
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Molecular
 BioSystems

www.rsc.org/molecularbiosystems

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Molecular Biosystems 

Cite this: DOI: 10.1039/c0xx00000x 

www.rsc.org/xxxxxx 

Dynamic Article Links ►

PAPER
 

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  1 

Deciphering global signal features of high-throughput array data from 

cancers 

Deng Wu, 
a† 

Juanjuan Kang, 
a† 

Yan Huang, 
a† 

Xiang Li, 
a† 

Xiansong Wang,
a
 Dan Huang,

a
 Yuting Wang,

a
 

Bin Li,
a
 Dapeng Hao,

a
 Qi Gu,

 a
 Nelson Tang,

c
 Kongning Li,

a
 Xia Li,*

a
 Zheng Guo,*

a
 Jianzhen Xu,*

b
 and 

Dong Wang*
a 

5 

 

Normalization of array data relies on the assumption that most genes are not altered, which means that the 

signals for different samples should be scaled to have similar median or average values. However, 

accumulating evidence suggests that gene expressions could be widely up-regulated in cancers. Our 

previous results and subsequent finding have shown violation of the assumption led to erroneous 10 

interpretations of microarray data. To decipher the global signal features of microarray data from cancer 

samples, we empirically evaluated a large collection of gene and miRNA expression profiles and copy-

number variation arrays. Our results showed that, at the transcriptomic level, genes and miRNAs are 

widely over-expressed in a large proportion of cancers. In contrast, at the genomic level, global raw signal 

intensities for methylation and copy number variation show negligible differences between cancer and 15 

normal samples. These results force us to re-evaluate the proper use of normalization procedures under 

different experimental conditions and for different array platforms. 

Introduction 

High-throughput array technology is a powerful tool for 

transcriptome and genome analysis1,2,3,4,5. Gene and miRNA 20 

expression microarrays provide quantitative information about 

the population of RNA species in a cell or tissue1,6. Using 

microarrays to monitor global transcriptome expression under 

various conditions has a tremendous influence on modern 

biological research1,6. Similarly, methylation arrays and SNP 25 

technology were developed for the investigation of methylation 

status and copy number variation on a genome-wide scale, and 

they have provided insights into cancer mechanisms, biomarker 

prediction and drug target identification7,8,9,10.  

Typically, array data are subject to multiple sources of variation, 30 

including variation in the preparation of the biological sample, 

scanning effects and the characteristics of the different arrays. 

Thus, normalization is a critical initial step in data analysis1,3,4,5. 

Usually, the same number or a similar number of DNA/RNA 

molecules from each sample should be applied to each array so 35 

that the total signal intensities will be similar for each 

sample3,11,12. Researchers normalize the signal intensities across 

all arrays to have the same distribution or a similar distribution 

regardless of the disease state, under the assumption that only a 

few genes are altered by disease and that similar numbers of 40 

genes are up-regulated or down-regulated. Hence, if the cellular 

sources produce equivalent amounts of DNA/RNA molecules, 

and if the yields of the molecules and their derivatives are 

equivalent throughout the experimental manipulation, then the 

normalized expression data should produce an accurate 45 

representation of the relative levels of each gene product (Figure 

1)3,11,12. However, emerging evidence suggested that this 

commonly used assumption may not hold true in certain 

situations. Based on a previous analysis of 16 pair-matched 

cancer and normal gene expression datasets, we observed 50 

extensive increases in the microarray signals for the cancer 

samples13,14. Subsequently, Loven et al. also showed that cells 

with high levels of c-Myc can amplify their gene expression 

program, producing two to three times more total RNA and 

generating cells that are larger than their low-Myc counterparts15. 55 

Recently, we also found that gene expression may be widely up-

regulated in several non-cancerous complex diseases16. In such 

cases, normalization would distort the global data distribution and 

lead to erroneous interpretations of gene expression profiles 

(Figure 2)13,15.  60 

c-Myc is just one of the many master transcription factors 

governing the transcriptional programs in cancers17,18,19. It is 

unclear how many cancers show increased transcription and how 

often it may lead to misinterpretation of genome-wide expression 

data. More importantly, in addition to mRNA, what are the global 65 

signal features in cancers compared to normal samples for 

miRNA and copy number variations array data. These issues for 

miRNA and copy number variation array data also represent 

fundamental questions that relate to all subsequent data analysis 

and interpretation, but surprisingly, they have not been 70 

systematically analyzed. In this study, we comprehensively 

analyzed the raw global signal intensities of multiple cancer 

datasets in an unbiased collection from the NCBI GEO 

database20. Transcriptomic (gene and miRNA expression) and 

genomic (copy number variation) datasets were used. 75 

Results  
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Global over-expression in cancer gene expression data  

In previous work, our results showed that genes are extensively 

up-regulated in cancers. We observed this phenomenon in 14 of 

the 16 datasets13. Recently, we assembled an unbiased collection 

of 23 pair-matched gene expression datasets for 12 cancer types. 5 

For each of the 23 datasets, we computed the median of the raw 

signal intensities, and we compared the medians between cancer 

samples and normal samples. The medians of the raw signal 

intensities in the cancer samples was increased in 21 of the 23 

datasets; this was unlikely to happen by chance if the probability 10 

of observing a larger median in the cancer-state dataset is 0.5 in 

each independent dataset (P<0.05, binomial test). The increase in 

the median signal in the cancer samples was significant (P<0.05, 

Wilcoxon rank-sum test) in eight datasets and was marginally 

significant (P<0.1, Wilcoxon rank-sum test) in another four 15 

datasets (Supplementary Table 1).   

These results show that the raw signal intensities of cancer 

samples tend to be significantly or marginally significantly higher 

in more than half of the datasets (12/23=52%). Because of the 

low statistical power of detecting significant differences in a 20 

small set of samples21,22, we focused next on five larger datasets 

with at least 35 samples (cancer or normal), and we found that the 

percentages were increased further 4/5=80% (significantly and 

marginally significantly). Thus, the assumption that all arrays for 

a particular cancer would have the same probe intensity 25 

distribution regardless of the physiological state might be 

misleading. Common normalization methods would distort the 

global over-expression signal distribution and lead to erroneous 

interpretations of gene expression data (Figure 2 and 3)13,15.  

Global over-expression in cancer miRNA data 30 

Several commonly used normalization methods for miRNA 

expression are similar to mRNA gene profiling normalization 

approaches23,24, but the global features in cancers have not been 

investigated in detail. Using the same criteria as for gene 

expression datasets, we assembled an unbiased collection of 12 35 

pair-matched single-channel miRNA expression datasets for 8 

cancer types. The median of the raw signal intensities in the 

cancer samples was increased in 9 of 12 datasets. The increase in 

the median signal in the cancer samples was significant (P<0.05, 

Wilcoxon rank-sum test) in three datasets and marginally 40 

significant (P<0.1, Wilcoxon rank-sum test) in one dataset: 

Colon168 (P=6.7x10-7), Esophageal152 (P=1.19x10-3), 

Esophageal206 (P=1.03x10-3), Liver184 (P=6.3x10-2) (Table 1). 

If we only focus on the five largest miRNA sample datasets with 

at least 50 samples for each state (cancer or normal), the 45 

percentage is 80% (4/5=80%) (significant and marginally 

significant). Hence, the traditional normalization methods would 

again distort the global over-expression signal distribution of 

miRNA expression data (Figure 2 and 3).  

Normalization might over-normalize signals in cancer 50 

transcriptome data 

Based on the results described above, we can see that 

transcription (for both genes and miRNAs) differs greatly 

between cancer samples and normal samples. Thus, the 

underlying assumption for normalization is not satisfied. This 55 

means that normalization may over-normalize the global signal 

features in cancer transcriptome data (Figure 2 and 3). As 

illustrated in Figure 2-C, the raw signal intensities of genes in 

cancer samples were moderately significantly higher than that in 

the normal samples, but differentially expressed genes (DEGs) 60 

could not be identified after normalization. For example, as 

illustrated in Figure 3-B for the mRNA Colon34 dataset, the gene 

PABPC1L2B was moderately significantly higher (P=6.69x10-4, 

Wilcoxon rank-sum test) in terms of raw signal intensity in the 

cancer samples, but it was not identified as a DEG by RMA. 65 

Thus, this represents a false-negative result. As illustrated in 

Figure 2-D, a gene could be selected as a down-regulated 

differential gene after normalization, even though its raw signal 

intensities in the cancer samples were similar to those of the 

normal samples. Figure 3-C shows another example; the gene 70 

PRR12 had similar raw intensities in the cancer samples and the 

normal samples, but it was identified as significantly down-

regulated (P=2.06 x10-2, Wilcoxon rank-sum test) in the cancer 

samples by RMA. Thus, it represents a false-positive result. In 

addition, the expression directions of genes with moderate or low 75 

raw signal intensity differences between cancer and normal 

samples could be reversed after normalization. These results 

indicate that commonly used normalization methods might over-

normalize the data. This can cause many up-regulated 

differentially expressed genes/miRNAs to be missed, and it can 80 

lead to a non-negligible fraction of down-regulated differentially 

expressed genes/miRNAs in cancer transcriptome data. 

Effect of normalization on the expression directions of 
differentially expressed genes/miRNAs and the Pearson 
correlation coefficient distribution 85 

Next, we focused on the mRNA and miRNA datasets with 

significant increases in the raw signal intensities in the cancer 

samples. As shown in Figure 4, we compared the expression 

directions of the DEGs detected before and after normalization 

(RMA, dChip and LVS) in the mRNA colon34 dataset. Our 90 

results showed that many genes (1204, 1324, 623) were identified 

as up-regulated DEGs in the raw signal data, but these genes were 

not identified as DEGs after RMA, dChip or LVS normalization. 

Furthermore, 98% (1204/1233), 84% (1324/1575) and 99% 

(623/627) of the DEGs selected based on the raw signal data were 95 

identified as up-regulated DEGs, respectively. Similarly, as 

shown in Figure 5, 1017 and 1113 miRNAs were detected as up-

regulated differentially expressed miRNAs in the raw signal data, 

but these miRNA were not detected as differentially expressed 

miRNAs after quantile normalization or LVS in the miRNA 100 

Esophagus152 dataset. Furthermore, 100% (1017/1017) and 95% 

(1113/1166) of the differentially expressed miRNAs selected 

based on the raw signal data were identified as up-regulated 

differentially expressed miRNAs. Similar results were observed 

in the miRNA Colon168 and Esophagus206 datasets 105 

(Supplementary Figures 1 and 2). These results indicate that 

normalization may cause a large fraction of truly up-regulated 

differentially expressed genes/miRNAs to be overlooked in 

cancer samples. On the other hand, as shown in Figures 4 and 5, a 

large fraction of the genes/miRNAs in mRNA dataset Colon34 110 

and miRNA dataset Esophagus152 were identified as down-

regulated differentially expressed genes/miRNAs after 

normalization, but these genes/miRNAs were not identified as 

differentially expressed genes/miRNAs in the raw signal data. 
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This shows that RMA, quantile normalization, dChip and LVS 

can produce many false down-regulated differentially expressed 

genes/miRNAs in cancer samples. 

Due to the complexity of biological regulation, most functional 

mechanisms might be explained not by individual differentially 5 

expressed genes but by the combined effects of many moderately 

changed genes25,26. A recent trend is to construct gene co-

expression networks based on microarray data25,27,28. Thus, we 

have also compared the pair-wise Pearson correlation coefficient 

distribution before and after normalization for both the mRNA 10 

and miRNA arrays. As shown in Figure 6, in the mRNA Colon34 

dataset, 68% of genes pairs tend to be positively correlated before 

normalization, but this percentage decreases to 50%, 52% or 58% 

after RMA, dChip or LVS, respectively. Similarly, as shown in 

Figure 7, in the miRNA Esophagus152 dataset, 98% of the 15 

miRNA pairs tend to be positively correlated before 

normalization, but this decreases to 54% or 52% after quantile 

normalization or LVS. Similar results were observed for the 

miRNA Colon168 and Esophagus206 datasets (Supplementary 

Figures 3 and 4). Our results show that, before normalization, the 20 

genes pairs tend to be positively correlated, but normalization 

severely affects the signal distribution and causes that tendency to 

disappear. 

Minor differences in raw signal intensities for genomic data 
between cancer samples and normal samples 25 

For methylation and copy number variation array data, although 

some researchers normalize these data after considering the 

statistical benefit, most do not perform normalization to avoid 

systemic bias3,9. Using an unbiased collection of nine pair-

matched single-channel datasets based on SNP arrays, we found 30 

that, in eight of the nine datasets, the median raw signal 

intensities in the cancer samples were not significantly different 

from those of the normal samples. Further analysis has shown 

that, in six of nine datasets, the raw signal intensities are slightly 

increased at the 75th quantiles in the cancer samples. Only one 35 

dataset (colon188) showed a significant increase of the median 

and the 75th quantile raw signal intensities (P=1.54x10-2 and 

2.44x10-2, respectively) (Table 2). Similarly, our previous results 

also demonstrated that, in all of the eight analyzed methylation 

datasets, the median raw signal intensities in the cancer samples 40 

were not significantly different (P>0.05) from those of normal 

samples. Further analysis indicated that slightly more genes were 

hypomethylated in the cancer samples compared to the normal 

tissues around the 75th quantile29. These results suggest that, 

except for colorectal cancer, normalization algorithms may have 45 

more positive effects by reducing technical variations compared 

to the negative effects that remove biological signals of 

methylation or copy number variation in array data. 

Discussion  

Our results show that cancer tissue samples tend to show elevated 50 

intensities in most pair-matched cancer and normal expression 

datasets (21 of 23). Similar results were also observed for 

miRNA expression datasets (9 of 12). Notably, these samples 

were taken from a variety of cancer types and were produced by 

different laboratories around the world. Thus, this phenomenon is 55 

not likely to be limited to cancers overexpressing c-Myc. Rather, 

the up-regulation of mRNA and miRNA products is a general 

feature of cancer cells. Alterations of many essential cellular 

functions, which are referred to as cancer hallmarks, collectively 

dictate malignant growth for almost all human cancers30,31, so 60 

gene expression could be globally changed in cancer, as 

evidenced by the fact that we often detect thousands of 

differentially expressed genes in comparisons of cancer samples 

with normal controls13,32. On the other hand, the global raw signal 

distributions of genomic array datasets, such as datasets for 65 

methylation or copy number variation, show little difference 

between cancer and normal samples. This is perhaps because both 

DNA hypomethylation and hypermethylation have been 

associated with carcinogenesis in numerous investigations33,34. 

Similarly, there are both gains and losses of copy number that 70 

occur in cancer genomes35,36. Thus, the global raw signals of 

genomic data may follow similar distributions in both cancer 

samples and normal samples. 

These results have great implications for cancer biology. First, we 

suggest that, at least for cancer microarray data, it is better to 75 

compare the raw global signal distributions between cancer and 

normal samples, as was done in this study. This critical quality 

control step will enable proper use of normalization methods and 

more accurate interpretation of array data. Second, when there is 

the potential for global signal changes in transcriptome data, 80 

conventional normalization methods should be used with caution 

because such analyses are based on an unreliable assumption and 

may actually distort the biological signals. This may cause more 

harm than good during the biological analysis of array data. 

However, in genomics analyses (methylation and copy number 85 

variation data), the situation is very different. Our results show 

that the current practice of avoiding normalization for these types 

of arrays may represent an over-abundance of caution. In fact, 

normalization for these arrays can increase the power of detecting 

differentially methylated sites and SNP changes among many 90 

weak and complicated signals. Based on our analysis, we 

encourage the use of normalization when analyzing genomic 

array data, but we advise against using normalization uncritically 

for the analysis of transcriptome data. Finally, we think it is 

important to comprehensively evaluate the effects of 95 

normalization procedures on the subsequent bioinformatics 

analysis of array data, especially for cancer datasets. For 

example, if our goal is to find a small number of significant 

biomarkers for disease diagnosis37, normalization might have less 

of an influence on the results because the most significant 100 

differentially expressed genes/miRNAs tend to remain significant 

after normalization (Figure 2-B, Figure 3-A). However, as our 

results demonstrated, global over-expression of genes/miRNAs in 

cancers may lead to erroneous conclusions about the underlying 

cancer mechanism if normalization is used (Figure 2-C and D, 105 

Figure 3-B and C, Figure 4-7)13,15, especially for the expression 

directions of differentially expressed genes/miRNAs and the 

Pearson correlation coefficient distribution. Finally, we suggest 

that, at least for transcriptome data from cancer studies, a critical 

initial step is to evaluate the differences in raw global signal 110 

distribution between cancer and normal samples. Additionally, 

the use of spike-in controls, as suggested by Loven et al.15 and 

others38,39,40, may be a useful, robust, cross-platform quality 

control method to enable more accurate detection of cancer-
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associated genes/miRNAs in transcriptome data. Furthmore, we 

should pay more attention towards optimizing experimental 

designs and stringently randomizing potential experimental 

artifacts across biological groups, use of sufficient sample sizes, 

more conducive to probe hybridization and developing the novel 5 

normalization strategy for transcriptome data may also help for 

the solution of this problem in cancer studies. 

Methods 

High-throughput omics datasets and signal 
intensities 10 

We specifically selected pair-matched datasets in which the 

normal samples were taken from the same subjects as the cancer 

samples, so that the effects of certain variables would be 

eliminated, such as familial effects, individual effects and 

environmental differences13. Using the NCBI GEO database20 for 15 

gene expression datasets, we obtained an unbiased collection of 

23 pair-matched Affymetrix single-channel datasets for 12 cancer 

types. Each dataset had to include at least 10 samples for each 

state (cancer and normal). Similarly, we collected a total of 12 

pair-matched single-channel miRNA datasets for 8 cancer types. 20 

High-density SNP arrays provide a robust, effective method for 

detecting and analyzing genomic copy number variation41,42, so 

we also collected 9 pair-matched single-channel datasets for 6 

cancer types. All of the datasets that were analyzed in this study 

are described in Table 3.  25 

For the raw signal intensities of the high-throughput omics data in 

.cel format, we only used the PM intensities to represent “signal 

intensity” because it has been shown that ignoring the MM values 

is preferable for background correction43,44. For .txt and .gpr 

format data, the background intensities were subtracted from the 30 

raw signal intensities to obtain the final signal intensities.  

Normalization algorithms and identification of 
differentially expressed genes 

In this work, RMA44, quantile45 and dChip46 normalization 

algorithms were used for the mRNA and miRNA data. These 35 

normalization methods are based on the traditional assumption 

that only a few genes are altered by disease status and that the 

numbers up- and down-regulated genes are similar. Furthermore, 

we analyzed another algorithm (LVS)47,48 that relies less on this 

assumption. SAM (significance analysis of microarrays)49 was 40 

used to identify DEGs in cancer samples with an FDR control 

level of 0.05. 
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Figure legends: 40 

 

Fig. 1 An illustration of how normalization affects data 

interpretation when global signals are comparable between two 

states. The yellow and blue samples represent different 

conditions. The common assumptions for normalization are 45 

reasonable if similar global signal distributions are seen in the 

different conditions. In such cases, normalization has little 

influence on the interpretation of expression data. 

 

Fig. 2 An illustration of how normalization affects data 50 

interpretation when global raw signals are significantly different 

between two states. (A) The yellow and blue samples represent 

cancer samples and normal samples with large differences in 

signal patterns. The signal intensities were normalized across all 

arrays to have the same distribution. (B) A gene shows strong up-55 

regulation in cancer samples in the raw signals. Though 

normalization may reduce the size of the difference, this gene 

could be still selected as a differential up-regulated gene after 

normalization. (C) A gene shows moderate up-regulation in 

cancer samples in the raw signals. After normalization, it cannot 60 

be identified as a differentially expressed gene. (D) A gene shows 

little difference in expression between cancer samples and normal 

samples in the raw signals. After normalization, it may be 

identified as a differential down-regulated gene. 

 65 

Fig. 3 Effects of RMA normalization on expression directions in 

the mRNA colon34 dataset. 

 

Fig. 4 Normalization may change the expression directions of 

DEGs in the mRNA Colon34 dataset. The overlap-consistent area 70 

represents the intersection of the sets of DEGs selected before 

and after normalization that have the same expression direction. 

Overlap-inconsistent represents the intersection of DEGs selected 

before and after normalization that have inconsistent expression 

directions. Non-overlap-up represents the set of up-regulated 75 

genes among DEGs that were selected only before or only after 

normalization. Non-overlap-down represents the set of down-

regulated genes among DEGs that were selected only before or 

only after normalization. 

 80 

Fig. 5 Normalization may change the expression directions of 

differentially expressed miRNAs in the miRNA Esophagus152 

dataset. Overlap-consistent represents the set of miRNAs that 

have the same expression direction within the intersection of the 

sets of differentially expressed miRNAs selected before and after 85 

normalization. Overlap-inconsistent represents the set of miRNAs 

that have inconsistent expression directions within the 

intersection of the differentially expressed miRNAs selected 

before and after normalization. Non-overlap-up represents the up-

regulated miRNAs among the differentially expressed miRNAs 90 

that were selected only before or only after normalization. Non-

overlap-down represents the down-regulated miRNAs among 

differentially expressed miRNAs that were selected only before 

or only after normalization. 

 95 

Fig. 6 The density distributions of pair-wise Pearson correlation 

coefficients before and after normalization of the mRNA colon34 

dataset.  

 

Fig. 7 The density distributions of pair-wise Pearson correlation 100 

coefficients before and after normalization of the miRNA 

Esophagus152.  
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Tables: 

 

Table 1 Comparison of the median raw signal intensities of miRNA expression in cancer samples and normal samples. 

Dataset GSE ID Median of Cancer Median of Normal P value 

Colon168 GSE7828 5.95 5.70 6.70E-7 

Bladder20 GSE39093 6.01 5.98 0.92 

Esophagus32 GSE16456 3.75 3.61 0.60 

Esophagus152 GSE13937 4.09 3.91 1.19E-3 

Esophagus206  GSE6188 7.63 7.32 1.03E-3 

Gastric56 GSE23739 5.73 5.72 0.77 

Liver146 GSE21362 5.78 5.78 0.38 

Liver184 GSE22058 7.51 7.37 0.063 

Lung54 GSE14936 4.67 4.52 0.29 

Prostate40 GSE23022 4.97 5.01 0.18 

Prostate56 GSE21036 6.01 6.01 0.34 

Renal30  GSE41282 5.51 5.54 0.39 

Note: Median of Cancer represents the median of the raw signal intensities in the cancer samples. Median of Normal represents the 15 

median of the raw signal intensities in the normal samples. P value represents the P value of the medians between cancer and normal 

samples according to the Wilcoxon rank-sum test.  

 

Table 2 Comparison of the medians and 75th quantile values of raw signal intensities for copy number variation data in cancer samples 

and normal samples. 20 

Dataset GSE ID 
Median 75th quantile 

Cancer Normal P value Cancer Normal P value 

Colon188 GSE11417 11.17 10.89 0.015 11.56 11.54 0.024 

Gastric166 GSE31168 8.30 8.48 0.22 8.92 8.73 0.29 

MDS58 GSE31174 8.61 8.75 0.63 9.02 9.00 0.43 

Prostate36  GSE29569 8.26 8.52 0.72 8.92 8.77 0.54 

Prostate40Nsp  
GSE12702 

7.47 7.13 0.32 8.01 7.63 0.36 

Prostate40Sty  7.86 7.67 0.35 8.19 7.92 0.38 

Prostate76  GSE18333 8.75 8.77 0.95 9.24 9.38 0.68 

Sarcoma410  GSE25540 6.67 6.83 0.20 7.54 7.65 0.37 

Renal44 GSE21123 9.24 9.53 0.53 9.59 9.80 0.65 

Note: Median of Cancer represents the median of the raw signal intensities in the cancer samples. Median of Normal represents the 

median of the raw signal intensities in the normal samples. The 75th quantile of cancer is the 75th quantile value of the raw signal 

intensities in the cancer samples. The 75th quantile of normal is the 75 quantile value of the raw signal intensities in the normal samples. 

P value: the P value of the medians/75th quantiles between cancer and normal samples according to the Wilcoxon rank-sum test.  
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Table 3 The high-throughput omics datasets analyzed in this study. 

mRNA                GSE ID miRNA                 GSE ID 

Breast22 GSE10780 Bladder20 GSE39093 

Breast24 GSE16873 Colon168 GSE7828 

Colon34 GSE18105 Esophagus32 GSE16456 

Colon64 GSE8671 Esophagus152 GSE13937 

Esophagus24 GSE29001 Esophagus206 GSE6188 

Esophagus34 GSE20347 Gastric56 GSE23739 

Esophagus106 GSE23400 Liver146 GSE21362 

Gastric24 GSE19826 Liver184 GSE22058 

Gastric62 GSE13911 Lung54 GSE14936 

Hnc44 GSE6631 Prostate40 GSE23022 

Liver20 GSE29721 Prostate56 GSE21036 

Lung54 GSE7670 Renal30 GSE41282 

Lung60 GSE31552 Copy number variation 

Lung66 GSE10072 Colon188 GSE11417 

Lung88 GSE18842 Gastric166 GSE31168 

Otscc24 GSE9844 Mds58 GSE31174 

Otscc40 GSE13601 Prostate36  GSE29569 

Pancreatic30 GSE16515 Prostate40Nsp 
GSE12702 

Pancreatic78 GSE15471 Prostate40Sty 

Pancreatic90 GSE28735 Prostate76  GSE18333 

Prostate116 GSE6919 Renal44 GSE25540 

Ptc40 GSE29265 Sarcoma410  GSE21123 

Renal20 GSE6344   

Note: Each dataset is denoted using the following nomenclature: cancer type is followed by the total number of samples. Profiles of copy 

number variation datasets (GSE12702) were generated on two Affymetrix platforms (Affymetrix Mapping 250K Nsp/Sty SNP Array). 
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