236/Gln283, Arg240/Asp336,

Arg341/Thr180, and Arg286/Asn337 (Fig. 7b).

Arg341 undergoes significant rearrangement between the

inactive and active conformations, transferring from the sur-

face of the protein to the substrate-binding pocket and con-

ferring selectivity on the substrate through charge-charge in-

teractions34. Interestingly, it is conserved across all human

caspases. The hydrogen bond it forms with Thr180 may be

important for stabilising its position in the substrate binding

pocket. Thr179 and Arg341 are important substrate binding

residues which provide the aspartate recognition function of

caspase-1.

Asp336 may stabilise the L3 loop (residues 332-346) in the

active conformation31. Our analysis here suggests that the

bond it forms with Arg240 is important for maintaining con-

tact with the 236-238 loop containing residue His237 and with

Arg286, which is adjacent to the catalytic residue Cys285.

However, both of these residues were found to have only a
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Fig. 6 Propagation of a random walk originating at Glu390. The probability of the random walk originating from residue Glu390 is shown

for time steps t = 0,200,500,1000. Atoms are coloured from white to red with increasing probability. The spread of the random walk in the

active structure is broader, reflecting the weaker community structure, with increased communication with the active site (circled). On the other

hand, the inactive conformation exhibits impaired communication with the active site. These images are snapshots from a video which can be

viewed online.

small effect on protein function and so it would seem that these

bonds are not crucial for maintaining the active conformation.

Gln283 is an active site residue which forms a hy-

drogen bond with a substrate sidechain34. Although the

Ser236/Gln283 hydrogen bond is conserved between confor-

mations, it is weaker in the active conformation. In the inac-

tive conformation Gln283 forms a hydrogen bond with Ser347

(not preserved in the active conformation) which serves as an

anchor point for the L2 loop containing the catalytic residue

Cys28535. Thus the weakening of the Ser236/Gln283 bond

could allow Gln283 to rearrange and the L2 loop to adopt its

catalytically competent conformation. Our analysis suggests

that the Ser236/Gln283 bond lies on a signalling pathway be-

tween the allosteric and active sites and so perturbations in-

duced by binding of the inhibitor could affect this conforma-

tional re-arrangement. Further experimental work is required

to identify whether Thr180, Gln283, or Ser236 are function-

ally significant.

Table 3 Bonds with largest bond removal ratio ∆BR for a random

walk originating at Glu390 towards the active site. Bonds marked

with an asterisk are involved in the hydrogen bonding network iden-

tified by Datta et al 31

Bond ∆BR

Arg286Hη22 : Glu390ε1∗ 1.0693

Arg286 Hη12 : Glu390 Oε1∗ 1.0602

Ser236 H : Gln283 O 1.0545

Arg286 Hη11 : Ser333 O∗ 1.0454

Ser332 Hγ : Ser339 Oγ∗ 1.0440

Ser333γ : Ser339 Oγ∗ 1.0304

Arg240 Hη11 : Asp336 Oδ1 1.0294

Arg341 Hη11 : Thr180 O 1.0264

Arg286 H : Asn337 O 1.0256
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Fig. 7 Interactions identified by their high bond removal ratio ∆BR as mediating communication between allosteric and active sites. In

(a), we show bonds with high ∆BR which are involved in the previously identified hydrogen bonding network and are known to have functional

importance. Previously unidentified interactions, which we suggest help mediate allosteric communication are shown in (b): Arg341 Hη11 :

Thr180 O, Arg341 is a crucial residue for substrate recognition; Ser236 H : Gln283 O, this bond weakens in the active form and the Gln283

sidechain rotates to bind with the substrate; Arg240 Hη11 : Asp336 Oδ1, Arg240 is adjacent to His237 which is believed to form a catalytic

diad with Cys285; Arg286 H : Asn337 O, Arg286 is in the L2 loop adjacent to the catalytic residue Cys285. In both figures, the source of the

random walk (residue Glu390) is coloured blue; the target residues in the active site are coloured green; and the residues involved in the known

hydrogen bonding network are coloured yellow.

3.4 The mutational ratio ∆MT reveals differences be-

tween active-to-allosteric-site and active-to-active-

site communication in the caspase tetramer

The previous analysis has assumed no information about the

location of the allosteric site, i.e., the location of the al-

losteric site was only used a posteriori to evaluate the out-

comes of our algorithm. If the location of the allosteric site

is known, we can integrate this information in our analysis

of signal propagation. To do this, we use the mutational

t1/2 ratio (∆MT) defined in Eq. (7), which measures the im-

pact of mutating a residue on the communication between

two sites. We have performed the computational mutagen-

esis of all residues and calculated their ∆
Act-Allost
MT for a ran-

dom walk between the active site (defined as above) and the

allosteric site (defined as the residues within 3.5Å of the al-

losteric ligand). The top residues are shown in Table 4. Four

of the key allosteric residues discussed above are identified

as having large mutational ratios ∆
Act-Allost
MT : E390 (1st), R286

(3rd), S339 (7th), and S332 (12th). We have also checked

our results againts other independent findings. In particular,

the key allosteric residues previously identified in Ref. Datta

et al. 31 (286/332/339/390) have statistically significant higher

∆
Act-Allost
MT than other residues in the protein (Wilcoxon rank

sum test p= 6.5×10−5). Furthermore, the residues with high-

est ∆
Act-Allost
MT correspond with those of highest functional im-

portance, as shown by the measured impact of the mutation on

the catalytic efficiency kcat/Km
31 (Fig. 8c).

In addition to allosteric inhibition, caspase-1 also exhibits

strong positive cooperativity between the two active sites

present in its tetramer. Recently, it has been shown that bind-

ing at one active site promotes activity at the other active-

site45, possibly due to induced dimerisation or the propaga-

tion of a conformational change. Interestingly, this coopera-

tive behaviour is not removed by mutations implicated in al-

losteric inhibition31, which suggests that cooperativity is me-

diated by a different mechanism. We have used our Markov

transient analysis to compare the active-to-allosteric site com-

munication versus the active-to-active site communication re-

lated to cooperativity between the two active sites of the cas-

pase tetramer. To study the relevant residues involved in coop-

erative behaviour we have calculated the mutational t1/2 ratios

of all residues but now for a random walk between the two ac-

tive sites, ∆
Act-Act
MT . In Figure 8, we show that the ∆

Act-Act
MT are
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Table 4 Residues with largest mutational ratio for a random walk

between between the active and allosteric sites ∆
Act-Allost
MT and be-

tween the two active sites ∆
Act-Act
MT in the caspase-1 tetramer. Residues

marked with an asterisk appear in the hydrogen bonding network

identified by Datta et al 31.

Active-Allosteric Active-Active

Residue ∆
Act-Allost
MT Residue ∆

Act-Act
MT

E390* 1.2590 R383 1.0845

C285 1.2275 E390* 1.0454

R286* 1.2169 R286* 1.0387

L258 1.1584 E378 1.0338

I282 1.0972 S339* 1.0326

F262 1.0890 C285 1.0288

S339* 1.0855 T389 1.0274

Q283 1.0767 R391 1.0262

I261 1.0737 L325 1.0253

I243 1.0683 N259 1.0244

L256 1.0678 T334 1.0194

S332* 1.0669 F439 1.0169

notably different to the ∆
Act-Allost
MT ratios obtained above for the

active-site-to-allosteric-site random walk. For instance, the

active-to-allosteric mutational ratio of E390 and R286 drops

dramatically, whilst other residues increase in importance.

The residue with largest ∆
Act-Act
MT for active-site to active-

site communication is Arg383. In Section 3.1, we found that

the strongly compartmental community structure of the in-

active conformation was weakened by mutation of Arg383.

Here we find that this residue is also important for active-site

to active-site communication. Residues forming dimer-dimer

contacts also play a significant role in communication between

the two active sites. In addition to Arg383, the residue pairs

E378/L325 and T389/R391, which form weak interactions be-

tween the two dimers in the active conformation, also have

high ∆
Act-Act
MT . This suggests that such connections are im-

portant for transmitting signals between the two active sites

and these residues could therefore play a role in transmitting

binding-induced conformational changes.

4 Conclusions

In this paper we have used two methods that exploit the tran-

sients of a Markov process diffusing on an atomistic biophys-

ical graph derived from protein structures in order to study

allosteric communication pathways. Firstly, the Markov Sta-

bility community detection method identifies differences in

the multiscale structural organisation of the active and inac-

tive structures of caspase-1. In contrast to its inactive counter-

part, the active conformation exhibits a fluid, weakly compart-

mentalised community structure with less robust partitions at

large scales. This suggests that perturbations propagate over

Fig. 8 Comparing the mutational t1/2 ratios between allosteric-

to-active-site and active-to-active-site communication. (a) The

mutational t1/2 ratio for each residue for random walks between the

active-site and allosteric-site (red) and between the two active-sites

(blue) show differences. (b) The active-site/active-site ratio ∆
Act-Act
MT

plotted against the active-site/allosteric-site ratio ∆
Act-Allost
MT : the

∆
Act-Act
MT of residues implicated in allosteric inhibition (E390/R286)

is much lower than their active-site to allosteric-site t1/2 ratio, which

suggests that these residues are less important for co-operative be-

haviour. (c) ∆
Act-Allost
MT plotted against the experimental kcat/Km ratio

(for residues with available experimental data 31): residues with large

∆
Act-Allost
MT correspond to those with greatest functional significance.

larger distances in the active conformation, due to an increase

in long-range communication pathways. Computational mu-

tational analysis identifies the bond between residues Arg383

and Asp336 as crucial for maintaining this modular organisa-

tion.

Secondly, the analysis of transients of random walks origi-

nating in the active site suggests the existence of long-range

communication pathways towards the allosteric site, which

show distinctive characteristics in the active and inactive con-

formations. We have introduced three related quantitative

criteria, the conformational, mutational, and bond-removal

t1/2 ratios, which allow us to identify the relevant bonds and

residues on these pathways by comparing the changes in their

time-dependent participation in the transient. Using the con-

formational t1/2 ratio allows us to detect a hot spot at the al-

losteric site. Many of the residues and bonds identified with
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these criteria correspond to mutations of known functional sig-

nificance. We have also found several novel interactions which

may be involved in alternative allosteric pathways. Finally, we

have used a full computational point mutagenesis to compare

the allosteric-to-active site communication versus the active-

to-active site communication in the caspase dimer and shown

that the relevant residues for allosteric pathways are distinct

from those that play a role in the communication between ac-

tive sites related to cooperativity. This agrees with experimen-

tal findings that mutation of allosteric network residues does

not affect cooperativity.

Our method is a computationally efficient method to study

the many parallel communication pathways in biomolecules

in a probabilistic setting. Measures which go beyond bi-

nary comparisons (‘present’ or ‘absent’)31 of bonds in the

active/inactive structures provide more information about the

weak interactions which mediate allosteric signals. Our tran-

sient random walk approach allows such an analysis and un-

covers bonds lying on multiple pathways between the active

and allosteric sites. Our Markov transient analysis provides

a unified understanding which brings together structural com-

munity detection and random walk pathway identification, and

therefore offers a robust way to look for candidate residues

with important structural and functional roles in proteins. In

particular, this method can be used to identify residues lying

on communication pathways between an effector site (be it al-

losteric or another active site) and the active site.
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