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Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of 
biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with 
high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional 
study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural 
probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. Device shanks 10 

are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the 
shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by 
inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of 
optogenetic modulation simultaneously with 3D neural signal recording. 

Introduction 15 

Optogenetics as an Approach 

Optogenetics is a novel approach for optically modulating 
neurons with unprecedented temporal and spatial resolution. 
Although direct stimulation of neurons by light is possible with 
an infrared laser 1, 2, such an approach is limited both by the 20 

ability to deliver infrared laser light with high precision and by 
the potential damage that a sufficiently powerful laser pulse may 
cause. Optogenetics instead takes advantage of opsins, which are 
naturally occurring light sensitive proteins, to sensitize a cell to 
light so that even low levels of light may be used to trigger 25 

depolarization or hyperpolarization 3-5. Well established 
molecular biology techniques for manipulating the genetics of 
cells are employed to induce the expression of opsins, and it is 
through these techniques that cells may be induced to be light 
sensitive in a highly specific way. Viral transfection, for example, 30 

may be used to target specific cell populations due to the 
specificity of viral infection mechanisms 6. In addition to this 
ability to target specific populations of cells, a broad variety of 
known opsins allows for different effects of light on sensitized 
cells, allowing stimulation or inhibition of these cells with 35 

different response times, sustained response durations, and 
sensitive light wavelengths 7. Thanks to this additional degree of 
control offered by optogenetic modulation, optogenetic systems 
have been applied to study a wide variety of neural functions, 
such as memory 8, behavioral disorders 9, 10, and auditory 40 

pathways 11, 12. For investigators, optogenetics offers a powerful 
modality for functional investigation of neural networks, with 

greatly improved spatial and temporal resolution thanks to the 
nature of light 2, 13, 14, biologic specificity thanks to 
microbiologically induced opsins 15-17, and no direct channel 45 

cross-talk. 

Engineering Approaches to Optogenetic Modulation and 
Recording 

Currently, many technical approaches to optogenetics have been 
developed 7, 18. Some methods have focused on the use of light 50 

alone without the aid of implanted delivery mechanisms. Bovetti 
et al. used liquid crystal spatial light modulators to direct light 
through microscope objectives and onto tissue surfaces with high 
spatial and temporal precision 19. Szabo et al. used highly 
controlled light stimulation and recording from a brain-surface 55 

attached fiber bundle for both light delivery and acquisition of 
fluorescence for observing neural signals 20. Both of these 
systems deliver light through the surface of the brain with the aid 
of external optic equipment. Another approach has used arrays of 
micro-LEDs integrated into an ECoG (electrocorticography) 60 

electrode array at the surface of the brain, allowing for lateral 
selectivity of light exposure without the need for an external light 
source 21-23. Kim et al. used a novel technique to form arrays of 
interconnected, ultrathin micro-LEDs that could be placed 
conformally on the surface of the brain. Kwon et al. incorporated 65 

SU-8 (a light curable polymer) penetrating waveguides attached 
at their bases to a grid of micro-LEDs to allow for light delivery 
at some depth beneath the surface of the brain 24, a capability 
otherwise lacking in surface mounted light sources. 
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effective way of reliably and precisely integrating optical fibers 
with fully assembled 3D penetrating microelectrode neural 
probes. Our parylene tube structures, if extended from the silicon 
tip through the bulk of the silicon island to exit on the non-shank 
edge of the silicon island, can be used to guide the insertion of an 5 

optical fiber, as well as acting as a highly robust encasement that 
precisely fixes the fiber tip with respect to the electrodes. A 3D 
schematic of this design can be seen in figure 1. 

Fabrication 

The fabrication process of the design pictured in figure 1 is 10 

summarized in figure 2. This process is similar to the ones we 
have previously reported 36-38, 43. A batch of devices was 
fabricated on a <100> mono-crystalline double-side polished 300 
µm thick 4" silicon wafer. A layer of silicon dioxide 300 nm thick 
was first grown via wet thermal oxidation and patterned by 15 

standard photolithographic techniques. This layer serves as a 
robust dielectric layer insulating the metal of the device from the 
semiconductive silicon in regions of the device where silicon is 

not removed, as well as providing a bottom side encapsulation to 
traces passing through the flexible interconnects. A thin film of 20 

metal, 20 nm/250 nm titanium/gold, was then deposited by 
electron beam evaporation (Temescal Model BJD-1800 e-beam 
evaporator). Using standard photolithography techniques the 
metal was patterned to form microelectrodes, contact pads, and 
traces. These steps are summarized in figure 2-1. 25 

Deep reactive ion etching (DRIE based on Bosch process in a 
Plasma-Therm 790 SLR) was used to etch 8 µm wide 150 µm 
deep trenches and holes in the silicon to act as molds for the 
formation of parylene sidewalls and mechanical anchoring holes 
for the parylene film. A 5-7 µm layer of parylene C was then 30 

deposited by thermally activated chemical vapor deposition 
(CVD) using a Specialty Coating Systems CVD chamber (SCS 
PDS 2010). Parylene C tends to have poor adhesive strength to 
silicon and silicon oxide. In order to prevent this from becoming 
an issue, silane adhesion promotor was used.  Furthermore, 35 

trenches and holes previously etched in silicon by DRIE were 
filled by the conformal layer of parylene as its thickness 

  
Fig. 2.  General fabrication protocol for our optical fiber integrated 3D neural probes.  The process is very similar to the one used for our previously 
reported hollow parylene tube shanks.  Please note that we do not show the fabrication of the flexible cables and the interface island for simplicity. 

..

1) Deposit and pattern silicon oxide and gold/titanium layers to form electrical contacts; perform 
DRIE to etch narrow trenches along the borders of the shanks to form sidewalls

2) Deposit and pattern parylene C to form etch holes exposing silicon; perform XeF2 silicon 
etching to form micro-channel trenches, performing excessive etching until the shank is hollow

3) Deposit parylene C to seal the etch holes and form the walls of the microfluidic channels

4) Pattern parylene C layer to expose contact pads, microelectrodes, and open fluidic ports; 
perform deep reactive ion etching of silicon to help shape the device 

5) Perform deep reactive ion etching silicon from the back of the silicon to separate devices and shape 
device sections and penetrating shanks; open back of the fiber guide channel and insert fiber
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devices. To characterize coupling efficiency, the total power of 
the light emitted from the tip was measured in an integrating 
sphere light sensor (Thorlabs S140C) and compared to the power 

from the bare fiber. The coupling efficiency was found to be -5dB 
within the measured range between 80µW and 4.8mW input 5 

power. Bench-top tests measuring the voltage across device 

 
Fig. 6.  In vivo recorded average spontaneous spiking rates presented per light power level.  These average spiking rates were computed for the 
entire 5 minute recording for each power level, including both light on and light off intervals.  Although there is considerable variance, a distinct 
decline in spontaneous spiking can be observed as power increases.  Please note that channels 9, 10, 11, and 16 were not included because they did 
not record a signal with sufficient signal to noise ratio to extract spiking information, presumably because they were broken. 
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electrodes in PBS versus a platinum counter electrode showed no 
voltage response to 550nm light impulses up to 32mW, 
suggesting that the photoelectric effect likely will not contribute 
to voltage signal artifacts during recording. 

Animal Tests 5 

All in vivo experimental protocols were approved by the Wayne 
State University Institutional Animal Care and Use Committee 
under protocol number A04-10-13 prior to implementation. We 
performed in vivo tests in male Sprague Dawley rats. Two weeks 
prior to surgery, we exposed the skull along the right temporal 10 

ridge, drilled three evenly spaced 0.6mm holes above the auditory 
cortex, and performed microinjection at each of these sites. An 
adeno-associated virus vector (titer 4x1012 TU/ml) of 
arhaerhodopsin from the Halorubrum strain TP009 (ArchT, Gene 
Therapy Center Vector Core, The University of North Carolina at 15 

Chapel Hill) targeted to pyramidal neurons was used. Each 
injection was performed in two stages, with 0.5 µl of viral 
suspension injected at the depth of 900 µm from the dura and 0.5 
µl injected at 600 µm. Following injection, the glass micropipette 
remained in place for 5 minutes. 20 

Anesthesia was induced by ventilation of a mixture of air (0.4 
liters/min) and isoflurane (2-3% v/v) via a chamber followed by a 
mask. A craniotomy was performed to provide access to the right 
auditory cortex. Skull, temporal muscle, and dura was removed 
referencing anatomic landmarks to reveal the cortex. A Kopf 25 

Model 1460-61 micromanipulator was used to lower the 3D 
neural probe until it was 0.8-1.0 mm below the cortical surface to 
position microelectrodes in layers 1-3, 4, and 5-6 of the right 
superficial auditory cortex. During the experiment, regular 
irrigation with warm sterile saline was used to protect the 30 

exposed tissue.  
For optogenetic recording, neural probe channels were connected 
to an amplifier and real-time processing system (RZ2, Tucker 
Davis Technologies) with a 25 kHz sampling rate and a 100-3000 
Hz bandpass filter. Although the device has an array of 18 35 

electrodes total, our recording acquisition system only allows 16 
channel recording. As a result, only 16 channels were connected 
for recording. Optics were connected to a 550nm  Laser Centry 
DPSS laser module via a multimodal optical fiber and the total 
input power of the laser varied between recordings. 500 ms 40 

optical pulses with 500 ms inter-pulse periods were controlled by 
our stimulation equipment via an analog TTL control interface in 
the laser. During each recording period, spontaneous multi-unit 
spiking was acquired for 5 minutes with a fixed pulsed power 
level. A zero pulsed power level recording was included as a 45 

control. 
Preliminary acute in vivo optogenetic tests with our fiber optic 3D  
neural probes have been performed in rat auditory cortex using 
arhaerhodopsin, which causes hyperpolarization (and thus 
inhibition) via a proton ion channel mechanism 46, 47. In figure 5a, 50 

a fully packaged 3D device is pictured, ready for implantation 
and acute studies. Although three fibers were inserted into the 
demonstration device imaged in figure 4c, for simplicity only a 
single fiber was inserted into the central shank of the in vivo 
device tested. Figure 5b shows the device mounted to the end of a 55 

micromanipulator arm, which was used to lower the device 
shanks into the superficial cerebral cortex through a small 

craniotomy hole in the rat's skull. A divided red oval on the figure 
serves as a rough diagram of the rat cerebral cortex. The numbers 
indicate the positions of shanks, with the numbers reflecting the 60 

electrode closest to the tip. A red circle indicates the shank with 
the integrated optical fiber.  The complete electrode number map 
is also shown as an inset, with the red circle indicating the point 
of light emission.  We took recordings of spontaneous activity 
with varying levels of pulsed laser power. After signal 65 

conditioning, recordings from individual channels are examined 
for spiking by means of thresholding and average spikes per 
second determined for each signal. A representative portion of the 
conditioned signals during the 0.38mW power pulsed light 
condition used to detect and quantify spiking activity is shown in 70 

figure 5c. Both synchronized and desynchronized spontaneous 
spiking activity (in the form of bursts) can be observed, 
indicating separate recording from individual channels. Note that 
the broad regular spike clusters synchronized to each channel are 
breathing artifacts. A clear difference in spiking rate was not 75 

observed between pulse and inter-pulse intervals within each 
channel. However, a clear difference was observed in the average 
spiking rate (including both pulse and inter-pulse intervals) 
between each power level for individual channels. The lack of 
obvious pulse effect on activity within each recording could be 80 

due to an inter-pulse interval that was too short to observe 
restoration of normal activity. This could also have been due to 
the confounding signals from multiple neurons from this multi-
unit recording. Figure 6 shows the average spiking rate per light 
power level recorded by each active electrode. Please note that 85 

channels 9, 10, 11, and 16 were excluded due to low signal to 
noise ratios that prevented spike quantification, possibly due to 
damage or mis-wiring during assembly. The averaged spiking 
rates between all electrodes decreases with increasing laser 
power, with statistically significant separation (p < 0.01) achieved 90 

at 0.76 mW and 1.52 mW total delivered power (using a two 
sample t-test for unequal variances to compare groups to the 
initial zero power condition). It should be noted that the power 
levels were attempted in the order 0, 0.38, 0.19, 0.09, 0.76, and 
1.52 mW, not in numeric order. All light power levels are 95 

reported in direct power delivery to the neural tissue accounting 
for the 5dB coupling loss of the device. A trend can be observed 
of decreasing spontaneous spiking activity with increasing light 
simulation power. This trend is consistent with the expected 
inhibition induced by arhaerhodopsin. Unexpectedly, the multi-100 

channel recording seems to show weak location specific optical 
modulation of neural activity, instead showing more universal 
optical modulation. This may be the result of a number of issues, 
including weak optogenetic transfection, non-optimal positioning 
of micro injection of transfection vector, confounding multi-unit 105 

signals, and insufficiently small increments in optical power 
levels to properly identify individual modulation thresholds for 
different locations within the grid. This unexpected behaviour 
will be examined in future in vivo studies. 
In order to achieve threshold power for optogenetic modulation, a 110 

range around 1 mW/mm2 has been reported to be required 48. 
With a 100 mW laser at our disposal, the required power density 
for stimulation can be easily achieved. In our preliminary acute in 
vivo optogenetic studies, we found that  0.76 mW and 1.52 mW 
total delivered power showed statistically significant optogenetic 115 
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effects. Clear spontaneous activity recording from individual 
microelectrodes was observed as it has been with our previous 
devices, demonstrating the 3D recording capabilities of this 
device. Combined with an observable suppression of activity at 
higher light power injection, this study has demonstrated our 5 

optical fiber integrated 3D implantable neural probe based on our 
hybrid silicon-parylene design. It should be emphasized that these 
preliminary in vivo results are simply intended as validation of 
device functionality.  More comprehensive in vivo studies are 
planned to provide more rigorous animal data. 10 

Discussion 

Our novel device provides improvements on the recording 
capabilities and assembly simplicity, precision, and robustness 
compared to other optical fiber integrated devices. Although 2D 
silicon devices can be stacked to form a 3D array, our approach 15 

provides another simple yet robust approach to the assembly of a 
3D electrode array.  Further, the integration of an optical fiber in 
other devices is usually reliant on micro assembly techniques for 
precisely positioning the fiber with respect to the microelectrode 
array.  Thanks to the parylene tube structures, our approach 20 

precisely and robustly positions optical fibers with respect to the 
electrode array without the need of micro manipulating aids. 
However, our technology does not seek to provide the same high 
density multi-site optical modulation that integrated waveguides 
offer. In our case, although the integration of multiple optical 25 

fibers is possible, it would significantly complicate device 
implantation and chronic use. In addition, the insertion of only a 
single fiber per shank restricts the total number of possible light 
delivery sites to one per shank. Though still constrained by the 
same limits as other optical fiber based devices, this novel 30 

approach offers advantages for optical fiber integration into a true 
3D array of recording electrodes for 3D neural activity mapping 
of deeper structures within the superficial cortical layers. We are 
currently working on novel waveguide and optical switching 
technology that could enable high density multi channel optical 35 

stimulation. 

Conclusions 

Using methods that we have previously reported to generate 
parylene-walled microchannels and hollow parylene tube shanks 
36, 38, 42, 43, we have demonstrated a 3D recording neural probe 40 

with simply and robustly integrated optical fibers for optogenetic 
study. Microchannels in the device guide optical fibers from 
insertion points on the silicon island into hollow parylene shanks, 
which encase fibers and hold the light emitting tips adjacent to 
recording microelectrodes in a highly precise and robust fashion. 45 

In a preliminary in vivo study in the auditory cortex of a rat using 
the opsin arhaerhodopsin transfected by an adeno-virus vector via 
micro-injection, clear neural electrical activity was recorded in a 
3D array of electrodes, sufficient to quantify the spontaneous 
spiking rate at individual electrodes. Suppression of spontaneous 50 

spiking rates was noted with increasing pulsed light power 
exposure, offering a preliminary validation of the functionality of 
these devices. In the future, we will seek to integrate waveguides 
into our 3D neural probe technology for high-density multi-site 
optogenetic stimulation. 55 
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