
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Lab on a Chip

www.rsc.org/loc

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Modeling and Optimization of Acoustofluidic Micro-Devices†

Philipp Hahn∗, Olivier Schwab and Jurg Dual

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

We investigate how the combination of numerical simulation tools and optimization routines can be used to design
micro-devices. Experimental devices that are designed in this way can only provide optimal performance if the
simulation model, used in the optimization procedure, reflects the real device characteristics accurately. Owing to
this fact, the modeling of acoustofluidic devices is summarized. The mathematical formulation of the optimization
problem, the parameterization of the device design and the implementation of the optimization loop is addressed
alongside with practical recommendations for the chosen genetic algorithm optimization. In order to validate the
implementation, an optimized planar resonator is compared with the optimal geometry given in the literature. The
optimization of a typical 3D micro-device shows that devices can be designed to generate any desired acoustic mode
shape at maximum pressure amplitude. The presented automatic design approach is of great practical relevance for
the development of highly optimized micro-devices and it can speed up and facilitate the design-process in the growing
field of acoustofluidics.

1 Introduction

Ultrasonic standing waves within the fluid cavity of a par-
ticle manipulation device can be generated via piezoelec-
tric excitation. Acoustic radiation forces, caused by the
nonlinear interaction between the time-harmonic acoustic
field and a particle can be used to manipulate particles
in suspension. This allows for contactless handling of
cells, bacteria or other particles, suggesting a wide range
of lab-on-a-chip applications in the life sciences. A com-
prehensive review of theoretical work, experimental se-
tups as well as recent developments can be found in the
acoustofluidics tutorial series.1
Due to the growing performance of computing hard-

ware and the increasing user-friendliness of simulation
software, the numerical modeling of even complex 3D
acoustofluidic devices has become feasible and time-
efficient. For this reason, numerical simulations are an
important tool for the design of new experimental parti-
cle manipulation setups.
To date, the typical design procedure relies on iterative

manual adjustments and parameter studies of the numer-
ical model. Starting with an initial model geometry and
structure, the simulation results are used to evaluate the
shape and amplitude of the Gor’kov potential. Assuming
that viscous effects can be neglected, this potential de-
fines the acoustic radiation forces on small spherical par-
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ticles inside the acoustic field.2,3 Subsequently, the model
geometry is altered until the desired Gor’kov potential is
obtained. Unfortunately, this iterative design process is
time-consuming and requires physical intuition.

In order to differentiate systematically between differ-
ent design levels, the concepts of topology, shape, and
sizing are employed in this paper.4 Clearly, the choice of
a suitable device topology is a fundamental step which
is hard to automate since it requires engineering know-
how. However, once the topology of a simulation model
is chosen, finding the optimal shape and sizing of the de-
vice components is well suited for automation because
this can be parametrized easily. One example is the de-
sign of a particle trap.5 In this case, the shape of the
channel walls could be parametrized and changed until
optimal trapping performance is predicted by the numer-
ical simulation. Another example is the design of a pla-
nar resonator.6 Representing a pure sizing problem, the
thickness of the individual device layers could be changed
until the desired force field in the fluid layer is attained.

The most straightforward way to solve such optimiza-
tion problems is a parameter study where the chosen pa-
rameters are changed stepwise within the relevant pa-
rameter range. However, if the parameter space becomes
large, i.e. the number of relevant parameters and the
number of steps is large, the number of parameter com-
binations, each related to a separate device simulation,
grows extremely fast. If, for example, there are five pa-
rameters which are iterated in 20 steps, a total of 205

simulations are required to search the parameter space
for the optimal solution. Assuming one simulation run
takes 30s, the device optimization would take more than
three years. In order to reduce the computational ef-
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fort, more sophisticated optimization methods have been
developed that make use of trends in the objective func-
tion which quantifies how good the result, corresponding
to a specific parameter combination is.7,8 Deterministic
methods, called mathematical programming, use infor-
mation on the local gradient of the objective function
to achieve fast convergence towards the optimum. How-
ever, these methods usually converge to a local optimum
if the objective function is non-convex.9 Real-world opti-
mization problems often have a large number of local op-
tima and therefore require stochastic approaches to find
the globally best parameter combination.10 Among oth-
ers, genetic algorithms (GA), simulated annealing and
particle swarm optimization are frequently used. In the
present work, we choose GA since they have been ap-
plied successfully to many similar optimization problems
as reported in the literature.11,12

When using an optimization-based design approach, it
has to be understood that the optimization result can
only be as good as the numerical model. To emphasize
this fact, the modeling of acoustofluidic micro-devices is
briefly reviewed. Subsequently, the optimization problem
for acoustofluidic devices is formulated for the solution by
GA. Specifics on the numerical implementation are pro-
vided and the optimization of two devices is detailed. The
planar resonator serves as a proof of concept for the pro-
posed optimization approach. Finally, the optimal design
of a silicon micro-device is shown, comprising all aspects
of a real-life device design problem.

2 Modeling of acoustofluidic Devices

The main goal of numerical modeling in the context of
acoustophoresis is to predict the motion of particles in-
side fluid cavities or channels. The relevant physics is
governed by the Navier-Stokes equation for the fluid,13

the elastodynamic equations for all solid parts of the de-
vice14 and electromechanical coupling at the piezoelectric
transducer.15 At the interfaces between the fluid and the
solid domains, fluid-structure interaction takes place.

2.1 The Basic Device Model

Even though the piezoelectric excitation is purely time-
harmonic, the nonlinear terms in the Navier-Stokes equa-
tions give rise to time-averaged forces on particles in fluid
suspension. Due to the amplitude scale difference be-
tween the time-harmonic and the time-averaged fields,
the problem can be studied in good approximation by
a perturbation expansion for the field variables in the
Navier-Stokes equations.3,16 This approach has the ad-
vantage that numerical problems related to the time scale
difference between the ultrasonic cycle and the transients
as well as the amplitude scale difference between the first-
order time-harmonic and the second-order time-averaged
fields can be circumvented.

If water is used in an experimental setup, as often the
case, the viscous effects on the velocity field can be ne-
glected in the bulk part of the ultrasonic field. Under this
assumption, the first-order stress and velocity fields in-
side the fluid are governed by the acoustic wave equation
which, for time harmonic fields, reduces to a Helmholtz
equation. Hence, the first-order field can be obtained
by a frequency domain analysis of the coupled elastody-
namic, piezoelectric and Helmholtz equations. All time-
harmonic fields A(r, t) can be written in the form,

A(r, t) = Re
[
A(r)eiωt] , (1)

with the angular frequency ω, time t and the complex-
valued magnitude A(r) as a function of the position vec-
tor r. It is understood that the following differential
equations describe the magnitude of field variables cor-
responding to A(r), whereas the position dependence is
omitted from here on. The displacement field ui in the
structural parts of the device is related to the stress field
σij according to the dynamic equilibrium,

σij,j +ρω2ui = 0. (2)

The material density is ρ and it is noted that all differen-
tial equations in this paper are written in index notation
to the orthonormal basis xi ; i= 1,2,3 whereas ,i indicates
a derivative with respect to xi. Further, the kinematic
relations translate the displacement field into the strain
field γij ,

γij = 1
2 (ui,j +uj,i) , (3)

and the constitutive law expresses the stress field as a
function of the strain field σλ = σλ (γµ), whereas piezo-
electric materials show an additional dependence on the
electric field Ek according to σλ = σλ (γµ,Ek). Greek
indices are interpreted as double indices15 and both con-
stitutive laws are discussed in section 2.3. As explained
above, the first-order pressure field p in the bulk of the
fluid follows the Helmholtz equation,

p,ii =−k2p, (4)

with the wavenumber k = ω
c as a function of the speed

of sound c in the fluid. The first-order velocity field vi is
calculated by

vi = i 1
ρ0ω

p,i, (5)

with the quiescent fluid density ρ0. Inviscid fluid-
structure interaction is implemented by velocity conti-
nuity in interface normal direction ni,

iωuini = vini, (6)

continuity of the traction vector in the normal direction,

σijnj =−pnj , (7)

and zero traction in two different tangential directions tj ,

σijtj = 0. (8)
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The calculated time-harmonic first-order solution en-
ters the second-order time-averaged equations as a source
term and causes the acoustic radiation force on all objects
distorting the first-order field inside the fluid. The radi-
ation force can be deduced from the undisturbed first-
order field by analytical expressions that are based on
scattering theory.3 Solutions exist for a number of sim-
ple particle shapes, the most relevant one being for elas-
tic spheres with a radius much smaller than the acoustic
wavelength since particles of this type are used in many
experiments. The original derivation was carried out by
Gor’kov,2 who formulates the radiation force F rad

i as the
negative gradient of the so-called Gor’kov potential U ,

F rad
i =−U,i, (9a)

where U is a function of the first-order field and the
particle-fluid combination according to

U = 4π
3 a3

[
f1

1
2κ0

〈
p(r, t)2〉−f2

3
4ρ0

〈
vi(r, t)2〉] , (9b)

f1 = 1− κ̃, with κ̃= κp
κ0
, (9c)

f2 = 2(ρ̃−1)
2ρ̃+1 , with ρ̃= ρp

ρ0
. (9d)

The time-average of the time-harmonic field variables
can be calculated as

〈
p(r, t)2〉= 1

2 (pp∗) and
〈
vi(r, t)2〉=

1
2 (viv∗i ), where the asterisk denotes complex conjugation.
The particle radius is a and the monopole coefficient f1
depends on the particle compressibility κp = 1

K for a solid
particle with the bulk modulus K and fluid compressibil-
ity κ0 = 1

ρ0c2
0
with c0 specified below in eqn (10). The

dipole coefficient f2 depends only on the particle and fluid
density ρp and ρ0, respectively. A formulation that ad-
ditionally takes into account the viscous boundary layer
surrounding the spherical particle is derived by Settnes
and Bruus,17 including the conditions under which this
viscous correction becomes relevant. Balancing the cal-
culated radiation force plus the buoyancy force with the
well-known Stokes drag on a sphere directly leads to the
particle-fluid relative velocity because inertial effects can
typically be neglected.18 If no analytical expression for
the radiation force is available, it can be obtained from
a numerical simulation of the scattering field around the
particle.19,20 Nevertheless, simulating the trajectory of
complex shaped particles also requires a hydrodynamic
model that is more involved.21

2.2 Advanced Modeling and Acoustic Streaming

Particularly challenging to model are conditions in which
particles are in close proximity to each other or to the cav-
ity walls. In these situations the scattering field of the
particles leads to the so-called secondary acoustic radia-
tion force.22 The viscous boundary layer on the surface of
particles or walls can also become important in this case.

Under these conditions, both irrotational and solenoidal
parts of the first-order field need to be taken into ac-
count.19 However, the secondary acoustic radiation force
is often small in comparison with the primary radiation
force and it decreases very fast as the particle-particle
or the particle-wall distance increases. Nevertheless, the
magnitudes of the secondary and primary acoustic ra-
diation force need to be compared in order to decide if
the secondary force needs to be taken into account un-
der the specific experimental conditions. Certainly, the
secondary forces become relevant if the particle concen-
tration is extremely high or if one is interested in the
final particle configuration when many particles collect
at the same location. The simulation of particle traces
under these conditions is also challenging from a hydrody-
namic point of view since the hydrodynamic drag force
is affected by the presence of other particles or cavity
walls.23

Besides the acoustic radiation force there exists a sec-
ond time-averaged effect called acoustic streaming.24,25

Similar to the radiation forces, this bulk fluid motion
can also be identified as a second-order time-averaged ef-
fect driven by the first-order field. However, the viscous
boundary layers in the first-order field play an essential
role here since they are the main driving mechanism for
the acoustic streaming in mm-sized or sub mm-sized fluid
cavities. Streaming provides another means of manipu-
lating micro-particles by the hydrodynamic drag forces
between particles and the fluid.26 The radiation forces
exhibit cubic scaling with the particle radius, whereas
the streaming drag forces on a fixed particle scale only
linearly with the latter. Depending on the particle-fluid
combination, the resonance mode and the geometry of the
fluid cavity, the different scaling gives rise to a transition
from radiation force domination to acoustic streaming
domination as the particle size is decreased.27 For any
given experimental conditions, it needs to be assessed if
acoustic streaming considerably affects the particle mo-
tion. This step is not straight forward because the ge-
ometry of the fluid cavity and the resonance mode af-
fect the critical particle radius at which the transition
appears. Muller et al. provide a good estimate of the
critical particle radius.28 Particle materials of low acous-
tic contrast lead to a larger critical radius than materials
of high acoustic contrast. Also, it should be considered
that the locations of zero radiation force are solely af-
fected by streaming. From a numerical point of view,
acoustic streaming is still an active field of research be-
cause the resolution of the thin acoustic boundary layers
in a fluid cavity is computationally very demanding but
there are ways to avoid this problem.29,30

2.3 Material Properties and Loss Mechanisms

In addition to the fluid-particle suspension, acoustoflu-
idic micro-devices are typically composed of materials like
piezoelectric ceramics, silicon, glass, metal, and polymers
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in the form of glue layers. As observed in the equations
above, the response of these materials on ultrasonic exci-
tation depends on their elastic properties, i.e. the speed
of sound or the constitutive law. Special care is required
in the device modeling since some of the materials listed
above exhibit anisotropic behavior and show significant
frequency and temperature dependence.
Device resonances are subject to a number of loss mech-

anisms that limit the amplitudes and widen the frequency
bandwidth.19 The losses can be modeled by a complex
speed of sound for fluids and a complex constitutive law
for solids.31,32 This loss model is valid for harmonic fields
under the assumption of low damping and leads to the
complex speed of sound and wavenumber,

c≈ c0
(

1+ iϕ2

)
and k ≈ k0

(
1− iϕ2

)
, (10)

as a function of the dimensionless loss factor ϕ, contain-
ing all relevant dissipation effects in the fluid. It is not
straightforward to predict the loss factor since it depends
not only on the material, the temperature and the fre-
quency but it is also very sensitive on the geometry of the
fluidic cavity and the resonance mode. The reason is the
viscous boundary layer at the fluid structure interfaces
which, in the context of acoustofluidic micro-devices, is a
major source of damping in water.31,33 Only taking into
account the viscous damping in the bulk of the fluid leads
to an over-estimation of the acoustic amplitudes and ra-
diation forces, especially for fluid cavities in the micro-
scale. It is also worth noting that the speed of sound in
water is sensitive on temperature.34

The general constitutive law for a lossy linear elastic
material can be written as

σij = cijklγkl, (11)

where the forth order stiffness tensor cijkl is further split
up according to

cijkl = c′ijkl+ic′′ijkl, (12)

into the storage and the loss tensors c′ijkl and c′′ijkl, re-
spectively.35 For isotropic materials, the stiffness tensor
depends only on the two Lamé parameters λ and µ, re-
ducing the constitutive law to

σij = λγkkδij +2µγij . (13)

This is possible because of the symmetry properties of
the stiffness tensor.14,36 Analog to eqn (12), the Lamé
parameters are split up into storage parameters (λ′, µ′)
and loss parameters (λ′′, µ′′),

λ= λ′+iλ′′ and µ= µ′+iµ′′. (14)

In the context of particle manipulation devices, materi-
als like steel, aluminum, glass, and most polymers are
usually modeled as being isotropic. The storage and loss

parameters can be measured experimentally or they can
be found in the literature.34,37 Unfortunately, most ref-
erences only provide a single loss parameter which is re-
lated to the propagation of dilatational waves. However,
the dissipation in low-loss materials like steel, aluminum
or silicon is typically negligible in comparison to other
loss mechanisms. For these materials, λ′′ and µ′′ can be
neglected in the device model. The loss parameters for
highly dissipative device components like polymer parts
or glue layers can be obtained from literature or measure-
ments. Regarding the constitutive law of monocrystalline
silicon and its temperature dependence, the reader is re-
ferred to the literature.38,39

From the linear constitutive equations of piezoelectric
materials in stress-charge form,

σλ = cEλµγµ−ekλEk, (15a)

Di = eiµσµ+εSikEk (15b)
it becomes evident that the electric field Ek and the elec-
tric displacement field Di are coupled to the mechanical
fields. The mechanical stiffness at constant electric field
is denoted as cEλµ, the permittivity at constant strain is
εSik, and ekλ is the stress piezoelectric coefficient. Val-
ues for the material parameters in eqn (15a) and (15b)
are usually provided by the manufacturer.40 Similar as
above, mechanical, piezoelectric, and dielectric damping
can be implemented via complex stiffness, permittivity,
and stress piezoelectric coefficient tensors.41,42 The losses
show a complex dependence on the driving conditions
and the vibration mode, which makes an accurate mod-
eling difficult. Usually, only the dielectric loss factor and
the mechanical quality factor for one or two fundamental
modes are provided by the manufacturer.40

Additional to the damping in the device materials,
there are loss mechanisms related to surface and the sup-
port of the device.39,43 Losses into the surrounding air
can be neglected if the device is not extremely small or
thin but the so-called anchor loss can play an important
role. This loss is related to the radiation of waves into the
device support or tubes that are necessary for the fluid
supply of flow-through devices. Anchor loss is frequency
dependent since the energy transfer varies with the vibra-
tion mode. Generally speaking, it can be minimized by
having a big acoustic impedance difference between the
device and adjacent parts. However, due to the common
material choice, a soft and light support can be realized
more easily than a stiff support. A simple solution is to
place the device on a base made of foam or tissue paper.
In this way, the anchor loss into the support can often be
neglected. Modeling a relatively dense or stiff device sup-
port or connection tube is more involved. Contact pairs
(e.g. the device and its support) which are not bonded
or sufficiently clamped to each other might have a uni-
lateral or non-uniform contact. This cannot be modeled
easily in a frequency domain simulation. An accurate
treatment of radiation loss into well bonded parts (e.g.
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tubes that are glued to the device) requires the use of per-
fectly matched layers (PML) in the finite element (FE)
simulation.44,45 Since the wavelengths in the device and
in the bounding structure can differ by orders of magni-
tudes, this approach comes with the drawback of a high
computational effort due to fine discretization.

2.4 Remarks on the Numerical Implementation

If all fields vary only in one dimension, the differential
equations above can be cast into the framework of the
transmission line approach, the transfer matrix model or
electro-acoustic equivalent circuits.6,46 These 1D models
are numerically efficient but they can only be applied to
layered resonators with negligible lateral effects. In the
course of miniaturization for lab-on-a-chip applications,
the device dimensions become comparable in all direc-
tions and the geometry is often complex. These devices
require more sophisticated 2D and 3D numerical mod-
els. From the variety of numerical methods for the solu-
tion of differential equations, the finite element method
(FEM) is often chosen for its flexibility and because of
readily available commercial implementations that sup-
port the coupling for multiphysics simulations. The nu-
merical discretization into mesh elements and the element
order affect the accuracy of the simulation.47 Care must
be taken in order to assure that all fields and geometric
features are resolved sufficiently. In this context, conver-
gence studies with increasing mesh sizes are often helpful
to define a suitable meshing setting. Even though glue
layers might be extremely thin, they still affect the device
vibration significantly because the glue stiffness is low in
comparison to other device materials and the dissipation
is high. However, the representation of thin glue layers or
thin cover slides is a challenge in a numerical simulation
because the number of elements in the FE mesh quickly
becomes too large. This problem can be solved by using
thin layer approximations for the glue and plate or shell
elements for thin cover slides.

3 Device Design by Genetic Algorithm
Optimization

With the goal of an automated device design setup in
mind, the effects of secondary radiation forces and acous-
tic streaming, as outlined in section 2, only need to be
incorporated in the numerical model if they are essen-
tial for the device performance. Clearly, this is problem
dependent and the important effects need to be picked
from paragraphs above. In this section, we primarily
want to study the potential of the numerical optimiza-
tion of acoustofluidic devices. Therefore, we focus on
the basic device model as outlined in section 2.1 in or-
der to keep it simple. However, it is emphasized that
in future device optimization studies, the model can be
more complex and e.g. also include streaming effects. In
summary, from here on we consider particles which are

accurately described by the Gor’kov theory, neglecting
the viscous correction to the radiation force as well as
particle-particle and particle-wall interaction. Further-
more, we assume that the device is operating in a ra-
diation force dominated regime and do not incorporate
acoustic streaming in the model. Despite its simplicity,
the chosen model covers a large spectrum of experimen-
tal setups. Acoustophoresis is often used to manipulate
many particles at a time, meaning that the focus is on
the bulk particle motion rather than on single particle
trajectories which might be affected by secondary radi-
ation forces. Small quantitative deviations in the pre-
dicted particle velocities due to the viscous correction of
the radiation force are also less crucial in this context.

In an optimization problem, the objective function
f(p) quantifies the device performance based on the sim-
ulation result for the parameter vector p. Conventionally,
the optimization problem is formulated in a way that a
small value relates to a good performance,8

minimize f(p)
with g(p)≤ 0, h(p) = 0
and pl ≤ p≤ pu.

(16)

The inequality conditions g(p)≤ 0 and the equality con-
ditions h(p) = 0 enforce geometric constraints due to the
device design, whereas the range of feasible parameter
values is prescribed by a lower bound pl and an upper
bound pu.

3.1 Implementation

For the numerical solution of the optimization problem,
the optimization loop depicted in Fig. 1 is implemented.
The initial population consists of random parameter com-

Fig. 1 Flowchart of the numerical genetic algorithm (GA)
optimization loop. After the finite element (FE) analysis of
all parameter combinations in one generation, there is a
fitness evaluation based on the objective function. The
population of individuals (i.e. parameter combinations) is
modified by the GA until a satisfactory solution is found.
The GA uses reproduction, inheritance, and variation to
create a new population of individual parameter
combinations.

binations within the feasible parameter range. The op-
timization loop is terminated as soon as a certain stop
criterion is met, whereas we stop it manually. In our
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implementation, Matlab provides the framework for the
routine because it comes with a ready-to-use genetic algo-
rithm implementation as part of the global optimization
toolbox and it simplifies the code development as well as
the data analysis. The FE analysis of the model is per-
formed in Comsol Multiphysics (version 4.3a) which can
be coupled with Matlab via Comsol LiveLink. In this
way, the parameter vector can be transmitted from Mat-
lab to Comsol Multiphysics and the simulation results
can be read back for the subsequent fitness evaluation.
Unforeseen problems in the FE analysis can appear from
time to time e.g. due to meshing errors for unfavorable
parameter combinations. Since many hundreds or thou-
sands of simulations need to be run during one optimiza-
tion, the probability is high that at least one problem
arises. To avoid crashing of the optimization routine, an
error handling routine is implemented. The numerical ef-
ficiency of the optimization procedure can be improved if
multiple FE simulations, each corresponding to one pa-
rameter combination, are invoked in parallel. For this
reason, a parallel version of the optimization code is used.

3.2 Parametrization of the Device

As mentioned in the introduction, it is reasonable to pre-
scribe the topology of the device and only change the
dimensions or, in some cases, the shape of individual de-
vice components. In this way, manufacturability can be
ensured and over-complex designs are avoided. The key-
question in the parametrization of the device design is
which attributes to choose. The more parameters, the
more flexibility the optimization has to develop a good
design. On the other hand, the more parameters, the
higher the necessary computing time to search the pa-
rameter space for the optimal solution. The computing
time increases with the size of the parameter space. For
this reason, all efforts must be made to keep the number
of parameters (equal to the dimensionality of the param-
eter space) and the parameter ranges as small as possible.
It is one of the main engineering tasks in this automated
design process to identify the parameters which are im-
portant for the device performance and to choose proper
parameter ranges. In addition to the geometric aspects,
it is often reasonable to choose the excitation frequency of
the transducer as an additional parameter. If the dimen-
sions of the transducer are prescribed, the optimization
can still leverage transducer resonances in this way.

3.3 Objective Function

One of the most important steps in the optimization pro-
cedure is the fitness evaluation based on the objective
function since it defines which device design will be con-
sidered optimal. Depending on the task of the device,
different objective functions are conceivable. For a 1D
planar resonator working at the half wavelength mode
for example, it might be sufficient to evaluate only the

maximum force on the particles since the shape of the
pressure field is prescribed by the range of feasible fluid
layer thicknesses. Devices for sensor applications, on the
other hand, suggest an objective function based on the ra-
diation force towards or away from the sensor surface.6
For more complex devices with acoustic fields varying in
two or three dimensions, we recommend a formulation
based on the Gor’kov potential since it contains all infor-
mation necessary to obtain the desired particle motion.
The objective function,

f(p) :=− 1
V

∫
V
U(p)ÛdV, (17)

is essentially a linear integral transform with the kernel Û
and it evaluates both, shape and magnitude of the simu-
lated force potential U(p). The integration is performed
over the relevant fluid volume V and it is normalized with
the latter to avoid a volume dependence. The kernel is
chosen to be the desired normalized force potential. In
this way, the objective function becomes minimal for a
U(p) of high magnitude and of similar shape as Û . For
2D problems, the integration is 2D and the normaliza-
tion is done with the integration surface. In order to
calculate the objective function value f(p) for a specific
parameter vector p, the simulated pressure and veloc-
ity fields are exported from the FE analysis and inserted
in eqn (9a)-(9d). This provides U(p) which subsequently
can be plugged into eqn (17). An objective function based
directly on the radiation force, as defined in eqn (9a),
might be advantageous in some cases but it is not tested
here because eqn (17) led to good optimization results.

3.4 Genetic Algorithm

In this work, the optimization problem eqn (16) is solved
by the GA. They are based on the ideas of reproduction,
inheritance, variation, and selection which are borrowed
from evolutionary biology.10 A population of individuals
is initialized and altered by the above mechanisms over
multiple generations. Each individual represents a set
of parameters, defining the design of the device. In this
sense, the parameters are equivalent to genes and the op-
timization is equivalent to evolution. Each generation, a
new population is created, following a set of adjustable
rules.9 The crossover ratio specifies which fraction of new
parameter combinations, or children, are created through
recombination of current parameter vectors, or parents.
The individuals that led to the best simulation results are
kept in the population, whereas their number is defined
by the elite count. The rest of the children is created
through mutation of current individuals. A large number
of test optimizations with 2D and 3D device models has
been run in order to provide recommendations for a set-
ting which robustly leads to good results. The parents for
crossover and mutation are selected by stochastic uniform
sampling based on a rank scaling of the current popula-
tion. The crossover of two parents into a child is governed
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by the combination of parameters, each picked from one
of the parents in a random fashion. The mutation func-
tion, called adaptive feasible, randomly changes the pa-
rameter vector and ensures that the constraints are still
satisfied. Two elite individuals are kept in the population
and all termination conditions are turned off. Regarding
the population size and the crossover fraction, only a rel-
ative recommendation can be given since they both have
a similar effect and the best choice depends on the op-
timization problem. The larger the number of local op-
tima in the parameter space, the more stochastic search
is needed for a global optimization. This can be achieved
by choosing a large population or a small crossover ratio
since both settings strongly affect the balance between
stochastic and directed search. Each of the local optima
in the objective function corresponds to a resonance with
enhanced radiation forces. The number of these reso-
nances increases with the complexity of the device and
scale with the size of the parameter space. Therefore,
the optimization of a complex 3D device model over a
large parameter space requires a larger population or less
crossover than e.g. the optimization of a planar resonator
over a small parameter space. Another effect which can
be observed in the Matlab implementation is that param-
eters of high magnitude have a stronger influence on the
optimization than other parameters. Therefore, normal-
ization of the individual parameters is recommended but
the effect can also be used to weight the importance of
different parameters.

4 Optimization Results

In this section, two acoustofluidic devices are opti-
mized to provide a proof of concept and to demonstrate
the practical relevance of the developed optimization
setup. All Matlab files and the FE models are provided
as electronic supplementary information.†The compu-
tations are performed on a regular PC equipped with
a quad-core Intel i7-2600K CPU, 32GB RAM (DDR-3
1600MHz) and Windows 7 (64-bit).

4.1 Optimization of a Planar Resonator

The planar resonator has been investigated thoroughly
in the literature.6,46 It is the only acoustofluidic device,
for which a well documented optimization has been pub-
lished. Glynne-Jones et al.6 use a transfer impedance
model for the individual resonator layers and the KLM
model for the piezoelectric excitation. Their optimal con-
figuration is used here as a reference to analyze the pre-
sented optimization setup. As shown in Fig. 2, the layers
of the planar resonator appear in the order: piezoelectric
element, carrier layer, fluid, and reflector with thicknesses
lp, lc, lf , lr, respectively. The thickness of the piezoelec-
tric element is always kept constant at lp = 1mm whereas
the other thicknesses and the excitation frequency f are

Fig. 2 Layered structure of a planar resonator with the
layer thicknesses indicated. It can be analyzed in 1D since
the lateral dimensions are much larger than the thickness.

the optimization parameters. The reflector and the car-
rier layer made of glass are modeled as acoustic domains
with c0 = 6000m/s and ρ0 = 2240kg/m3. Also modeled
as acoustic domain is the water with c0 = 1480m/s and
ρ0 = 1000kg/m3. Both materials are implemented with a
loss factor of ϕ= 0.01 to account for all losses. The piezo-
electric material used by Glynne-Jones et al. is called
PZT4D and modeled with the following parameters of the
KLM model42 for a thickness resonance: speed of sound
c = 4530(1 + i/(2Qm))m/s, mechanical quality factor
Qm = 100, density ρ0 = 7700kg/m3, relative permittiv-
ity εr = 700(1− i tanδ), dielectric loss tanδ = 0.003, piezo
constant h33 = 2.37×109(1 + i[1/(2Qm) + tanδ/2])V/m,
and driving voltage 10Vpp. The optimization is con-
ducted for the half-wave resonance in the water layer
and the objective is to obtain the maximum radiation
force on a particle (spherical polystyrene bead with ra-
dius a= 5µm, density ρp = 1055kg/m3, and bulk modu-
lus K = 4.061GPa) according to eqn (9a)-(9d).

A discussion with the authors revealed that the force
magnitudes presented in the paper of Glynne-Jones et
al.6 are underestimated by up to 13% due to a minor
error in the piezoelectric loss implementation. However,
this has no impact on the trends that were presented and
only little impact on the optimum configurations that
were identified. In their paper, the optimization is visu-
alized by cut planes through the parameter space. Two
layer thicknesses are iterated in a gridwise manner, the
remaining two are kept constant, the frequency is tuned
to the half-wave resonance and the radiation force max-
imum within the fluid layer is plotted. For verification
purposes, Glynne-Jones et al. provided their simulation
code to the authors and Fig. 6(a) of their paper was repro-
duced with the corrected loss implementation as shown
in Fig. 3(a). Here, the maximum radiation force is plot-
ted over the fluid layer (0.27mm≤ lf ≤ 0.50mm) and the
reflector thickness (0.04mm ≤ lr ≤ 1.40mm) while keep-
ing the carrier layer thickness at lc = 0µm. At a fre-
quency of 1.908MHz, the global radiation force maximum
of 294pN appears with lf = 0.36mm and lr = 0.74mm.
The obtained frequency is different from the theoretical
half-wave resonance frequency (2.06MHz) under the as-
sumption of hard walls at top and bottom of the fluid
layer. The difference can be explained by the interac-
tion of the individual device layers. Each layer defines
the boundary conditions for neighboring layers, leading
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to a combination of transmission and reflection at each
material interface. In this sense, it is rather a device reso-
nance with a strong field in the fluid than a pure fluid res-
onance (which does not exist for compliant boundaries)
that leads to the strongest acoustic field.
For the automated optimization, the FE model is set

up as a 2D simulation in order to be able to use a prede-
fined module for the piezoelectric layer whereas symme-
try is enforced to ensure a 1D characteristic. The reflec-
tor, the carrier and the fluid layer are modeled as acoustic
domains with the same parameters as stated above. The
tensors that describe the piezoelectric constitutive law
are taken from Ferroperm40 since PZT4D is equivalent
to PZ26. The loss is accounted for by complex stiffness,
permittivity, and stress piezoelectric coefficient tensors,

cEλµ = c′Eλµ+ic′Eλµ/Qm, (18a)
εSik = ε′Sik − iε′Sik tanδ, (18b)
eiµ = e′iµ+ie′iµ(1/(2Qm)− tanδ/2), (18c)

where c′Eλµ, ε′Sik , and e′iµ are the real-valued parameters
provided by Ferroperm. During the optimization, the ge-
ometry is successively remeshed according to the updated
device geometry. The mesh settings need to be chosen
such that sufficient resolution is ensured for all parame-
ter combination. Here, we choose rectangular elements
of quadratic order with a maximal element size of 5µm
and automatic refinement for very thin layers. In order
to check the simulation results, the cut plane which is de-
fined above is generated using the FE model instead and
shown in Fig. 3(b). The plotted radiation force maxima
match remarkably well with a relative error of less than
1%.

Fig. 3 Maximum radiation force on a 10µm polystyrene
bead in a planar resonator working at the half-wave
resonance. The results are plotted over varying reflector and
the fluid layer thickness as obtained with a 1mm
piezoelectric layer and zero carrier layer. In (a), the device
model of Glynne-Jones et al. is used whereas (b) shows the
results of the FE model.

With the optimum configuration in mind, the FE
model of the planar resonator is optimized as a proof of
concept. This optimization is performed over the whole

parameter space,

1MHz≤ f ≤ 3MHz, (19a)
0mm≤ lc ≤ 1.40mm, (19b)

0.27mm≤ lf ≤ 0.50mm, (19c)
0.04mm≤ lr ≤ 1.40mm, (19d)

with the objective to obtain a maximum radiation force
magnitude on a polystyrene bead, as described above.
The resonance frequency of the transducer is affected by
both its thickness and the boundary conditions to the
top and bottom of the transducer material. Therefore,
the desired transducer resonance frequency which leads
to strong excitation is affected by the other device materi-
als as well as the other layer thicknesses. This uncertainty
is taken care of by exploring a relatively large frequency
range. To comply with the minimizing convention of the
optimization problem, the objective function is the nega-
tive radiation force magnitude within the fluid layer. The
GA settings are chosen as specified in section 3.4 with
arelatively small population size of 100 individuals to ac-
count for the relatively small number of local optima in
the parameter space. The crossover fraction is set to 0.5
and all parameters are normalized with their upper limit
in order to achieve equal weighting in the optimization.
As shown in Fig. 4, the best objective function value ob-
tained in each generation is plotted over a total of 150
generations. Also shown is the mean objective function

Fig. 4 Convergence of a planar resonator optimization.
The objective function corresponding to the best individual
in each generation and the average objective function are
plotted over 150 GA-generations. The objective function is
defined as the negative radiation force magnitude in the fluid
and the population size is 100 individuals. For ten
repetitions of the optimization, the spectrum of best
individuals is visualized as a gray area.

in each generation. The optimization result found after
11.2 hours of computation with four parallel threads is
a radiation force of 294pN and a pressure magnitude of
1.08MPa at a frequency of 1.910MHz with lc = 0mm,
lf = 0.35mm, and lr = 0.94mm. This result is very close
to what is expected given the analysis of Glynne-Jones et
al. and it indicates that the optimization code is working
properly. Nevertheless, it is important to be aware that
there is never a guarantee that the global optimum is
found after a certain time. The optimization is repeated
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ten times to analyze the convergence and the spectrum
of best results obtained in each generation. From Fig. 4
it becomes apparent that the initial generation in the
Matlab GA implementation is chosen randomly but re-
peatably if no constraints have to be fulfilled. During the
first 50 generations, all optimizations converge fast to ra-
diation forces above 200pN. After 120 generations, eight
out of ten optimizations are within 5% of the global opti-
mum. The fastest optimization reaches this level already
after 15 generations.

4.2 Optimization of a 3D Micro-Device

Here, we demonstrate that device design by optimization
is also applicable to 3D micro-devices. As an example, a
device for the positioning of hollow glass particles, similar
to the one used by Leibacher et al. is chosen.48 It is a typi-
cal micro-device with a silicon layer containing the etched
fluid chamber and channels, a glass lid that is bonded on
top of the silicon and a piezoelectric element that is glued
to the bottom of the device. The geometry of the assem-
bled device is shown in Fig. 5. The piezoelectric mate-

Fig. 5 Geometry of the 3D acoustofluidic micro-device for
the positioning of hollow particles in a square fluidic
chamber. The five geometric parameters (l1 to l5) that are
varied by the optimization algorithm define the length of the
middle section as well as the size and position of the
piezoelectric transducer.

rial is modeled with the constitutive equations eqn (18a)-
(18c), the material parameters are adopted from section
4.1 and the polarization is in z-direction. The elastic
properties of monocrystalline silicon are taken from the
literature38 for a (100)-wafer with the x- and y-axis of the
device in 〈110〉 crystal directions. Damping is neglected
for silicon. Glass is modeled as linear elastic isotropic

solid of density ρ= 2240kg/m3, having the Lamé storage
parameters λ′ = 23.1GPa and µ′ = 24.1GPa.37 Due to
the lack of exact Lamé loss parameters, they are approx-
imated from the attenuation of 2dB/m for irrotational ul-
trasound waves at 1MHz.49 The equivalent Lamé loss pa-
rameters are then λ′′ = 9.6MPa and µ′′ = 10.0MPa. Wa-
ter is modeled as an acoustic domain with c0 = 1480m/s
and ρ0 = 1000kg/m3. An FE analysis that includes the
damping due to the viscous boundary layer has been used
to determine the loss factor of ϕ = 0.004 for the desired
mode in the fluid chamber. The thin layer of conductive
epoxy glue (EPO-TEK H20E) between the transducer
and the silicon is modeled with a thin layer approxi-
mation to keep the computational effort at a reasonable
level. The glue has the Lamé parameters λ′ = 3.22GPa,
µ′ = 2.14GPa, λ′′ = 322MPa, µ′′ = 214MPa and a layer
thickness of 20µm.50 For simplicity, the piezoelectric el-
ement is driven at 5Vpp in the simulation. However, if
heat is the limiting factor in an experimental setup, it
is reasonable to alter the driving conditions to constant
power dissipation. In case the anchor losses can be ne-
glected, all energy in the device is eventually dissipated
into heat, which is why the total power dissipation is
equal to the power consumption of the piezoelectric ele-
ment. This power consumption is calculated easily in an
FE analysis and the acoustic field variables scale linearly
with the actuation amplitude. Therefore, constant power
dissipation can be enforced easily for all frequencies and
parameter combinations. The governing equations and
fluid-structure interaction are implemented as described
in section 2.1. Radiation into surrounding materials is ne-
glected since it is assumed that the device is surrounded
by air and placed on foam. For this reason, the stress free
boundary condition is applied everywhere on the device
surface. The FE analysis solves for approximately 300000
degrees of freedom using a relatively fine mesh (around 20
elements per wavelength in water) that consists of around
70000 tetrahedral elements of quadratic order. One sim-
ulation run takes around 72 seconds. Of course, the suc-
cessive remeshing due to the changed geometry changes
these numbers. Care must be taken in the choice of the
meshing settings to ensure that the mesh quality is not
compromised by unfortunate parameter combinations.

Hollow glass particles with a radius of 9.95µm and the
scattering coefficients f1 = 0.602 and f2 =−0.362 in wa-
ter can be positioned in the center of the square fluid
cavity if the so-called (1,1)-mode with the pressure field,

p= p̂sin(πx/lfc)sin(πy/lfc), (20)

is excited.48 Herein, p̂ is the magnitude of the pressure
field and the coordinates x and y are centered in the
square cavity of side-length lfc = 1.2mm. The normalized
absolute pressure field in the fluid cavity is visualized in
Fig. 6(a). The corresponding force potential is calculated
by inserting eqn (20) and (5) into the Gor’kov potential
eqn (9a)-(9d). The result is the reference force potential
for the optimization since optimal positioning of particles
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Fig. 6 The normalized absolute pressure field |p| and the
kernel Û of the objective function are plotted in (a) and (b),
respectively. They are both calculated based on the
theoretically optimal pressure field eqn (20). The particles
gather at the minimum of the kernel function in the center
of the chamber.

in the center of the cavity is expected at this mode. As
shown in Fig. 6(b), the kernel Û for the objective function
eqn (17) is therefore obtained through normalization of
the calculated Gor’kov potential. Theoretically, not only
eigenmodes but any arbitrarily function could be chosen
as kernel and the optimization would still lead to a force
potential that fits as good as possible. However, if the
FE analysis is a frequency domain simulation of a single
frequency, the range of attainable shapes is rather limited
because the wavelength is prescribed. It is important to
be aware that the boundary conditions at the fluid cavity
need to be suitable for the desired mode. This means,
the device topology has to be chosen properly beforehand
since it defines e.g. what kind of materials are bounding
the fluid at which position. In the presented example,
the cavity walls have a higher acoustic impedance than
water, allowing pressure peaks to form at the boundaries.
Furthermore, the inlet and outlet channels are located
at the pressure minimum of the desired acoustic field to
reduce the pressure amplitudes at the locations where it
is not needed. In this way, the acoustic energy is focused
in the square cavity, leading to high amplitudes.
The set of optimization parameters is chosen with the

objective to minimize the size of the parameter space, yet
retaining all important degrees of freedom for the opti-
mization. As specified in Fig. 5, the geometric parameters
include the size and the position of the piezoelectric ele-
ment as well as the length of the middle device section.
Symmetry is used to reduce the parameter ranges, i.e.
in the bottom view of Fig. 5, the position of the upper
left transducer corner can be limited to the upper left
quarter of the device area without loss of generality. The
excitation frequency is another optimization parameter.
Assuming a perfectly rigid and square cavity, the (1,1)-
mode appears at a frequency of 0.872MHz.48 In the FE
simulation of the device, the desired mode develops at a

similar frequency. In summary, the optimization param-
eter space is,

0.8MHz≤ f ≤ 0.9MHz, (21a)
3.0mm≤ l1 ≤ 6.0mm, (21b)

0mm≤ l2 ≤ 4.0mm, (21c)
0mm≤ l3 ≤ 1.5mm, (21d)

1.0mm≤ l4 ≤ 8.5mm, (21e)
1.0mm≤ l5 ≤ 4.0mm, (21f)

whereas the inequality constraints,

l2 + l4− l1 ≤ 2.5mm, (22a)
l3 + l5 ≤ 4mm, (22b)

enforce that the piezoelectric element does not protrude
over the edges of the silicon layer. The GA optimization
is set up as specified in section 3.4 with a population size
of 100 individuals and a crossover fraction of 0.5. All pa-
rameters are normalized with their upper limit in order to
achieve equal weighting in the optimization. As shown in
Fig. 7, the best objective function value obtained in each
generation is plotted alongside with the average value of
the objective function over a total of 40 generations which
took 42 hours to compute using four parallel threads. The

Fig. 7 Convergence of a 3D micro-device optimization. The
objective function corresponding to the best individual in
each generation and the average objective function are
plotted over 40 GA-generations. The objective function is
based on the Gor’kov potential as defined in eqn (17).

optimization converges fast and reaches the best objec-
tive function value of −1.94×10−13Nm4 after 40 gener-
ations. The parameters corresponding to this best device
design are f = 0.840MHz, l1 = 3.59mm, l2 = 0.635mm,
l3 = 0.125mm, l4 = 2.80mm, and l5 = 2.51mm. The
obtained absolute pressure field with a magnitude of
2.63MPa and the corresponding Gor’kov potential are
shown in Fig. 8. In relation to measured pressure am-
plitudes of up to 2.4MPa,51 the optimization delivers an
exceptionally strong acoustic field and by a comparison
with Fig. 6, it becomes evident that the optimization pro-
duces the desired mode shape. This means, the optimiza-
tion setup is able to design a device that is tailored for
the specific application defined by the objective function.
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Fig. 8 Optimized device geometry. The obtained absolute
pressure field and the Gor’kov force potential for the hollow
glass particles are plotted in (a) and (b), respectively. The
maximum force on the hollow particles reaches 1.2nN.

5 Conclusion

The design process of acoustofluidic micro-devices in-
creasingly relies on numerical simulations in order to
achieve good device performance. However, finding a
suitable geometry manually is very time consuming and
often leaves a large margin for improvements. We have
demonstrated that devices can be developed in an au-
tomatic fashion using numerical optimization. We em-
phasize that the full picture of all relevant physical phe-
nomena, the numerical modeling, and the optimization
process must be understood in order to implement a suc-
cessful device design setup. We have given an overview
of the numerical modeling of acoustofluidic micro-devices
with a focus on the damping mechanisms which cru-
cially affect the attainable radiation force magnitudes.
These damping effects are difficult to implement accu-
rately due to their complexity and the lack of precise
material loss information. Details of our design by opti-
mization implementation have been provided.† Our setup
has been tested successfully with a planar resonator and
converged to the established optimal geometry. Illustrat-
ing the practicability of the presented approach, a typ-
ical 3D micro-device for the manipulation of a specific
particle type has been designed for optimal positioning
capabilities at a predefined location. Even though the

GA optimization works well and robustly, there is a po-
tential to reduce the computational effort through hybrid
approaches that combine stochastic and deterministic op-
timization.11

The main result of work is a numerical setup that can
automatically design acoustofluidic devices. Compared
to the repeated iteration of design and experiments or
the manual optimization of numerical device models, our
approach can save time and results in device designs of
superior acoustophoretic performance. As the field of
acoustofluidics is moving towards commercial lab-on-a-
chip applications, optimal device performance becomes
increasingly important whereas our automatic design by
optimization approach is a flexible and powerful method
to achieve this goal in a time-efficient manner.
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Graphical abstract 

 

Design by optimization reduces the development time of new acoustofluidic micro-devices and 

maximizes their acoustophoretic performance. 
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