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Abstract 

With rapidly changing technology, prediction of candidate genes has become an indispensable 

task in recent years mainly in the field of biological research. The empirical methods for 

candidate gene prioritization that succors to explore the potential pathway between genetic 

determinants and complex diseases are highly cumbersome and labor intensive. In such a 

scenario predicting potential targets for a disease state through insilico approaches are of 

researcher’s interest. The prodigious availability of protein interaction data coupled with gene 

annotation renders an ease in accurate determination of disease specific candidate genes. In our 

work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay 

and his co-workers approach of identifying the candidate genes through graph theoretical 

centrality measures and gene ontology. With the advantage of the human protein interaction data, 

cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates 

for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was 

corroborated through literature survey. Also presence of the drugs for these candidates was 

detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which 

affirms that they may be endowed as a potential drug targets for cervical cancer. 

Keywords:  Graph theory, Gene ontology, Candidate genes, Cervical cancer. 
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Introduction 
 

Pertaining to changing lifestyle, people are facing major life threatening disease like diabetes, 

cancer, hyper tension, heart disease and stroke [1].  These diseases take too long to develop but 

once they have developed in the body it is difficult to cure them. Among these, cancer 

considered as a genetic disease is controlled by multiple genes, and leads to unregulated cell 

growth where the tumors have taken the overall control of the body [2]. Tumors are biased 

accumulation of proliferating complex tissues with diverse cell types that are involved in 

heterotypic interactions with one another [3, 4]. A difference in the type of cancer/neoplasm is 

the result of various complex genetic and epigenetic events. Cancers can be classified into 200 

different types of which third major death-causing tumors among women is the cervical cancer. 

Carcinoma of the cervix is a sexually transmitted disease caused by the human papillomavirus 

(HPV) infection that is formed on the squamous cells of the cervix [5].  

 
A case study in cervical cancer through experimental analysis affirms that the differentially over 

expressed proteins were identified to be the novel gene for cervical cancer which were validated 

through Immunohistochemistry procedure. The disadvantage of the method lies in the arena that 

the novel genes identified had to be validated in a larger series of samples which is time 

consuming and highly challenging [6]. Likewise, the gene dosage and expression profiling 

techniques, and other insilico approaches can also be adopted to predict the candidates for cancer 

state but it requires prolonged time period to end up with a conclusion. Moreover cervical cancer 

is the outcome of involvement of several genes with low-to-moderate effects therefore it is more 

desirable to study the multilocus models and potential interactions between genes for disease 

gene prioritization [7]. The mechanisms and molecular architecture underlying various cancers 
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including cervical carcinoma can be better understood through the identification of other 

potential causal/susceptibility genes [2]. But the identification of such genesis a major bottleneck 

for the reason that genetics of cancer is still not well understood. 

The disease causing genes are consistently explored since decades but it is still a quest to find the 

candidate genes underlying a specific disorder. Experimental studies such as linkage studies, 

gene expression analysis and genome wide classification studies have been found to be 

successful in identifying the high relative risk genes for a specific disease [8]. But the 

aforementioned methods have failed drastically in prioritizing the genes responsible for complex 

diseases. In this scenario, candidate gene approaches were found to be fruitful in identifying the 

risk variants associated with various diseases of interest such as dementia, cancer, diabetes, 

asthma, and hypertension [9-13]. Candidate genes are nothing but the genes with known 

biological function, suspected to be directly or indirectly involved in contributing to the 

aetiology of the disease [14]. The candidate gene approach is ubiquitously an imperative task 

that focuses on gene-disease research, biomarkers and drug target selection and has been proven 

to be powerful in studying the genetic architecture of complex traits and also an economical 

method for direct gene discovery [15]. This method has gained a considerable edge over the 

above mentioned approaches in terms of its quickness, simplicity, inexpensiveness, directness, 

high sensitivity for detecting the genes with small effect, and perfect plasticity in the practical 

application [16]. 

Recent advances in high throughput technologies paved a successful path for the candidate gene 

approaches. Experimental methods such as gene expression profiling, next generation 

sequencing, gene wide association studies, CHIP-seq, genetical linkage association studies 

generate candidate genes, [17-19]. The scarcity of disease associated families for linkage 
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analysis, large genomic regions, hindrances in identification of disease locus, lack of definitive 

functional conformation of the target gene and the labor insensitivity of the experimental 

methods urges for the development of various high end insilico approaches for disease gene 

prioritization.  

In such circumstances, a number of insilico strategies have been consequently developed for 

candidate identification in various fields such as agriculture, biomedical, finance etc. These 

computer simulated methods have been grouped as ontology, computation and integration based 

candidate gene identification approaches. The ontology based approaches relies on the 

availability of annotated gene functional information on internet whereas the computation based 

approach prioritizes the genes through a computational framework utilizing the web resource 

based data sets [15]. Some of the computational methods include data mining analysis, Hidden 

Markov analysis, machine learning, kernel-based data fusion analysis, similarity- based method 

etc [20-24]. The integrated approach pools the information from various sources such as 

experimental data, web resource based data and many other features of protein-DNA 

interactions, molecular module, Protein-protein interactions, path way and gene regulatory 

networks etc [25-29]. Some of the computational tools that are publicly available online for 

prioritizing the candidate genes are SUSPECTS, POCUS, G2D, GFSST, ENDEAVOUR [30-

34].The candidate gene approach backed by completed genome sequence of human and model 

organisms aids to dissect and identify genetic risk factors for cervical cancer [35].  But there 

exists only a limited number of platforms specialized for cancer gene identification which were 

proven to be less successful. 

Most of the insilico candidate gene identification methods rely on the ontology based annotation 

approach which is nothing but the association of the biological phrases and specific genes. Gene 
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ontology encapsulates the known relation between biological terms and the genes that occur in 

these terms. This mode of action benefits the biologists to make inference considering cluster of 

genes rather than a single gene. The terms that are employed in gene ontology annotations are 

biological process, molecular function and cellular components. The biological process defines 

the biological phenomena affecting the state of an organism while the molecular function is 

specific to carry out the function by a gene product and the cellular component is concerned 

within the cell wherein a gene acts [36]. 

The problem ensued with the ontology based approaches is that only two thirds of human genes 

are being annotated and the rest of the fraction yet to be characterized [37].  With the tremendous 

escalation of human protein interaction data, the entanglement of the above techniques can be 

conquered through protein–protein interaction networks (PPINs) [38, 39]. Drastic changes that 

took place over several decades in the field of biological research towards massively parallel 

techniques creates new insight in this arena but creates problem in formulating meaningful 

information out of the generated data. These data could be expressed in the form of networks 

which provide structural annotation, where the nodes are proteins, linked by edges which are 

nothing but the interactions. Proteins are the representatives of the biological networks and they 

are realized only if the relationship between essentiality and topological properties such as the 

degree distribution, clustering coefficients, centrality measures, and community structures of the 

network are studied [40-42]. Of all the properties graph centrality measures aid in identification 

nodes that are functionally crucial in the network by ranking elements of a network. Different 

graph centrality measures such as vulnerability, closeness, centroid values, shortest-path 

betweenness, current-flow betweenness, and Eigen vector can be computed for every node in the 

interactome and  rank them according to their scores which further aids in establishing the 
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properties of protein interaction network  [43-46].  Thus the analysis of PPINs which are scale 

free in nature comforts the annotation of the uncharacterized genes facilitating the perception of 

disease mechanisms and thereby succors for disease gene prioritization [47]. However, even the 

network based approaches encounter certain limitations in terms of quality and availability of 

interaction data, missing interactions, false positives etc. The integration of both functional 

annotations (ontology approach) and network based topological parameters generates the 

information for protein functions, processes, localization and there by providing a more reliable 

approach for identification of candidate genes [48].  

 Thus the integrative computational approaches may be anticipated as the powerful tools for 

candidate gene identification, contributing to a major breakthrough in the field of cancer 

research. Protein-protein interaction networks and their properties provide valuable information 

to understand and analyze the mechanisms of disease particularly cancer [49-54]. The gene 

ontology terms facilitate the systematic annotation of the genes and thereby elucidate their 

biological relevance with the experimental results. Csaba Ortutay and his co-workers have 

already contributed a novel method for identifying candidate genes by consolidation of gene 

ontology and network based approaches employing only three graph centrality measures [55]. 

Our work, directs attention towards predicting candidate genes for cervical cancer through the 

same approach with the human protein interaction network, cervical genes and gene ontology 

terms, but with six different graph centrality measures. The advantage of using six different 

centrality measures is that each of them scores the proteins in an interactome based on different 

formalism/concept so that there exists a less chance of missing the biologically significant ones. 

In our work we have utilized the gene ontology and network integrative approach of Csaba 

Ortutay et al which drastically reduces the time involved and efficiently predicts the potential 
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cervical cancer candidate genes with the availability of function, processes and localization 

information which is highly imperative in any cancer phenomenon. To find the genes that aid in 

the cervical cancer the protein interactome of all the cancer genes was constructed which resulted 

in human cancer gene network. A set of experimentally compiled cervical cancer genes is 

verified through network and gene ontology enrichment approaches. The above study on the 

cervical cancer furnished 15 novel genes which could be successful potential targets for drug 

discovery. These 15 genes may have a major role in either creating or causing the carcinogenic 

tumor in the cervix of women. The strategy of our work is shown in the graphical abstract 

Figure-1. 

Materials and methods 

Data collection and construction of human cancer gene network  

 

The human protein interaction data was obtained from Human Integrated Protein-Protein 

Interaction rEference (HIPPIE) database [56]. The main purpose of using HIPPIE dataset is it 

focuses on likely true Protein-Protein Interaction (PPI) set by generating sub networks around 

proteins of interest. HIPPIE is an integrated set of human protein interaction data that is 

constructed according to experimental evidences.The database contains 11,468 proteins with 

70,401 human PPIs which are obtained in combination with all the major PPI datasets such as 

HPRD, MINT, DIP etc [57-59]. 

The cancer genes involved in oncogenesis were collected from CancerGene database which 

contains 3164 proteins which are thoroughly curated with information from key publicly 

available database [60]. The human cancer gene network (HCGN) was constructed by mapping 

Human PPI obtained from HIPPIE against cancer genes of CancerGene database which then 
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consisted of 1,694 proteins with 8,672 interactions. After removal of orphan nodes from the 

HCGN, the giant component culminates with 8,668 interactions among 1,686 proteins.   

Cervical cancer gene dataset 

The cervical cancer gene dataset was obtained from the cervical cancer gene database that 

catalogs information of genes associated with cervical cancer. CCDB (Cervical Cancer Gene 

Database) consisting of 538 genes is a specialized, manually curated database that contains 

information of all experimentally determined cancer genes that are involved in human cervical 

carcinogenesis [61]. The genes that were found to be common in both the cervical cancer and 

human PPI datasets were enumerated as 176 and were considered for our further analysis. 

Topological properties of HCGN
 

The Human cancer gene network was analyzed for their topological properties such as degree, 

efficiency, diameter and average clustering coefficient. The importance of a node in the network 

structure is quantified in terms of centrality measure. Different centrality measures focus on 

different importance concepts and are categorized in to 6 types based on different concepts of 

ranking such  as neighborhood, distance, shortest path, current flow, feedback and vitality in case 

of biological networks. Here we have calculated six different graph centrality measures such as 

vulnerability, closeness, centroid values, shortest-path betweenness, current-flow betweenness, 

and Eigen vector using the tool CentiBin and are defined as follows  [43,62]. 

Vulnerability: This centrality measure is calculated from the change in efficiency when a 

particular node is knocked out from the network. The efficiency of the network is measured from 

the inverse sum of the distance matrix. The shortest path of communication between any two 

nodes is termed as distance matrix. The efficiency of the network is defined as  
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Here G is the graph, di,j is the shortest path between node i and j, and N(N-1) is the normalization 

constant. The vulnerability of the node v is calculated from 

����� � ���� � ��� � ���         (2) 

Closeness centrality: Closeness Cc (v) is defined as the reciprocal of the total distance from a 

node v, to all other nodes. It is given by,  

����� � 	
�

����
�����,��
          (3) 

Centroid values: The centroid value is the most complex node centrality index and  is computed 

by focusing the calculus on couples of nodes (v,w) and systematically counting the nodes that are 

closer (in term of shortest path) to v or to w. A node v with the highest centroid value is the node 

with the highest number of neighbors separated by the shortest path to v.  

�� !	��� � "#$	%&��, '�: )%�**        (4) 

Where f (v, w) = γ v (w) – γ w (v) and γ v (w) denotes the number of vertices that are closer to v 

than to w. 

Shortest path betweenness centrality: Shortest path betweenness represents the contribution of a 

node v, towards communication between all nodes pairs. It is defined as, 

�+��� � 	,������-
./0���

./0
         (5) 

Current flow betweenness centrality: Current flow betweenness of a node v is the average of the 

current flow over all source-target pairs. 
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          (6) 

Eigen vector centrality: scores the relative importance of all nodes in the network by weighting 

connections to highly important nodes more than connections to nodes of low importance. It can 

be calculated by 

7�4- � 8�4-           (7) 

Where, C:; denotes the Eigen vector and λ denotes the Eigen value. 

Correlation analysis of centrality measures 

  
The six different centrality measures were calculated for each and every node in the interactome 

and ranked based on their scores. Pair wise correlation between the various centrality measures 

was obtained through Spearman's rank correlation coefficient ρ which is defined as 

= � 1 �
?@A�	

6

B�B6C5�
          (8) 

Here, the difference di represents the difference in the ranks of each observation on the two 

variables which here represents the centrality scores. Also for each centrality measures the top 50 

ranking gene set is collected and the dataset is pooled into a single list which was further utilized 

in our study for prioritizing the candidate genes. 

 

Gene ontology enrichment analysis 

The gene ontology enrichment analysis was performed with the help of GOrilla which 

manipulate the flexible threshold statistical approach to determine the GO terms that are 

significantly enriched at the top of ranked gene list [63].The significantly enriched GO terms 

were obtained using two ranked gene list mode with the list of known cervical cancer genes as a 
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target and HCGN genes as a background. The significantly enriched GO terms for Biological 

process (BP), Molecular function (MF) and Cellular components (CC) were achieved with a p 

value <0.001 and the number of genes that are associated with a specific GO terms   (3≤B≤50). 

The range for number of genes associated with a specific GO term is chosen in such a way that it 

scrutinizes only the GO terms which were annotated for at least three but not more than 50 

genes. The value of B is considered an important aspect for the gene enrichment analysis because 

high value of B increases noise by populating the enrichment results with non-specific GO terms 

whereas small values of B reduce the signal by rejecting specific GO terms [47, 64].Thus p-value 

threshold (<0.001) and the B- value (3≤B≤50) were chosen in such a way to maximize the signal 

(specific GO terms) and reduce the noise (non-specific GO terms) in the enrichment analysis. 

The genes associated with the significantly enriched GO terms of BP, MF and CC were found to 

be analogous to the corresponding GO terms of HCGN genes and henceforth acknowledged as 

the genes with specific disease ontologies. 

Prediction of candidate genes for cervical cancer 

To predict the candidates of cervical cancer three gene sets A, B and C were analyzed, where the 

Set A consists of genes obtained from amalgamating the top 50 ranking genes of each of the six 

different centrality measures. The set B and C were composed of the known cervical cancer 

genes and genes with specific disease ontologies respectively. The top50 ranking pooled gene list 

obtained from the six different centrality measures is related with the known cervical cancer 

genes which in turn it is correlated with the significant disease ontology genes retrieved from 

gene enrichment analysis. The genes that are mutual to top50 ranking genes and significant 

disease ontology but not generic to cervical cancer are depicted as cervical cancer candidates. 

Page 12 of 37Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Results 

Human cancer gene network and its topological properties 

With the above theoretical approach, the HCGN was constructed in such a way that the cancer 

genes contributing to carcinogenesis accumulation was to form a sub network within the HIPPIE 

dataset. The HCGN is constructed by mapping HIPPIE dataset of 70,401 interactions among 

11,468 proteins against the 3,164 catalogued cancer genes. The network has 8,672 edges among 

1,694 nodes. The orphan nodes of HCGN are removed and the core network is encompassed 

with 8,668 interactions between 1,686 proteins.  

To define the interaction network its topological parameters like degree, diameter, correlation, 

efficiency, etc., have a pivotal role in enhancing them. Precisely, for the HCGN the average 

degree, the diameter, assortative correlation and global efficiency were found to be 10.28, 9, 

0.44, and 0.31 respectively. The degree value, as expected follows a power law distribution with 

an exponent of 2.23 (Figure-2) and the average clustering coefficient for the HCGN network 

was found to be 0.1698. The interaction network concerned at the molecular level is considered 

as scale-free in nature since it has been marked by the presence of hubs and also is evident from 

the scaling exponent.  

Graph centralities of HCGN  

In our   study we have utilized six different centrality measures to ascertain the potentiality of 

individual proteins in HCGN. After consolidation of top 50 ranking gene sets of the six different 

centrality measures 92 (set A) genes were obtained which are nothing but the representative 

generic cancer genes that can be used to predict the candidate genes for the cervical cancer. The 

pair wise correlation coefficients of the six centrality measures depicted for the HCGN elucidate 
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that they all are positively correlated as represented in Table-1. It also elucidates that the ranking 

of the nodes differs based on the formulary of each centrality measure. 

GO enrichment analysis of the top 50 ranking genes 

The gene ontology enrichment analysis was performed for the top 50 ranking genes in order to 

justify the role of centrality measures in identifying the significant cervical cancer related gene 

ontological terms. The genes were enriched using GOrilla software by taking  92  top 50 high 

ranking genes (set A) as a target and HCGN genes as a background which then yielded 290 

disease  specific ontology genes (set C).The GO terms enriched for all the three domains 

Biological Process, Molecular function and Cellular component were obtained and were 

enumerated as  92.  The cellular component contains only six ontology terms whereas the 

molecular function contains 21. Comparatively the biological process preponderate the cellular 

components and molecular function’s gene ontologies. Among the cellular component IkappaB 

kinase complex (GO: 0008385) and CD40 receptor complex (GO:0035631) were dominant over 

the rest with the enrichment values of 13.66and 10.41 respectively. But comparing the biological 

process and molecular function the cellular component remained suppressed in case of top50 

ranking genes. While considering the 21 GO terms of molecular function the binding factor 

ontological terms dominated the activity related GO terms in terms of their count. Interestingly 

nitric-oxide synthase regulator activity and IkappaB kinase activity have a high enrichment value 

of 18.21. A list of 71 significantly enriched GO terms was associated with the biological process 

for pooled top50 ranking HCGN genes where activity, reputational processes and the signaling 

pathways were numerous. Among the biological processes, B cell lineage commitment (GO: 

0002326) and primary miRNA processing (GO: 0031053) were observed to have high 

enrichment score of 18.21. Most of the ontological terms prevailing in our list such as SH2 
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domain binding (GO:0042169) ,core promoter binding (GO:0001047), primary miRNA 

processing (GO:0031053),G1 DNA damage checkpoint (GO:0044783), mitotic G1 DNA 

damage checkpoint(GO:0031571), protein import into nucleus, positive regulation of apoptotic 

signaling pathway (GO:2001235), nuclear transport(GO:0051169) has been associated with 

various cell cycle process, growth signaling pathways which are capable of altering the 

intracellular mechanisms that are capable of causing cancer. The detailed list of GO terms for the 

HCGN genes is given in Supplementary data S1. 

 GO enrichment analysis of known cervical cancer genes 

The GO enrichment for the known cervical cancer genes is performed through GOrilla by 

claiming the    known cervical cancer genes of 176 (set B) as the target and HCGN gene set of 

1,686 as a source. The analysis is performed with a p-value < 0.001. It resulted in 102 GO terms 

from all the three ontologies BP, MF and CC with the B-value (3≤B≤50). The biological process 

was dominant over the molecular function and the cellular component. The cellular component 

contained only two GO terms proteinaceous extracellular matrix (GO: 0005578) with the 

enrichment value of 3.58 and extracellular matrix (GO: 0031012) with the value of 3.56. The 

molecular function contained 11 GO terms among which the different binding terms were 

dominant over the activity. The biological process contained 89 GO terms among which the 

regulatory terms were found to be dominant over the rest. We have found out that our list 

enriched ontological terms for known cervical cancer genes were confederated with the cycle, 

apoptotic and regulation process. Some of them were as follows negative regulation of cell 

morphogenesis involved in differentiation (GO: 0010771), positive regulation of intracellular 

transport (GO: 0032388), positive regulation of chemokine production (GO: 0032722), cellular 

response to acid (GO:0071229),negative regulation of cell growth (GO:0030308), positive 
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regulation of cell adhesion (GO:0045785), cell-cell adhesion (GO:0016337). The detailed list of 

enriched ontological terms for known cervical cancer genes is provided in the Supplementary 

data S2. 

Genes with high-network scores and significant GO terms as predicted candidate genes 

Towards predicting candidate genes for cervical cancer which are of therapeutic value, we 

rationally correlated the three major set of genes. The set A is from the pooled top 50 ranked 

genes list whereas the set B is the cluster of known cervical cancer genes and the set C is a set of 

genes with significantly enriched disease ontologies. Altogether, set A contains 92 genes among 

which set A and set B share 24 genes in common while set B contains 176 cervical cancer genes. 

The set C contained 290 genes obtained from 102 GO terms where the set B and set C shared 79 

genes in common. 24 genes participated among set A and set B while set A and set C shared 29 

genes in common. Those genes that are common to top50 ranking gene list and genes with 

significant disease ontologies but were not amid the known cervical cancer genes were identified 

to be the candidate genes for cervical cancer. The genes of the three sets are logically juxtaposed 

which represents the strategy employed for predicting the candidate genes for cervical cancer 

and the same is depicted in the Venn diagram Figure-3. The candidate genes for cervix related 

carcinogenesis is estimated to be 15 which are unique and neither found as common in any of the 

sets. Also we have carried out the same analysis with the three centrality measures degree, 

closeness and vulnerability as specified in Casaba and coworkers approach of candidate gene 

prediction. The genes that were predicted to serves as candidates using both the approaches were 

compared and found out that of the 15 candidate genes predicted through the six different 

centrality measures were in common with the 13 candidate genes obtained using 3 centralities. 

Our approach was able to predict two genes HIF1A and RET in addition as candidate genes for 
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cervical cancer and thus elucidates the importance of usage different centrality measures in 

candidate gene prediction. 

The predicted candidates of cervical cancer 

The 15 potential protein targets identified for cervical cancer were explored to find the disease 

relevance for their distinctive role in cervical cancer and was discovered that they are somehow 

significant to the carcinogenic advance in a cell. Literatures cram for the identified candidates of 

the cervical cancer helps in analyzing how important the predicted disease gene is. The list of 

genes prioritized for cervical carcinogenesis along with their description is given in Table-2. 

Among the predicted 15 novel candidate genes, the gene EP300 commonly known as p300 is 

involved in pathways of cancer and has a foremost role in the process of cell proliferation and 

differentiation. EP300 is concerned with few key functions as inhibition of apoptosis, 

proliferation and accumulation of mutation. The JUN gene is a putative transformation gene 

which takes part in the transformation pathways of cancer. The protein encoded by the SMAD3 

gene functions as a transcriptional modulator that regulate the carcinogenic onset where as the 

gene CAV1 was found to be a  tumor suppressor gene candidate.  

The phosphoprotein PML gene functions as a transcription factor and a tumor suppressor. This 

gene regulates the p53 response to oncogenic signals that have an escort role in cervical cancer 

through p53 signaling pathway. Amplification of ERBB3 gene or overexpression of this protein 

has been reported in numerous cancers where the heterodimerization of it leads to activation of 

pathways which in turn leads to cell proliferation and differentiation. The proto-oncogene SRC 

has an extensive role in regulation of embryonic development and cell growth. Any mutations in 

this gene could be involved in the malignant progression of cancer. With the above summary, it 
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can be relished that the predicted candidates have a significant role in carcinogenesis and special 

attention could be drawn towards identifying potential drug targets for the cervical cancer. 

Discussion 
 
 
In recent years, protein interaction networks are primarily used in targeting genes responsible for 

a disease. Towards identifying candidate protein target essential for cervix related 

carcinogenesis, we used an integrative network and gene ontological approach. The network 

properties provides a system perspective of complex molecular mechanism and helps to identify 

the functional elements while the gene enrichment analysis helps to identify the ontological 

features of a gene set. In general the disease gene prioritization is a difficult task through wet lab 

experiments which perpetuate for generations. But the computational method for predicting 

disease gene is achieved through various methods where protein interaction network is in 

vicinity towards researchers. Network analysis is a potent approach in understanding the disease 

phenotype and probing for therapeutic targets [55]. Also the functional importance of the protein 

can be distinguished from the network through the centrality measures.  

 

 Earlier, Csaba Ortutay when predicting candidate genes used only three centrality measures 

along with GO terms. But in our analysis we have used six different centralities which were the 

efficient tools for network analysis for predicting cervical cancer candidates. The edge gained by 

using six different centrality measures is that almost all the biologically prominent genes were 

obtained in either of the top ranking genes of each centrality measure which are in confirmative 

with the gene enrichment analysis. The six different centralities were calculated for 1,686 

proteins in the interactome and the scores of these measures show a strong correlation and it is 

also used to quantify the importance of protein in the interactome. It is worth mentioning, we 
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have used CentiBiN tool to calculate the centrality measures for the Human cancer gene 

network. This tool has 17 centrality measures out of which we were able to calculate only 13 

centrality measures. The vulnerability centrality measure which is not available in CentiBiN tool 

was calculated through MATLAB programming. From these 14 centrality measures, we have 

considered the measures whose pair-wise correlation coefficient with other centrality measures is 

less than 1. Although the ranking of nodes are different in the calculated centrality measures but 

in our study, we are considering and pooling the top 50 ranking genes, the ranking position is not 

important. In this study only six centrality measures such as vulnerability, closeness, centroid 

values, shortest path betweenness, current flow betweenness and Eigen vector are sufficient. It is 

important to note that the combination of centrality measures may vary with the percentage of 

top ranking genes and the network we study. 

 

Gene ontology enrichment analysis provides means of identification of significantly 

overrepresented GO terms which could be effectively used to get biological insight from a given 

set of genes [64]. The biological relevance of a protein can be extracted from the Gene ontology 

terms which provide information through the BP, MF and CC terminologies.  In our work we 

have predicted the candidate genes for cervical cancer employing the approach of Csaba Ortutay 

but with more number of centrality measures. 15 novel cervical cancer candidate genes were 

prioritized by logically juxtaposing the  Set A obtained from the result of genes pooled through 

top 50 ranking genes of the six centrality measures, the set B with known cervical cancer genes 

and the set C containing the genes with significant disease ontologies. Validation of the predicted 

candidates is indispensable to conclude them as a potential target for a disease state. The 

predicted cervical cancer genes were analysed through literature survey to prove them that they 
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can act as a targets for cervical carcinogenesis. The annotation of the predicted genes for 

vindication of their disease relevance is as follows.  

 

The gene ARRB1 also known as β-arrestin 1was found not to have direct implication for cervical 

carcinogenesis but it is overexpressed in gastric cardiac adenocarcinoma as is evident from the 

Wang et al work [65]. A recent study states that, the human papillomavirus that cause the cervical 

cancer has been linked with an increased risk of cardiovascular diseases. ARRB2 member of 

beta-arrestin protein family was shown to inhibit beta-adrenergic receptor function. Recently 

many studies have revealed that this gene may act as an adapter for scaffolding many 

intracellular signalling networks that may lead to cancerous conditions.Understanding the role of 

these β-arrestins in carcinogenesis is highly complicate because of their complex biological and 

regulation events [66]. A better knowledge regarding the prognosis and oncogenic potential of β-

arrestins encumbrances the identification of potential candidate genes for various tumours 

including carcinoma of cervix. Whereas the CAV1, Ceaveolin-1 gene, the main component of 

caveolae plasma membrane is found in most of the cell types that can be regarded as candidate 

for tumor suppressor and it is over expressed in terminally differentiated cells. CAV1 contributes 

to tumorigenesis of cervical cancer due its down regulation in cells transformed by HPV 

infection [67].  

 

 The CFTR gene is primarily involved in the transport of chloride ions. Peng along with his co-

workers from their studies on cervical cancer suggested that CFTR may act as potential 

therapeutic target for cervical cancer because of its higher expression levels [68].  EP300 which 

is also designated as p300 gene plays a crucial role in cell differentiation and mutational events 
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and any abnormalities in this gene contributes to carcinogenesis. Stina and group evaluated the 

role expression of p300 in the outcome of cervical cancer where the immunohistochemistry 

study revealed that the transcription factor p300, was up regulated in cervical intra Epithelial 

neoplasia [69] .The gene ERBB3, (V-erb-b2 avian erythroblastic leukaemia viral oncogene 

homolog3 gene) encodes a member of epidermal growth factor receptor family of receptor 

tyrosine kinases.  Being the third member of the ErBB proto oncogene family, c-erbB-3 (ErBB3) 

is toughly expressed and amplified in numerous cancers. The immunohistochemical study 

carried out by Hunt and his co-workers have put forward that c-erBB-3 is widely expressed in 

cervical carcinomas [70]. The transcriptional factor HIF1A, Hypoxia-inducible factor 1α (HIF-

1α) contributes tumor growth and progression through promotion of neoangiogenesis and 

regulation of the genes involved in response to hypoxia. Birner and his co workers in their work 

have proven that HIF-1α expression is a strong independent prognostic marker in early stage 

cervical cancer [71]. 

 

 The Insulin receptor gene, INSR has important roles in cancer. As Serrano and his co-workers 

report, the receptor expression was diverse that the tyrosine phosphorylation of them is 

correlated with high expression level [72]. However they show no effect on proliferation, 

migration or invasion of the cell line. The genes JAK2 (Janus kinase2) and JUN (jun proto-

oncogene) are involved in various processes such as cell growth development and differentiation 

was found to have and altered gene expression in cervical cancer as is evident from Carlos  et al 

work. JAK2 the protein tyrosine kinase involved in JAK-STAT pathway was found to be down 

regulated and JUN of focal adhesion pathway was overexpressed with the ratios of -2.9 and 4.8 

respectively[73]. 
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The gene LYN (V-Yes-1 Yamguchi Sarcoma viral related oncogene) plays an important role in 

the regulation of innate and adaptive immune responses.  LYN signalling may play a vital role in 

survival and proliferation of some types of cancer cells. The patent of Iftner et al has produced a 

list of diagnostic markers for determining the genetic and environmental factors for cervical 

carcinogenesis.  LYN was found to be one of the diagnostic markers among the list of genes that 

contributes to cervical cancer due to HPV infection [74]. PML, the protein encoded by 

Promyelocytic leukaemia gene is a member of tripartite motif family and regulates the P53 

response to oncogenic signals.  PML reinforces carcinogenesis by exhibiting a synergetic action 

with the HPV infection, the main convict causing cervical cancer. This is evident from the 

observations drawn by Neha Singh and group suggesting that down regulation of PML gene 

coupled with HPV infection contributes to cervical carcinogenesis [75].  

 

The RET proto oncogene is found to be involved in the tumourigenesis of thyroid carcinoma. As 

described by Vamsy and coworkers that the squamous cell carcinoma of the cervix is 

functionally cured by the rare phenomena of metastatic thyroid carcinoma that carries a RET 

gene as its major contributor [76]. This lead us to a conclusion that RET proto oncogenes can 

indirectly donate to the cervical cancer. We believe that it has role in cervical carcinoma and this 

may be experimentally tested. The SMAD3 gene demonstrates that disruption of TGF-beta/Smad 

signaling pathway exists in human cervical cancer and over expression of it may contribute 

malignant progression of human cervical tumours [77]. The gene SRC (v-src avaian sarcoma 

(Schmidt-Ruppin A-2) viral oncogene homolog), also known as C-SRC is a proto oncogene. 

Over expression of SRC has been associated with enhanced cancer cell growth [78]. Over 
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expression of phosphorylated SRC has been found in the cervical cancer cell lines and clinical 

cervical cancer tissue [79].  Recently Teng and his co-workers in their study have ascertained 

that SRC signalling play an essential role in cervical cancer progression [80].   

 

The predicted genes were searched against the DrugMap Central and Therapeutic target database 

to identify the available drugs had either formerly served as an objective for cervical cancer and 

to analyse its metabolic pathway. The predicted candidate gene JUN, JAK2, INSR, SMAD3, 

ERBB3, SRC were all searched against TTD [81]. All these genes have been identified as either 

clinical trial or research or successful targets for major diseases like cancer, diabetes, vascular 

disease. These genes could also be a potential target for the cervical cancer. The JUN gene is 

involved in pathways related to cancer, renal cell carcinoma and diverse signalling pathways. 

The genes JAK2, INSR, ERBB3, and SRC reported to be the candidates of the cervical cancer 

and validated through TTD database is involved in cancer pathway and also they have an 

extensive role in signalling pathways. This information is summarized in Supplementary data 

S3. 

 

The genes such as CFTR, and LYN have been predicted to be the targets for drug through DMC 

[82]. The cystic fibrosis Trans membrane conductance regulator (CFTR) gene is involved in 

pathways such as ABC transporters, bile secretion, pancreatic secretion, gastric acid secretion. 

The LYN gene is involved in ATP binding and is seen in chemokine signalling pathway, B cell 

receptor signalling pathway, Fc epsilon RI signalling pathway. These targets could be analysed 

for the cervical cancers too to identify the drugs for the cervix related carcinogenesis.  
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The genes identified as potential has already been either a clinical or research or successful target 

for a number of diseases primarily cancer and this in turn could also be analysed for the cervix 

related oncogenesis. The protein-protein interaction network with the cancer genes available has 

paved the way for identifying the candidate genes for cervix related carcinogenesis through 

network properties and gene ontologies. In our work we have used six different graph centrality 

measures rather than three as used by Csaba Ortutay in his work. Various centrality measures 

ranks the nodes based on different concepts such as neighbourhood, distance shortest path etc 

and thereby abstracts the potential candidate genes. This is evident from our work that the genes 

LYN, ERRB3 scored among the top ranking genes for only of  Eigenvector centrality were 

proven to be the potential genes for cervical carcinogenesis. The presence of the candidate genes 

along in the respective centrality measure are identified and are presented as heatmap in   

Figure-4. Also the predicted 15 candidate genes and their interacting partners are given in the 

Supplementary data S4. 

 

Apart from literature survey, we have also tried to find out the biological relevance of the 

predicted candidate genes by analyzing the pathways of cervical cancer caused due to viral 

carcinogenesis. The cervical cancer pathway (hsa05203) collected from the KEGG disease 

database projects that the gene SRC is involved in the MAPK signalling pathway of the cervical 

cancer caused by Hepatitis B virus. Similarly the gene LYN plays a crucial role in cell receptor 

signalling pathway of cervical cancer due to Epstein Barr virus by inhibition of apoptosis, where 

as the gene EP300 inhibits P53 and thereby inhibits the apoptosis, proliferation and accumulation 

of mutations in P53 signaling pathway of cancer due to Human papilloma virus. Also we have 

tried to validate the biological relevance of the predicted candidate genes using protein protein 
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interactions utilizing STRING data base [83]. We have submitted the list of the candidate genes 

individually and together to the database and compared the results with the interactions of our 

approach. Interestingly we have found out that the results matched with our interaction pairs and 

the same are highlighted in the Supplementary data S4. The results of the KEGG pathway 

enrichment analysis done in STRING data base confirms the relevance of interaction pairs to the 

disease, which indirectly depicts the contribution of predicted candidate genes for cervical 

carcinogenesis.  

 

To strengthen our findings, the performance of the method was carried out using the leave-one-

out statistical test. The analysis was repeated for 176 times (the number of known cervical cancer 

genes) by leaving one known cervical cancer gene out at time. We found that all the 14 known 

cervical cancer genes which are also present in SET A and C, were identified as disease related. 

The statistical test resulted 88% performance for the genes that are present in SET A, B and C 

(see Figure-3). Thus the predicted 15 candidate genes with high network score and significant 

disease ontologies might have relevance to cervix related cancer. The performance test was 

implemented through MATLAB programming. 

 

Thus the GO terms coupled with usage of six different centrality measures contributed in 

successful prioritization of 15 novel cervical cancer candidate genes. Among the 15 predicted 

genes, the genes EP300, SRC and SMAD3 were present in all the six centrality measures. 

Interestingly, all these three genes were among top 15 in their ranking with in all the six 

centrality measures. Also from the literature survey, these three genes were proven to more 

successful in causing cervical cancer which implies that they can act as better candidates 

compared to the rest 12 genes for cervical carcinogenesis. The predicted genes which were 
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proved for their role in cervical carcinogenesis could be searched for the drugs and may serves as 

a potential drug targets for cancer of cervix. Thus through our analysis we have procured 15 

novel candidate genes for cervical carcinogenesis which might facilitate the identification of 

diagnosis biomarkers and development of drug targets and thereby boosts up the cervical 

carcinoma research. 
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Tables: (Two) 

 

Centrality 

measures 

 

V
u
ln
er
a
b
il
it
y
 

C
lo
se
n
es
s 

C
en
tr
o
id
 v
a
lu
es
 

S
P
 b
et
w
ee
n
n
es
s 

C
F
 b
et
w
e
en
n
es
s 

E
ig
en
 v
ec
to
r
 

Vulnerability 1.00 0.88 0.85 0.87 0.83 0.85 

Closeness -- 1.00 0.94 0.75 0.78 0.98 

Centroid values -- -- 1.00 0.81 0.86 0.91 

SP betweenness -- -- -- 1.00 0.95 0.71 

CF betweenness -- -- -- -- 1.00 0.76 

Eigen vector -- -- -- -- -- 1.00 

 

Table 1: The pair wise correlation coefficients between six different centrality measures. 
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S. 

no. 

Predicted 

candidate 

genes 

Full name Gene ID 

1 ARRB1 Arrestin, beta 1 408 

2 ARRB2 Arrestin, beta 2 409 

3 CAV1 Caveolin 1, caveolae protein, 22kDa 857 

4 CFTR Cystic fibrosis transmembrane conductance regulator (ATP-
binding cassette sub-family C, member 7) 

 
1080 

5 EP300 E1A binding protein p300 2033 

6 ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 
(avian) 

2065 

7 HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix 
transcription factor)  

3091  

8 INSR Insulin receptor 3643 

9 JAK2 Janus kinase 2 3717 

10 JUN Jun-proto-oncogene 3725 

11 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 4067 

12 PML promyelocytic leukemia 5371 

13 RET ret proto-oncogene  5979 

14 SMAD3 SMAD family member3  4088 

15 SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 
(avian) 

6714 

 

Table 2: The predicted 15 candidate genes of cervical cancer and their corresponding Gene ids 

obtained from NCBI database. 
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Figures Legends: (Four) 

Figure 1: The graphical abstract of the strategy to predict the candidate genes. 

Figure 2: Degree distribution of HCGN observed to follow power law with an exponent ϒ= 

2.23 and exhibits the scale free nature. 

Figure 3: Venn diagram to predict the candidates for cervical cancer. The pooled list of  top 50 

ranking genes of each centrality measure, known cervical cancer genes set and the list of genes 

with significant disease ontologies were logically juxtaposed 15 novel genes were predicted to be 

candidate genes for cervix related cancer. 

Figure 4: The 15 predicted candidate genes of cervical cancer and their existence in the 

respective centrality measure, magenta color represents the presence of gene. 
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The graphical abstract of the strategy to predict the candidate genes.  
269x246mm (96 x 96 DPI)  
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Degree distribution of HCGN observed to follow power law with an exponent ϒ= 2.23 and exhibits the scale 

free nature.  
286x201mm (150 x 150 DPI)  
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Venn diagram to predict the candidates for cervical cancer. The pooled list of  top 50 ranking genes of each 
centrality measure, known cervical cancer genes set and the list of genes with significant disease ontologies 
were logically juxtaposed 15 novel genes were predicted to be candidate genes for cervix related cancer.  

254x190mm (300 x 300 DPI)  
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The 15 predicted candidate genes of cervical cancer and their existence in the respective centrality measure, 
magenta color represents the presence of gene.  

187x206mm (96 x 96 DPI)  
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