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Cation-Selective Electropreconcentration 

Il Hyung Shin,§a Ki-jung Kim,§a Jiman Kim,a Hee Chan Kim,*a and Honggu 
Chun*b 

A cation-selective microfluidic sample preconcentration system is described. The cation 
sample was electropreconcentrated using a reversed-direction electroosmotic flow (EOF) 
and an anion-permselective filter, where an electric-double-layer (EDL) overlap condition 
existed. The anion-permselective filter between microchannels was fabricated by three 
different methods: 1) extending a positively charged, nanoporous, polymer membrane by 
photopolymerization of poly(diallyldimethylammonium chloride) (PDADMAC); 2) etching 
a nanochannel and then coating it with a positively-charged monomer, N-[3-(trimethoxy-
sillyl)propyl]-N-(4-vinylbenzyl)ethylenediamine hydrochloride (TMSVE); or, 3) etching a 
nanochannel and then coating it with a positively-charged, pre-formed polymer, polyE-323. 
The EOF direction in the microchannel was reversed by both TMSVE- and polyE-323 
coatings. The cation-selective preconcentration was investigated using charged fluorescent 
dyes and TRITC-tagged peptide/proteins. Preconcentration in the three different systems 
was compared with respect to efficiency, dependence on buffer concentration and pH, 
tolerable flow rate, and sample adsorption. Both TMSVE- and polyE-323-coated 
nanochannels showed robust preconcentration at high flow rates, whereas the PDADMAC 
membrane maintained the anion-permselectivity at higher buffer concentrations. The 
TMSVE-coated nanochannels showed a more stable preconcentration process, whereas the 
polyE-323-coated nanochannels showed a lower peptide sample adsorption and robust 
efficiency under a wide range of buffer pH values. The system described here can 
potentially be used for the preconcentration of cationic peptides/proteins on microfluidic 
devices for subsequent analyses.  
 

1. Introduction 

Various sample preconcentration methods have been developed 
for improving detection sensitivity.1-16 Among these, 
electropreconcentration has advantages of simple and 
straightforward implementation in a lab-on-a-chip setup, high 
efficiency for charged biomolecules, not requiring of spatial or 
temporal buffer changes, and good compatibility with 
subsequent analysis techniques, for instance capillary 
electrophoresis (CE).1 Wang et al. demonstrated a million-fold 
preconcentration of peptide and protein samples using a 
nanochannel within a T-shaped microchannel; the 
preconcentration occurred on the anodic side of the 
nanochannel.12 
Electropreconcentration is accomplished by applying an electric 
field across a nanochannel (or nanoporous membrane) that 
spans two microchannels when the electric-double-layer (EDL) 
approaches an overlap condition within the nanochannel.17, 18 
Under these conditions, the co-ion transport across the 
nanochannel is suppressed owing to the creation of a 
concentration polarization region at the micro/nanochannel 
interface. Consequently, the nanochannel becomes ion-
permselective, allowing ions of the same charge as the 
nanochannel to be concentrated.1, 19 
The majority of previous electropreconcentration studies were 
based on an anionic nanochannel or polymer, hence limited to 
anionic samples.1, 7, 12-14, 20, 21 Many analytical methods, 

however, requires cationic samples. For example, electrospray 
ionization mass spectrometry (ESI-MS) coupled with reversed-
phase liquid chromatography (LC) or capillary electrophoresis 
(CE) uses acidic buffer with a pH lower than sample 
peptide/protein pI, resulting in samples to be cationic.22-25 A 
cation-selective preconcentration can significantly enhance the 
detection sensitivity for cationic analytes; this can be used to 
monitor the toxic cationic coagulants26 after water purification. 
Furthermore, a combination of both an anion- and a cation-
selective preconcentration system can actively select samples of 
specific pI range using the buffer pH to control the sample 
charge polarity. 
Previous studies have predicted that cation-selective 
preconcentration may require surface coating.1, 27 Recently, 
Sheridan et al. reported a cation-selective preconcentration 
experiment using a bipolar electrode focusing technology with 
limited concentrating rate and time.28 In this study, we report a 
stable, high-yield cation-selective electropreconcentration on a 
microchip (Figure 1). The chip incorporates either an anion-
permselective nanochannel, or a positively charged polymer 
membrane within the microchannel intersection. N-[3-
(Trimethoxysilyl)propyl]-N-(4-vinylbenzyl)ethylenediamine 
hydrochloride (TMSVE) or polyE-32324, 29, 30 was used for the 
positively-charged surface coating of the anion-permselective 
nanochannel. On the other hand, a positively charged polymer, 
poly(diallyldimethylammonium chloride) (PDADMAC)31 was 
prepared by photopolymerization in the microchannels, forming 
the anion-permselective polymer membrane. For the three 
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the PDADMAC membrane is believed to be smaller than the 
nanochannel depth (40 nm), maintaining the EDL overlap 
condition at a higher buffer ionic strength. The tolerable electric 
field, hence the flow rate, was higher in the polyE-323- or the 
TMSVE-coated-nanochannel system compared to that in 
PDADMAC-membrane system. Preconcentration in the polyE-
323- and TMSVE-coated-nanochannel systems was stable 
when the difference of potentials applied at the S and W 
reservoirs was as high as 4 kV, whereas the PDADMAC 
membrane was broken at a potential difference of 500 V.  
During cation-selective preconcentration of biological samples, 
the adsorption of the sample onto the glass surface could result 
in surface charge modification, flow instability, and loss of a 
potentially irreplaceable sample. Experimental data showed less 
peptide adsorption in the polyE-323-coated-nanochannel 
system compared to the TMSVE-coated-nanochannel system 
(see Supplementary Information, Sample adsorption).  

4. Conclusions 

Herein we describe the cation-selective electropreconcentration 
using anion-permselective TMSVE- or polyE-323-coated 
nanochannels or a positively charged nanoporous polymer 
(PDADMAC) placed between the positively-surface-coated 
microchannels. Preconcentration was robust in both polyE-323- 
and TMSVE-coated-nanochannel systems in a buffer of low 
(~1 mM) ionic strength, whereas the same was true for the 
PDADMAC-membrane system at a high (~10 mM) ionic 
strength. The electric-field tolerance and the flow rate were 
higher in both polyE-323- and TMSVE-coated-nanochannel 
systems than those in the PDADMAC-membrane system. The 
polyE-323 coating showed a better performance over different 
pH values, and a weak sample adsorption compared to the 
TMSVE coating. Cation-selective preconcentration is essential 
for biological sample analyses in acidic buffer. This work can 
be extended to the serial coupling of cation- and anion-selective 
preconcentrations to selectively preconcentrate samples having 
a specific range of pI by changing the pH of the buffer. 
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