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Bayesian network and linear regression have been widely applied to reconstruct cellular 
regulatory networks. In this work, we propose a Bayesian Model Averaging for Linear 
Regression (BMALR) method to infer molecular interactions in biological systems. This 
method uses a new closed form solution to compute the posterior probabilities of the edges 
from regulators to the target gene within a hybrid framework of Bayesian model averaging and 
linear regression methods. We have assessed the performance of BMALR by benchmarking on 
both in silico DREAM datasets and real experimental datasets. The results show that BMALR 
achieves both high prediction accuracy and high computational efficiency across different 
benchmarks. A pre-processing of the datasets with the log transformation can further improve 
the performance of BMALR, leading to a new top overall performance. In addition, BMALR 
can achieve robust high performance in community predictions when it is combined with other 
competing methods. The proposed method BMALR is competitive compared to the existing 
network inference methods. Therefore, BMALR will be useful to infer regulatory interactions 
in biological networks. A free open source software tool for BMALR algorithm is available at 
https://sites.google.com/site/bmalr4netinfer/. 
	
  

Introduction 
With advances of high-throughput experimental technologies, 
plenty of network inference methods have been developed to 
identify regulatory interactions in cellular networks from 
quantitative experimental data. These network inference 
methods are becoming increasingly important in the field of 
systems biology to address many biological problems. 
Examples of network inference approaches include Bayesian 
networks1-5, mutual information6-8, linear regression9-11, 
ordinary differential equations12, 13 and statistical test14, 15. 
Among these approaches, Bayesian network has become 
popular due to the following reasons: (1) Bayesian network 
uses the probability theory, which is suitable for dealing with 
noise in biological data. (2) The prior knowledge of molecular 
interactions from literature or curated databases can be well 
encoded in the prior distribution structure of Bayesian network. 
In addition, linear regression based methods are also widely 
used in biological network inference due to their high 
computational efficiency. 
A Bayesian network is a graphical model that describes 
probabilistic relationships between network variables. Such 
relationships are encoded within the structure of a directed 
acyclic graph. To infer the interactions of network variables, 
one strategy is to find a directed acyclic graph that most likely 
generates observed experimental data, which is assumed to be a 

steady data set for static Bayesian networks. This is performed 
by evaluating each possible graph with a score-based approach 
in the Bayesian context and subsequently search for the graph 
that maximizes the score16. The score function is defined with 
two common probabilistic models: linear Gaussian models and 
multinomial models3. However, it is a computationally 
laborious problem to evaluate all possible graphs that 
correspond to all possible interactions and choose the best 
scoring graph17, 18. To address this problem, heuristic search 
methods (e.g.: the greedy-hill climbing approach) were 
proposed5. On the other hand, given limited amounts of data, a 
variety of graph structures may describe the data similarly well. 
Therefore, network-averaging strategy was proposed to find the 
consensus interactions present in most of the high-scoring 
graphs5, 19.  
To improve the computational efficiency of network 
reconstruction, a decomposition technique is applied in 
regression-based methods. The inference of regulatory 
interactions targeting all N genes is decomposed into N 
independent sub-problems by inferring the interactions from 
regulators to a single target gene. Linear regression models 
have been proposed to solve these sub-problems. One popular 
method uses singular value decomposition to construct a set of 
candidate networks that match the observed data sets and 
regression approaches are employed afterwards to choose the 
most likely solution20-22. Another widely-used linear regression 
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algorithms is Lasso (Least Absolute Shrinkage and Selection 
Operator)23, which uses L1-norm regularization to efficiently 
select a parsimonious set of regulators for each target gene. 
Different Lasso derived methods have been developed, which 
include LARS24, GLASSO10 and Inferelator25, 26.  
The combination of Bayesian network and linear regression 
could be a good strategy for the inference of cellular networks 
as it can take advantage of the strengths from both methods. For 
example, Rogers et al.27 proposed a Bayesian regression 
method to reconstruct regulatory networks from gene 
expression data with a fast Sparse Bayesian regression 
algorithm of Tipping and Faul27. This method does not require 
the discretization of data and requires no setting of heuristic 
threshold for the predicted interactions. Moreover, Bayesian 
model averaging method integrated in a regression context has 
been applied to inferring regulatory network from time series 
data28-30. These studies have shown the advantages of Bayesian 
network methods in incorporating prior knowledge and the 
computational efficiency of regression approaches.  
In this work, we developed a new method that uses Bayesian 
model averaging for linear regression (BMALR) to infer 
cellular regulatory networks. In this method, we applied a new 
closed form solution to calculate the posterior probabilities of 
the edges from putative regulators to the target gene, which 
leads to high computational efficiency and high prediction 
accuracy. We assessed this new method by benchmarking with 
in silico datasets from the DREAM (Dialogue on Reverse 
Engineering Assessment and Methods) project31-34 and the 
datasets of real experiments. The results indicate that our 
method BMALR is competitive in terms of prediction accuracy 
and computational efficiency when it is compared to the best 
existing methods. The log transformation of datasets can further 
improve the performance of BMALR.  In addition, we 
evaluated the performance of community predictions34 with and 
without BMALR on DREAM benchmarks. The community 
prediction methods with BMALR can achieve robust high 
performance, which suggests that BMALR has a 
complementary advantage in community predictions. 

Methods 
The proposed method BMALR integrates Bayesian model 
averaging method with linear regression approach. In general, 
BMALR implements linear regression of the data of the target 
node on all combinations of other nodes. The final score of the 
edge from a parent node to the target node is the sum of the 
posterior probability of the linear regression models that 
contain this edge.  
In the following sections, we introduce more technical details 
about Bayesian model averaging and a new close form solution 
for calculating the likelihood of each local structure in Gaussian 
Bayesian network. At the end, the datasets, performance 
metrics and network inference methods used for comparison are 
described. 

Bayesian model averaging 

To infer regulatory interactions in cellular networks, one way is 
to find the Bayesian network structure G that best explains the 
data. This is normally achieved by maximizing the likelihood of 
the observed dataset generated from the network structure G 
(maximum likelihood) or the posterior probability of the 
structure G given the observed data (maximum a posteriori).  
However, given a limited number of observed datasets, many 
Bayesian network models may explain the data almost equally 

well. It would be risky to make an inference on the interactions 
of network variables depending on a single optimized Bayesian 
network structure5, 19.  
Instead of searching for the best Bayesian network structure, 
Bayesian model averaging was proposed to find the edge 
features (f) that are present in most high-scoring Bayesian 
network structures5, 19. An edge feature (f) is the edge relation 
feature between network variables Xi and Xj in a Bayesian 
network structure (G). Such a feature can be quantified with the 
posterior probability of f: 

 P( f |D) = f (G)P(G |D)
G
∑  (1) 

This probability shows our confidence in edge feature f given 
the observed dataset (D). If the Bayesian network structure G 
contains f, f(G) equals to 1, otherwise 0.  
As the number of candidate network structures increase 
exponentially with the number of node variables, it is not 
feasible to exactly compute Equation 1 from all possible 
candidate networks.  

Local model averaging for linear regression 

In order to have an efficient and accurate estimate for posterior 
probability of the edge feature, the global network is 
decomposed into a set of local networks27, 28. Each local 
network is composed of one target variable and its possible 
parents (regulators). The local network can be reconstructed by 
model averaging with the local structures composed of all the 
possible parent sets of a target variable19, which is similar to the 
local learning approach based on the Markov blanket35. Here 
we model the local structures with a weighted linear 
combination of the values of its parents: 

 Xi = wji X j +εi
j≠i
∑  (2) 

where Xi is the value of variable i. wji is a weight constant 
representing the influence of variable j to variable i. If wji is 
zero, there is no edge from j to i in the regulatory network. If wji 
is non-zero, j is one of i’s regulators (parents). εi denotes the 
noise.  
The posterior probability of each edge is the sum of posterior 
probabilities of all the putative local structures containing the 
edge. This leads to the following approximation (in comparison 
with Equation 1) for posterior probability of an edge feature f: 

 P( f |D) ≈ f (GPa )P(GPa |DPa,Xi )
Pa∈Si

∑  (3) 

where the node Xi is the target of the edge feature f.  Si is the set 
of all possible parent sets of Xi. GPa is a local structure that is 
composed of the edges from the nodes in Pa, a parent set of 
node Xi. DPa,Xi denotes the data restricted to Xi and the node 
variables in Pa. If the local structure GPa contains f, f(GPa) 
equals to 1, otherwise 0.  
Based on Bayes theorem, Equation 3 can be written as: 

 

P( f |D) ≈ f (GPa )P(GPa |DPa,Xi )
Pa∈Si

∑

             =
f (GPa )P(DPa,Xi |GPa )P(GPa )

Pa∈Si

∑

P(DPa,Xi |GPa )P(GPa )
Pa∈Si

∑

 (4) 
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where P(GPa) is the prior probability of structure GPa. For simplicity, 
we can assume that cardinalities of parent sets are uniformly 
distributed, meaning P(GPa) ≡ 119. Here, we set a restriction on the 
maximum cardinalities of parent sets (denoted as maxFanIn) in order 
to reduce the computation cost. This strategy has been applied before 
in other Bayesian learning approaches3, 36. In this paper, we set the 
default value of maxFanIn as 2. It is worth noting that the inference 
results are not sensitive to the value of maxFanIn29, which is shown 
in the part of results and discussion. 

Probability in Gaussian Bayesian network 

To calculate P(DPa,Xi|GPa), the likelihood that the local structure 
GPa generates the data DPa,Xi, we assume that the noise term in 
the linear regression models (εi in Equation 2) follows 
multivariate normal distribution. As a result, variable i and its 
regulators Pa will be in multivariate normal distribution, which 
is corresponding to a Gaussian Bayesian network37, 38. In 
Gaussian Bayesian network, we can compute the likelihood that 
the local structure GPa generates the data DPa,Xi as37, 38: 

 P(DPa,Xi |GPa ) =
ρ(DPa,Xi )
ρ(DPa )

 (5) 

Assuming a normal-Wishart prior in the Gaussian Bayesian 
network, the probability density of data, ρ(DPa,Xi) and ρ(DPa) 
can be approximated with the following formula.  

 ρ(DW )∝ E
(W ) +M ⋅R(W )

−lW −M
2  (6) 

where W is a set of variables (e.g.: for the calculation of ρ(DPa), 
W = Pa). lW is cardinalities of W. E(W) is a lW-by-lW identity 
matrix. R(W) is the lW-by-lW Pearson correlation matrix of DW. M 
is the sample size. 
The derivation of above equations and other technical details 
for calculating probability density of data are provided in the 
Supplementary Text. 

Datasets 

We evaluated the proposed method with a variety of datasets: 
(1) The in silico benchmark data from DREAM4 "in silico 
network challenge" and DREAM 5 "network inference 
challenge", which are available at 
http://wiki.c2b2.columbia.edu/dream/index.php/Challenges. (2) 
The real experimental data obtained in single cell flow 
cytometry experiments4, which measured the expression level 
of 11 signaling molecules in T-cell signaling network upon 
various interventions.  

Performance metrics 

To assess the performance of BMALR and previous network 
inference methods, we used a number of performance metrics, 
which include the area under the precision-recall (AUPR) and 
receiver operating characteristic (AUROC) curves, the F-
score39, empirical p-values of AUPR and AUROC for the 
DREAM project benchmarks34, as well as the  p-value of the 
one-sided Fisher's exact test40.  
To compute AUPR and AUROC metrics, we counted true 
positive (TP), false positive (FP), true negative (TN), and false 
negative (FN) by comparing the inferred network with gold 
standard networks at a certain threshold setting. Accordingly, 
true positive rate (TPR, or recall), positive predictive value 

(PPV, or precision), false positive rate (FPR) are calculated. 
Then the values of AUPR and AUROC were calculated by 
creating the precision-recall curve (PR curve) and receiver 
operating characteristic curve (ROC curve) at various threshold 
settings.  
The F-score is defined as:  

 F = 2 ⋅ PPV ⋅TPR
PPV +TPR

 (7) 

The p-value of the one-sided Fisher's exact test is defined as: 

 p =1−

Np
i

"

#
$
$

%

&
'
'

Nt − Np
NTP + NFP − i

"

#

$
$

%

&

'
'

Nt
Np

"

#
$
$

%

&
'
'

i=0

TP−1

∑  (8) 

where Np is the number of edges in gold standard network. Nt 
is the maximum number of possible edges in the network. Nt = 
n(n-1) for a directed network with n nodes (excluding self-loop 
edges). NTP and NFP are the number of true positive and false 
positive edges in the inferred network, respectively. This p-
value represents the probability to obtain no less than NTP true 
positive edges by randomly selecting Np edges. The p-value of 
the one-sided Fisher's exact test is useful for the evaluation of 
inference methods on small networks. 

Log transformation of data 

To test whether the preprocessing of datasets can improve the 
performance of BMALR, we applied log transformation to 
reduce the positive skew of the data so that the distributions of 
transformed datasets are similar to normal distributions. We 
first check the skewness of the variable X. If the distribution of 
variable X is positively skewed, log transformation is applied as 
the following41: a constant C is added to X, then an optimization 
procedure is applied to obtain an optimal C that makes the 
nonparametric skew of log(X+C) as close to zero as possible. 

Network inference methods used for comparison 

We compared the proposed BMALR method with 5 popular 
network inference methods: (1) GENIE342 based on feature 
selection with decision tree. GENIE3 was the winner of both 
DREAM4 and DREAM5 network inference challenges. (2) 
CLR7 based on mutual information with background correction. 
(3) ARACNE43, 44 based on mutual information with data 
processing inequality. (4) The PC-algorithm in PCALG 
package. We implemented pcSelect in PCALG package45, 46, a 
simplified PC-algorithm with variable selection. (5) The 
regression based method, LARS (Least Angle Regression)24. 
(6) Bayesian model averaging method using Markov Chain 
Monte Carlo sampling (denoted as MCMC)19, 47. We ran these 
tools with their default settings. 

Results and discussion 

Performance on DREAM4 in silico size 100 multifactorial sub-
challenge 

The aim of DREAM4 in silico size 100 multifactorial sub-
challenge is to infer the structures of five gold standard 
networks from given in silico gene expression datasets that are 
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simulated by 100 multifactorial perturbations of all the genes 
simultaneously32, 33.  The five gold standard networks have 100 
components (genes) and they have 176, 249, 195, 211 and 193 
gold standard links, respectively. The performance metrics of 
our method (BMALR) and other applied inference methods for 
this sub-challenge is given in Table 1. The results show that 
BMALR obtained the highest overall score among all the 
applied network inference methods. More specifically, BMALR 
achieved the highest AUPR and AUROC scores in four 
networks and the second-highest scores in one network. The 
individual PR and ROC curves of the inference methods on 
each network are available in Supplementary Figure 1-2. The 

overall performance of BMALR is slightly better than GENIE3, 
which was the winner of this sub-challenge.  
Gaussian Bayesian models assume the datasets of variables 
have normal distributions. However, if the datasets of the 
variables have highly skewed distributions, the assumption of 
normal distribution of the data would be invalid. To deal with 
the skewed data, we applied the log transformation for the 
datasets41 and tested whether such a strategy could improve the 
performance of BMALR. As it is shown in Table 1, a 
preprocessing of the datasets with the log transformation 
improves the performance of BMALR (16% increase of overall 
score in this benchmark).  

Table 1    Performance metrics of inference methods on DREAM4 in silico size 100 multifactorial sub-challenge. The bold 
numbers indicate the best value in each performance metric. BMALR* denotes the results of BMALR with the log transformation 
of the datasets. 

Method 
NET1 NET2 NET3 NET4 NET5 

Score 
Time 
(second) AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC 

BMALR 0.155 0.745 0.166 0.737 0.231 0.792 0.234 0.808 0.214 0.778 39.4 1.8E+00 
GENIE3 0.154 0.745 0.155 0.733 0.231 0.775 0.208 0.791 0.197 0.798 37.4 3.5E+01 

CLR 0.157 0.733 0.137 0.693 0.199 0.745 0.185 0.738 0.192 0.737 31.6 2.1E-01 
ARACNE 0.145 0.690 0.129 0.688 0.186 0.742 0.167 0.721 0.152 0.750 28.6 1.7E+00 
PCALG 0.134 0.714 0.109 0.663 0.200 0.712 0.166 0.702 0.184 0.725 27.1 3.2E+00 

LARS 0.136 0.619 0.123 0.619 0.205 0.673 0.206 0.656 0.209 0.644 25.7 2.0E+01 

BMALR* 0.213 0.772 0.188 0.746 0.274 0.799 0.257 0.812 0.242 0.810 45.7 1.8E+00 

 

Fig. 1    PR and ROC curves of different methods for DREAM5 in silico sub-challenge. BMALR* denotes the results of BMALR 
with the log transformation of the datasets. (A) Precision-recall (PR) and (B) Receiver operating characteristic (ROC) curves. 

Performance on DREAM5 network inference sub-challenge 

To evaluate the performance of BMALR method on predicting 
the interactions of large networks, we compared BMALR with 
other methods by applying them to the DREAM5 network 
inference sub-challenge with the dataset simulated from an in 
silico network, which has 1643 genes, 195 transcription factors 
(TFs) and 805 chips. The top 100,000 edge predictions are used 
for the DREAM5 evaluation34. In silico DREAM5 network 
model assumes that the mRNAs are directly translated into 
proteins without any further regulations. The simulated data for 
TFs’ protein abundances are highly correlated with 
corresponding mRNA abundances data. Therefore, we use TFs’ 
mRNA abundances as proxies for their protein abundances. 

Table 2 shows the performance metrics of BMALR and other 
inference methods on the DREAM5 network inference sub-
challenge. The results indicate BMALR obtained the best 
performance with the highest AUPR score and the second 
highest AUROC score, as well as best optimal F-score. The log 
transformation of datasets can further increase the performance 
of BMALR, leading to a best overall performance.  
According to the individual PR and ROC curves of the 
inference methods in this benchmark (Figure 1), BMALR tends 
to have higher precision than other methods at low recalls in the 
PR curve, while the ROC curve profile of BMALR is almost 
the same as GENIE3. In addition, it is worth noting that the 
computational cost of BMALR in this sub-challenge is much 
less than other competitive methods such as GENIE3, PCALG 
and ARACNE (Table 2).  
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Fig. 2    PR curve and ROC curve for T-cell signaling network. (A) PR curves (B) ROC curves 

Table 2    The performance metrics of inference methods on 
DREAM5 network inference sub-challenge with in silico 
dataset. The bold numbers indicates the best values among all 
methods. BMALR* denotes the results of BMALR with the log 
transformation of the datasets. 

Method AUPR AUROC 
Optimal 
F-score 

Time 
(second) 

BMALR 0.320 0.809 0.372 1.3E+02 
GENIE3 0.291 0.815 0.346 1.2E+04 

CLR 0.266 0.786 0.332 4.1E+02 
ARACNE 0.192 0.771 0.280 2.5E+04 
PCALG 0.265 0.714 0.340 7.0E+03 
LARS 0.263 0.726 0.353 5.0E+02 

BMALR* 0.362 0.815 0.403 1.3E+02 

Table 3    The performance metrics of inference methods on 
the benchmark of T-cell signaling network. The bold numbers 
indicates the best values among all methods.   

Method AUPR AUROC 
Optimal 
F-score 

p-value of 
Fisher’s exact 

test 

Time 
(second) 

BMALR 0.343 0.720 0.500 2.70E-04 1.3E-01 
GENIE3 0.304 0.607 0.462 1.14E-03 3.7E+02 

CLR 0.344 0.666 0.450 1.86E-03 2.3E-01 
ARACNE 0.372 0.709 0.481 5.39E-04 2.7E+02 
PCALG 0.300 0.558 0.450 1.86E-03 1.9E+00 
LARS 0.275 0.585 0.313 4.09E-02 8.6E-01 

MCMC 0.391 0.632 0.500 1.97E-04 3.8E+02 

Performance on the benchmark of T-cell signaling network with 
real experimental data 

In this section, we evaluated the performance of BMALR and 
other methods on the benchmark of T-cell signaling network 
with 11 components and 20 interactions. The experimental data 

consists of 11 phosphorylated T-cell signaling molecules under 
9 perturbation conditions, which were simultaneously measured 
with single cell flow cytometry4. We first applied z-score 
normalization for each dataset, so that all the proteins have a 
mean of 0 and a standard deviation of 1. 
The results shown in Table 3 suggest that BMALR is among 
the top performing approaches, with the highest AUROC score. 
The optimal F-score of BMLAR is the same as that obtained 
with Bayesian model averaging method using Markov Chain 
Monte Carlo sampling (MCMC)19, 47. The individual PR and 
ROC curves of each network inference method on this 
benchmark are shown in Figure 2.  

 
Fig. 3    The predicted T-cell signaling networks with top 20 
edges by (A) BMALR and (B) MCMC network inference 
method, respectively.  

Figure 3 shows the networks predicted by the top 2 performing 
methods (BMALR and MCMC), which have the same number 
of edges as the gold standard network derived by Sachs et al.4. 
The two predicted networks are very similar. They have only 2 
different edges: MCMC predicted network has a false edge 
pJNK→PKC that is not shown in the predicted network by 
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BMALR and a true positive edge MEK→ERK is missed in 
MCMC predicted network, while it is present in the predicted 
network by BMALR. Interestingly, most of the false positive 
edges in the two predicted network have correct pairs of 
molecular interactions, but the directions of these false positive 
edges are wrong, which indicates that both BMALR and 
MCMC methods are difficult to determine the directions of 
molecule interactions in this benchmark. 

Similarity of predictions from different inference methods 

Recent work has shown that different network inference 
methods provide different predicted interactions on the same 
regulatory system. To address this problem, it was proposed to 
make community predictions by integrating the results from 
multiple inference methods because limitations of different 
methods tend to be cancel out33, 34. Therefore, it is important to 
investigate the similarity and difference of the predictions from 
different network inference methods15, 34. 
In order to compare the overlap and the difference of predicted 
interactions between our method and others, we compared the 
binary networks from each method at a certain cutoff, which is 
set to ensure that the binary networks generated from each 
method have the same number of edges (4012 edges for the 
DREAM5 sub-challenge) with the gold standard network. To 
quantify the similarity between the predictions of different 

methods, we performed single linkage cluster analysis48 with a 
distance metric based on spearman correlations of the ranks of 
predicted edges from each method. As shown in Supplementary 
Figure 3, the interactions predicted by our method BMALR are 
most similar to those predicted by LARS and PCALG. This 
could be explained by the fact that linear regression is used in 
BMALR, PCALG and LARS. 
To test whether BMALR could help to achieve higher 
performance by making community predictions with other 
individual network inference methods, we performed 
community predictions with combinations of every two 
individual methods for gold standard network 1 (NET1) of 
DREAM4 in silico size 100 multifactorial sub-challenge 
following the approach proposed by Marbach et al.34. As shown 
in Figure 4, community methods with BMALR can achieve 
robust high performance in the predicted networks. Similar 
high performance of community methods with BMALR is 
obtained with the application for other gold standard networks 
of DREAM4 sub-challenge (Supplementary Figure 4). In all the 
cases, the highest performance predictions were obtained in the 
community predictions with the combination of BMALR plus 
other competition methods such as CLR, GENIE3 and 
ARACNE. These results suggest that BMALR is 
complementary to other inference methods and could be a good 
candidate method for community predictions. 

 
Fig. 4    The performance (area under precision-recall curve, AUPR) of individual methods and community methods with 
combinations of every two individual methods for gold standard network 1 (NET1) of DREAM4 in silico size 100 multifactorial 
sub-challenge. The dashed horizontal line denotes the highest performance level in all the methods. 

Fan-in error analysis 

We next checked whether BMALR is resistant to the fan-in 
error stemming from the difficulties in predicting combinatorial 
regulations33. We performed indegree based network analysis 
on DREAM5 sub-challenge to study the robustness of BMALR 
and other methods to the fan-in error. Specifically, we 
investigated the overall performance of each inference method 
on predicting the regulatory input(s) of genes with one 
transcription factor (indegree = 1), two transcriptional factors 
(indegree = 2), etc. As it is described in33, the prediction 
confidence for different regulatory inputs of genes is quantified 
with their ranks in the corresponding list of edge predictions 
(the first edge has a scaled prediction confidence of 100% and 
the last edge has confidence 0%). 
The data shown in Figure 5 indicates that most inference 
methods have high prediction confidence for the edge of genes 
with 1 transcription factor input. In general, the prediction 
confidence is reduced as the indegree of genes increases, but 
the prediction confidence of BMALR and GNEIE3 seems more 
robust on high indegrees.  

 
Fig. 5    Fan-in error analysis of the inference methods on 
DREAM5 network inference sub-challenge with in silico 
datasets. 
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Table 4    Performance metrics of Bayesian network based methods on DREAM4 in silico size 100 multifactorial sub-challenge. 
The bold numbers indicate the best value in each performance metric. 

Method 
NET1 NET2 NET3 NET4 NET5 

Score Time 
(second) AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC 

BMALR 0.155 0.745 0.166 0.737 0.231 0.792 0.234 0.808 0.214 0.778 39.4 1.8E+00 
PCALG 0.134 0.714 0.108 0.665 0.209 0.714 0.173 0.705 0.181 0.722 27.5 3.2E+00 

BNfinder 0.125 0.584 0.0799 0.601 0.191 0.663 0.171 0.652 0.123 0.602 19.3 1.4E+03 
SBM 0.111 0.635 0.100 0.600 0.199 0.668 0.182 0.680 0.172 0.663 22.8 4.0E+02 

 

Comparing BMALR with other Bayesian network based 
methods 

BMLAR uses the framework of Bayesian model averaging that 
integrates linear regression approach. Therefore, we 
investigated whether the combination of Bayesian model 
averaging with linear regression method could improve 
prediction performance compared with other Bayesian network 
methods. We applied previous reported Bayesian network 
methods such as the PC-algorithm method (PCALG)45, 46, 
BNFinder2 and the SBM method with sparse Bayesian model27, 

49 to the DREAM4 in silico size 100 multifactorial sub-
challenge. The results shown in Table 4 indicate that BMLAR 
achieves the highest prediction accuracy over the other 
comparable Bayesian network methods. In addition, the 
computational efficiency of BMLAR is among the top method, 
with similar magnitude of used computational time as the PC-
algorithm method with pcSelect (feature selection version of 
PCALG). It’s worth noting that both BMALR and pcSelect 
method combine Bayesian network with linear regression 
method. The difference is that BMALR uses model averaging 
to calculate the posterior probability of each edge, while 
pcSelect uses partial correlation based independence test to 
score each edge. 
Similar as the method proposed by Geiger and Heckerman 
(referred as Geiger-Heckerman in the following)37, BMALR 
calculates the probability of local linear regression models 
using Gaussian directed acyclic graphical (DAG) models. The 
major difference between BMALR and Geiger-Heckerman is 
that BMALR integrates the idea of model averaging to compute 
the edge posterior probabilities, which has been applied to infer 
regulatory network from time series data by Hill et al.29. 
However, Hill et al. computed the probability of local linear 
regression models using Bayesian linear models with 
interaction terms, which is different from the Gaussian DAG 
models used in BMALR. Therefore, BMALR is a hybrid 
method for network inference, which is based on the method 
frameworks developed by Hill et al. and Geiger-Heckerman.   

The influence of maximum number of parents (maxFanIn) on 
the performance of BMALR 

To analyze whether the performance of BMALR depends on 
the setting of maximum number of parents (maxFanIn), we 
applied BMALR to the benchmarks of DREAM4 and 
DREAM5 in silico sub-challenges, and the T-cell signaling 
network with different settings of maximum number of parents 
(maxFanIn was set between 2-7). The results shown in 
Supplementary Tables 1-3 suggest that the performance metrics 

of BMALR are robust to the maxFanIn parameter (when 
maxFanIn ≥ 2). Biological networks are usually sparsely 
connected, in which most network nodes have a few upstream 
regulatory links50. Therefore, the probability of local structures 
with large numbers of parents is relatively small, which might 
explain the observed insensitivity of BMALR method to the 
maxFanIn parameter.   

Conclusions 
In this work, we propose a Bayesian Model Averaging for 
Linear Regression (BMALR) method to reconstruct cellular 
regulatory networks. This method used a new closed form 
solution to compute the posterior probabilities of the edges 
from putative regulators to the target gene with the integration 
of Bayesian model averaging and linear regression methods. 
We compared the performance of BMALR with other network 
inference methods by applying to a variety of benchmarks 
including both in silico datasets in DREAM projects and real 
experimental datasets. BMALR shows high performance across 
these benchmarks with different performance metrics. We have 
also shown that the log transformation of the datasets can 
further improve the performance of BMALR in different 
benchmarks. In addition, BMALR is competitive in terms of 
computational efficiency, especially for large-scale network 
inference. Our results indicate that BMALR is complementary 
to other inference methods as it can achieve robust high 
performance when it is used in combination with other methods 
for community predictions. Last but not least, BMALR seems 
to be resistant to the fan-in error stemming from the difficulties 
in predicting combinatorial regulations. Therefore, BMALR is 
expected to be useful to infer regulatory interactions in 
biological networks.  
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