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A SIMPLE PROCEDURE TO SELECT A MODEL 

FOR MASS DISCRIMINATION CORRECTION IN 

ISOTOPE DILUTION INDUCTIVELY COUPLED 

PLASMA MASS SPECTROMETRY 

J. Terán-Baamondea, J. M. Andradeb (*), R. M. Soto-Ferreiroc, A. 
Carlosenad and D. Pradae 

A fast, simple and straightforward procedure to decide on the best model to calculate the mass 

discrimination factor in Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-

MS) is proposed. It is based on the study of the residuals of the different models that are 

proposed commonly, viz., the linear, the exponential, the power and the Russell`s models. 

However, it can be generalized to evaluate any model proposed to linearize the relationship 

between the theoretical/measured isotope ratios and the mass. The procedure does not involve 

laboratory extra work, it is rooted on basic statistics associated to the least squares fit, and can 

be applied easily by the analysts so that decision-making is fast and reliable. The procedure was 

exemplified with four different examples where Cd, Cr, Nd and Sm were determined by ID-ICP-

MS.  

KEY WORDS Isotope dilution-ICP, Mass discrimination factor, linearization, residuals, least 

squares fit 

 

Introduction 

Isotope dilution inductively coupled plasma mass spectrometry 

(ID-ICP-MS) has become a work horse technique to quantify 

metals at trace and ultra trace levels, study their species and, 

more recently, determine proteins (using either inespecific and 

species-specific methods).1-3 This can be explained, amongst 

other considerations, because isotope dilution mass 

spectrometry (ID-MS) was recognized as a definite primary 

method, meeting the highest metrological standards, by the 

‘Comité Consultative pour la Quantité de Matière (CCQM)’ 

and so its results are directly traceable to SI units.4 

Further, in most ID-MS applications the typical working 

calibration graphs based on the use of calibration solutions of 

different quantities of the analyte may be avoided. This saves 

costly instrument time and makes ID-MS applications much 

more robust than conventional methodologies so less-careful 

sample preparation is required. Also, ID-MS procedures are 

more accurate than conventional methodologies, so that fewer 

quality-control failures are to be expected.5 

However, adequate training of laboratory staff is required as 

ID-ICP-MS needs a careful and laborious optimization in order 

to look for the best measuring conditions that yield a reliable 

and traceable working chain. A relevant issue here is to recall 

that a mass discrimination occurs in ICP-MS when ions of 

different mass are transmitted through the spectrometer, leading 

to different efficiencies in the transport of the ions which results 

in non-uniform sensitivity across the mass range and inaccurate 

isotope ratio measurements.6 Following, ICP-MS devices may 

yield biased isotope amount ratios 7 and, therefore, mass 

discrimination must be corrected for using a correction factor, 

termed mass discrimination factor, K (it is often presented, 

simply, as the ‘mass bias’ or ‘mass bias factor’, or ‘mass bias 

factor per unit mass’). This is defined as the quotient between 

the true and the measured mass ratios for a pair of given 

isotopes and so it underlines that the instrumental system may 

yield a systematic error regarding the correct mass ratio.8-10 

It is worth noting that K is defined and determined locally for a 

specific isotope pair. This raises a further potential difficulty as 

K may incorporate contributions from unsuspected spectral 
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interferences which could vary from sample to sample and, 

thus, make it unrepresentative of the bias obtained for adjacent 

masses.6 

In general, two approaches exist to correct for mass 

discrimination, measured by K.11 First, external standardisation, 

where the isotope ratio of interest is measured in a standard 

solution of exactly known composition of the analyte to be 

analyzed, and the experimental bias is used to correct for the 

same ratio in the unknown sample. This allows the mass 

discrimination factor to be measured at the same masses as the 

analyte, and approximately at the same abundances. Second, 

internal standardisation determines the mass discrimination 

factor of the isotope ratio of interest in the unknown sample 

solution by means of either a known isotope ratio of an element 

added to the sample for that purpose, or using a pair of 

invariant isotopes of the analyte element.6 Another relevant 

issue is that K can drift throughout the experiment time and, 

thus, it must be determined periodically. A standard bracketing 

sequence is adopted usually, yielding low throughput.10 

The relative magnitude of mass discrimination can be 

ascertained using multielemental molar-response curves by 

which the response observed in the detector is measured as a 

function of the ion transmission efficiency through the system.5 

In general, these curves have to span through a range of 

mass/charge values, are complex and depend on the instrument 

at hand. To make them useful it is necessary to model them 

functionally. All models calculate a corrected isotope ratio 

(Rcorr) from an experimentally-measured one (Rexp), the 

absolute masses of the isotopes (mi and mj), or the mass 

difference between the isotopes (∆M), and K (the mass bias 

factor, which must be determined empirically).  

Three functions are of general use; viz. the linear, the 

exponential and the power ones. They were critiziced somehow 

by Ingle et al.6 because they predicted that the bias was 

dependent on the mass difference and not on the absolute mass. 

Besides, they have a common origin and the former two may be 

considered as approximations to the power model.6,12 Further, 

in these functions K should be considered as the mass bias per 

unit mass and it is assumed to be constant across the mass range 

and proportional, which is not totally correct.6 This explains 

why the Russell’s model became popular because it avoids 

these problems as it uses the mass of the two isotopes.  

Even though the models might yield similar mass bias factors, 

inaccuracy may arise from the use of an inappropriate one.13 

Accordingly, the selection of the most suitable functional 

model is not trivial. Indeed, that calculating the mass bias factor 

is far from a standardized procedure is demonstrated by the 

existence of several approaches. Some can be mentioned here 

(a complete review is out of the scope of this technical note). K 

was determined as the ratio between the theoretical, or true, 

isotope ratio and the same ratio measured experimentally.8 

Then, K can be applied using either a bracketing approach or a 

mathematical model.4, 6, 14 The use of several internal reference 

isotope pairs was compared against the classical approaches 

mentioned above.11 This implied the use of a polynomial 

function and the so-called ‘common analyte internal 

standardization’. The results emphasized the importance of a 

proper mass discrimination correction (along with the need for 

a selection of an adequate internal standard). 

To complicate things further, the reasons why a model was 

selected have not always been clarified.15-17 

Following, this paper aims at presenting a fast and simple 

procedure to select the best model to calculate the mass 

discrimination factor in ID-ICP-MS. The key idea is to study 

and compare the residuals of the different linearized models. 

Here we will consider the most common ones; viz., the 

exponential, the linear, the power and the Russell’s models, 

although the procedure can be generalized to any other. Four 

examples will be considered where Cd, Cr, Sm and Nd were 

determined. 

Evaluation of the mass bias factor per unit mass 

From a pragmatic viewpoint, the most convenient way to model the 

instrumental mass discrimination is to relate a suite of theoretical 

isotope ratios (Rtheo) to their corresponding empirical values (Rexp), 

calculate K and, then, use it (along with Rexp) to calculate a corrected 

ratio (Rcorr) for the unknown. In general, K is involved in an 

algebraic equation describing a curve but it can be calculated 

straightforwardly whenever a linear model is used instead.6, 8 

As discussed in the previous section, the empirical relationship 

between Rtheo, Rexp and the two isotope masses can be described in 

different ways, among which four outstand in literature: the linear 

(straight line), the exponential, the power and the Russell’s models. 

They are depicted in the second column of Table 1. As their direct 

use is not trivial, common practice is to linearize them to get simpler 

and more straightforward equations (see third column of Table 1). 

To select the best model for a particular problem it was proposed to 

fit the four linearized models and to study the straight lines obtained 

by plotting the Rtheo/Rexp ratio (or a logarithmic form) against the 

mass difference (or logarithm of the masses, in the Russell’s 

model).5 However, this approach is subjective and prone to errors 

because the significance of those plots is not immediate and a sound 

decision-making is not possible.  

Fortunately, basic statistics associated to the straight line (or first-

order) least squares fit yield very simple and reliable criteria to judge 

on the adequacy of each linearized model.18-20 Note that the 

expression ‘straight line fit’ will be used throughout the text to 

denote that the models are converted to a straight line function. The 

term ‘linear fit’ and the like are not of sufficient quality to assure 

traceability of the calculations because, after all, any mathematical 

relationship is ‘a line’. Analogously, the term ‘linearization’ is used 

to denote an algebraic transformation from a (usually) complex 

mathematical expression to a straight line equation, whose 

parameters are of interest (here, the slope K). 
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Although the conceptual idea is really simple, it is worth 

remembering some basic statistics. More details and extensive 

explanations can be found in the references given herein. 

Review of some concepts associated to the straight 

line fit 

In a typical model, two variables are related as y=f(x) + ε, where f(x) 

is a mathematical function that relates y to x (it is common practice 

to select a straight line function but other possibilities exist, and the 

choice is under the analyst’s responsibility based on his/her 

experience and/or experimental data). Note that the model is a mere 

working hypothesis, which must be modified if the experimental 

data are against it. Finally, ε is the random error, or information not 

modelled by the calibration function, which is associated to the 

variable response and denotes how closely the model resembles the 

measured signals. It is reasonable to accept that the smaller the 

random errors are, the better the model is. Therefore, how can we fit 

the best model through a swarm of points? A quite intuitive solution 

is to look for a model that adheres as much as possible to each and 

every experimental point so that minimizes the average difference 

between the experimental signals and those predicted by the model. 

Hence, the common criterion by which the sum of the squared 

differences between the measured signal (yexp) and that predicted by 

the model (ypred) is minimal was accepted as a natural fitting 

criterion.18-20 The differences (ypred - yexp) are referred to as 

‘residuals’. This is the (ordinary) least squares criterion (OLS or LS). 

Despite its widespread and ubiquitous usage the OLS criterion has 

three basic mathematical assumptions that are less broadly known:18-

22  

i) the experimental errors occur only in the direction of the 

signal to be measured, y.  

ii) the errors in the y-direction are normally distributed. This 

means that the resulting errors associated with the analytical 

signals should follow a normal distribution. 

iii) the errors in the y-direction are independent and of the same 

magnitude regardless the x values. This property is referred 

to as ‘homoscedasticity’ (the opposite situation is called 

‘heteroscedasticity’). Its presence simplifies the calculations 

and gives rise to the usual unweighted least-squares line. 

 

Statements ii) and iii) above constitute two cornerstones to assure 

whether a model fit is acceptable. Since the OLS criterion is a 

universal procedure to fit functions, it does not guarantee by itself 

that the model under scrutinity is correct. In order to accept it, we 

must assess that these two requisites hold on. There are different 

statistical tests to evaluate the models but most of them should not 

be used due to the usual low number of data points employed to fit 

the model23 (this will be considered later). Therefore, a suitable 

alternative consists of a graphical visualization and evaluation of the 

residuals associated to our (temptative) model. 

Homoscedasticity of the fit must be assured and, fortunately, can be 

visualized easily. First, the absence of outlying points must be 

checked as they may strongly bias any model in different ways,24 see 

Figure 1a and Figure 1b for a general, conceptual idea on how 

strongly an outlier will influence the regression. In general, outliers 

situated in extreme positions affect more the fit (rotational effects).22 

Check that all points do follow a unique trend; in case a point 

behaves anomalously, consider rejecting it and recalculating the 

model. Sometimes, decisions are not immediate and plotting the 

residuals will help. This can be done straightforwardly in any 

spreadsheet, less than a minute, and it may yield enormous benefits. 

Any data point with a too high residual is suspicious (more formally, 

a point whose standardized residual is around 3, or higher, should be 

considered as an outlier23). Next, check for the absence of visual 

trends in the residuals (Figure 1c and Figure 1d). In particular, 

parabolic trends are frequent (Figure 1d) and they mean that a 

straight line does not fit the experimental data properly. If a clear 

trend is not visualized, all residuals are more or less randomly 

distributed, and are of the same magnitude (Figure 1c), it can be 

reasonably assured that they are normally distributed and that they 

have common variance (another requisite of the OLS 

methodology).20 Normality can be studied more formally using 

statistical tests, as those described in the next section, where more 

details are presented. 

It may surprise that so much emphasis is put on graphical decision-

making but this can be explained quoting NIST: ‘Numerical methods 

for model validation are useful, but usually to a lesser degree than 

graphical methods. The latter have an advantage […] because they 

readily illustrate a broad range of complex aspects of the 

relationship between the model and the data’.25 

Experimental 

Data sets 

Four case studies will exemplify the working methodology proposed 

here. Two of them deal with the determination of Sm and Nd and 

were used as tutorials in a recent textbook.5 They present a situation 

where replicates of the experimental ratios are not considered 

explicitly to set the model. The other two examples are about 

determining Cd and Cr by ID-ICP-MS, using a cuadrupole analyzer 

equipped with a kinetic energy discrimination cell. They correspond 

to an ongoing study in our laboratory to measure some 

environmentally relevant metals in sediments. Replicates of the mass 

isotopes are presented and, therefore, will be applied to illustrate the 

use of the lack-of-fit test (LOF). In addition, Cr was selected because 

of the low number of isotopes and their low mass (compared to the 

other elements in the present work). 

The experimental isotope ratios were obtained from measurements 

carried out on Cd and Cr standard solutions of natural isotope 

composition for ICP analysis (Sigma Aldrich) whose theoretical 

isotope abundances were obtained from IUPAC.26 Table 2 compiles 

the experimental results. 

Working methodology 

In the following, the different candidate models will be 

considered in their functional linearized straight line forms and 

the unweighted OLS fit obtained for each one. The first step in 

selecting a model is to inspect visually the residuals (potential 

outliers, relative magnitudes of the residuals and absence of 
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clear trends) and to study the statistics associated to the 

regression line (the standard error of the fit, or residual standard 

deviation, Sy/x). A careful inspection and a bit of experience are 

usually enough to get sound decisions, as it will be shown next. 

Note that as a referee pointed out, the units of Sy/x depend on 

the particular transformation undergone by the data. Hence, to 

compare them it is necessary to get rid of the scales. A natural 

way would be to divide Sy/x by an average value (like the 

classical relative standard deviation, RSD). However, this is not 

possible here because the average value of the residuals is zero. 

To circumvent this problem, the average absolute error (i.e., the 

average of the absolute value of the residuals), |����������|, is 

proposed here to get a sort of ‘relative standard deviation of the 

fit’, RSDF as: RSDF=100*((Sy/x) / |����������|. As classical RSD, it 

shows the extent of the variability of the residuals in relation to 

the average value (of the absolute residuals). 

In addition, two traditional scale-independent statistics were 

also considered: the coefficient of determination (R2) and the 

lack-of-fit test (which must be derived from an Analysis of 

Variance –ANOVA- study when replicates are available).27 

Both are used to evaluate the adequacy of the model to the 

experimental data. In simple linear regression, the former 

equals the squared correlation coefficient (given in percentage), 

but this cannot be generalized to other situations and it is a 

rough approach to evaluate goodness-of-fit. The lack-of-fit test 

is an F-test which determines whether the residual information 

can be associated to the experimental random errors or to 

‘something’ else (i.e., the model has not been able to capture all 

the relevant variance in the data points and therefore causes a 

‘lack-of-fit’). Though both tests can be used to compare among 

different regression models, they should be used in conjunction 

with the residual plots because they are not powerful enough to 

assure by themselves that the model is suitable 28,29 (a typical 

problem is that even curvilinear models can exhibit very good 

figures in both parameters).  

Then, statistical tests can be applied to check for normality of 

the residuals. A normal probability curve (available in most 

common software) will also simplify decision-making. 

However, as mentioned above, usual calibrations in Analytical 

Chemistry do not imply many experimental points due to work, 

time and resources constraints. As a consequence, it is difficult 

(sometimes impossible) to rely on sound statistics for decision-

making due to the low power of the tests (very few degrees of 

freedom). Non parametric statistics might constitute a powerful 

alternative but, again, they are not good enough when very few 

data are available. A clear example here was the impossible 

application of the non parametric Wald-Wolfowitz’s runs test 

(to check for a random distribution of the residuals) to the Nd 

and Sm examples due to a lack of tabulated values for such a 

small number of runs (because of the few data points). 

Here, the standardized Kurtosis and Skewness were calculated 

as a way to describe whether the distribution of the residuals is 

symmetric and without tails. Then, the non parametric sign test 

and the Wilcoxon’s signed rank test were used to check 

whether the residuals are distributed randomly. Finally, the 

Kolmogorov-Smirnov’s and the Shapiro-Wilk’s tests (the latter 

is more powerful than the Kolmogorov-Smirnov’s one when 

few data are available) were used to check whether the 

distribution of the experimental residuals is compatible with a 

Gaussian one.22  

Figure 2 resumes the working procedure conceptually. 

Software 

The statistical studies were performed using Excel® and 

Statgraphics (StatPoint Technologies, Inc., Warrenton, VA, 

USA). 

Results and Discussion 

Case study 1 and 2: selection of the model when determining Cd 

and Cr 

Table 3 resumes the results of several statistical tests calculated 

on the residuals of the different models whereas Figure 3 and 

Figure 4 depict the residuals associated to each model and each 

example, along with the standard error of the calibration (Sy/x), 

the relative standard deviation of the fit (RSDF), the coefficient 

of determination (R2) and the lack-of-fit test (LOF). 

With respect to Cd, a replicate was rejected because it had an 

outlying behaviour throughout the studies (see Table 2). The 

linear (straight-line) fit presents a rather clear parabolic pattern 

(Figure 3) and, so, it has to be discarded. This model shows 

also a significant lack-of-fit (95% confidence) and, accordingly, 

it is not suitable for our purposes. The other models do not 

exhibit a clear trend and, thus, are considered further. The 

exponential and power models (whose behaviour is almost 

equal) present a borderline lack-of-fit (LOF). Although, strictly 

speaking, the test is not significant the experimental p-value 

associated to the F test is too close to the critical one (0.05, 

95% confidence). Finally, the residuals for the Russell’s 

method do not have a definite pattern, the LOF test is clearly 

not significant, the RSDF is comparable to the other models 

and the R2 statistic is marginally better. Therefore, the latter 

model should be selected.  

This conclusion was assured by studying the residuals of the 

models deeper and calculating the statistics mentioned above. 

Table 3 reveals that any model has either a skewed distribution 

or a tailed shape (standardized skewness and kurtosis lower 

than ±2). Thus, those statistics do not help deciding on the best 

model. 

The null hypotheses of the sign test and of the Wilcoxon’s 

signed rank test (in both cases, H0: the data derives from a 

population with a median value of zero) cannot be rejected for 

any model, hereby revealing that the sets of residuals are 

compatible with a symmetric distribution whose median is zero. 

However, this does not guarantee that they are normally 

distributed.22 
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The other tests are intended to check whether the distribution of 

the residuals is Gaussian (H0: the distribution of residuals 

follows a normal distribution); namely, the Shapiro-Wilk’s and 

the Kolmogorov-Smirnov’s tests. In Table 3 no rejection can be 

made so all models are compatible with the normal distribution 

of the residuals. The other tests yielded the same conclusion 

(but for a borderline situation of the straight line model when 

the Shapiro-Wilk’s test was used).  

Finally, the Russell’s method leaded to the lowest dispersion of 

the residuals (Figure 5). Therefore, there are not additional 

evidences against the selection of the Russell’s model for Cd. 

With respect to Cr, the low number of isotopes yields only three 

different calibration levels, which complicates decision-

making. However, the linear model shows a clear trend (Figure 

4) which makes it unsuitable (Figure 2). This was confirmed by 

the high skewness of the residuas (Table 3), a bad normal 

probability plot (figure not shown) and a high dispersion of its 

residuals (Figure 5). Further, the R2 and LOF revealed that it is 

the model that fits the experimental data worst. Hence, it should 

be discarded definitely.  

The other three models performed very similar, with good 

statistics for the residuals (Table 3). The R2 and LOF tests 

where almost equal and only marginal best RSDF values were 

obtained for the exponential and power models. The LOF test 

was not significant for any of these three models (95% 

confidence) although it was better for the power and 

exponential models than for the Russells’one. As the dispersion 

of the residuals (Figure 5) was slightly better for the power than 

for the Russell’s method, the former was selected for Cr.  

Case study 2 and 3: selection of the model when determining Nd 

and Sm 

Analogous studies were carried out to select the best model to 

determine K when studying Nd and Sm. These examples do not 

include replicates for the isotope ratios and, so, the lack-of-fit test 

cannot be calculated. Previous studies concluded that all models, but 

the straight-line one, may be acceptable and the exponential method 

was preferred (although there was a somehow marginal best 

performance of the Russell’s method when determining Nd).5 

When the residuals plots were considered for Nd (Figure 6) it was 

concluded that any one showed a particularly cumbersome behaviour 

as all models had a quite random distribution. The model with the 

best RSDF was the exponential one, which agreed with the 

conclusion obtained elsewhere, although following a more elaborate 

procedure.5 The R2 statistic was almost the same for all models and 

it did not allowed drawing sound conclusions. 

The statistics associated to the residuals, Table 3, revealed that 

the Russell’s method yielded a somehow worst distribution 

(skewness and kurtosis, although not statistically significant), 

whereas the exponential and the power methods performed 

best. The latter one was selected finally for Nd because of the 

lowest dispersion of the residuals (Figure 5). 

When Sm was considered (Figure 7) the Russell’s and the straight-

line methods were not acceptable as they showed a parabolic 

residual pattern and, therefore, the models do not fit the data 

properly. Hence, they are discarded at the first step of Figure 2. 

Noteworthy, the approach presented here allows for an immediate 

and clear rejection of the Russell’s model, which was not so simple 

when calculating relative errors.5 The exponential and power models 

behave totally similar (as noticed previously)5 although with a 

marginal better RSDF for the power method. With regards to the 

residuals statistics (Table 3) they reinforce the graphical conclusions. 

Notice that it is not possible to select between the methods (once the 

Russell’s and straight-line ones were discarded) considering the 

statistics alone (as for most models in previous section, the null 

hypotheses of the statistical tests could not be rejected and they 

were of little value to select a model). The power model was 

selected owing to the smallest scattering of the residuals 

(Figure 5). 

 

Two final notes can be given. First, most statistics shown in 

Table 3 can be visualized in a common box and whiskers plot 

(Figure 5). Although –strictly speaking- such a plot is not a 

graphical representation of the tests, the symmetry of the 

residuals, their distribution and the closeness of the mean and 

the median can be observed easily. So, for a reduced dataset (as 

is usually the case), it is possible to take advantage of this plot 

for decision-making: i) the smaller the box and the whiskers 

are, the lower the standard error of the regression is; ii) the 

closer the mean (in the plot this is shown by a cross) and the 

median (the bar within the box) are, the less likely the existence 

of outliers will be; iii) the more symmetrical the box and the 

whiskers are, the less skewed the distribution will be and, 

likely, the more Gaussian the distribution of the residuals will 

become. Second, the RSDF was always greater than 100% 

because it is derived from the residuals. These, in turn, follow 

essentially a random distribution and, therefore, their variability 

is expected to be large when compared to the average (of the 

absolute values, because the arithmetic average is zero). The 

relevant issue here is to look for models with the lowest RSDF 

values. 

Conclusions 

It was shown that simple plots derived from the residuals of the 

least squares fit provide a powerful, simple and rather objective 

criterion to decide on the suitability of a model to calculate the 

mass discrimination factor (K) in ID-ICP-MS. Visualization of 

the residuals of the fit for the different models allows deciding 

on the existence of both outliers and non random (typically, 

parabolic) patterns. 

Then, the lack-of-fit test (if replicates are available) will further 

test the adequacy of the model. In the examples studied in this 

paper, the classical coefficient of determination (R2) and the 
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relative standard error of the fit (RSDF) were not critical to 

select among different candidate models. However their 

calculation is straightforward and it is recommended to keep 

them in order to gather additional information on the models. 

Further, a box and whiskers plot yields good clues on the 

symmetry (likely, on the Gaussian distribution) and scattering 

of the residuals, which can help selecting amongst two very 

similar candidate models.  

It was also observed that in some occasions non parametric 

statistics were not conclusive enough for decision-making. 

Thus, the graphical study of the residuals and the lack-of-fit test 

constitute the cornerstones to differentiate among several 

models to calculate the mass discrimination factor and to select 

a suitable one. 
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Table 1 Models to determine the mass discrimination factor (K) in ID-ICP-MS. Rcorr is the corrected isotope ratio, Rexp is the measured 
isotope ratio, Rtheo is the theoretical isotope ratio, mi and mj are the absolute masses of the selected isotopes and ∆M the mass difference 
between them. 

Model Instrumental relationship Functional linearized form Dependent variable 

Exponential Rcorr=Rexp·e
∆M·K y = ∆M·K y = ln(Rtheo / Rexp) 

Straight line (linear) Rcorr=Rexp / (1+∆M·K) y = ∆M·K y = (Rexp – Rtheo)/ Rtheo 

Power Rcorr=Rexp·(1+K)∆M y = ∆M·log10(1+K) y = log10(Rtheo / Rexp) 

Russell Rcorr=Rexp·(mi / mj)
K y = K·log10(mi/mj) y = log10(Rtheo / Rexp) 

 

 

Table 3 Statistics associated to the residuals of the models developed to calculate the mass bias factor in each case study. See text for details. 

Case study  Exponential Straight line Power Russell 

Cd 

Skewness 0.14 1.41 0.14 -0.48 

Kurtosis 0.01 -0.46 0.01 -0.44 

Sign test p-value=1.00 p-value=0.39 p-value=1.00 p-value=0.61 

Wilcoxon’s test p-value=1.00 p-value=0.78 p-value=1.00 p-value=0.76 

Shapiro-Wilk`s test p-value=0.99 p-value=0.16 p-value=0.99 p-value=0.54 

Kolmogorov-Smirnov`s test p-value=0.99 p-value=0.65 p-value=0.99 p-value=0.89 

Cr 

Skewness -1.26 2.13 -1.26 -1.61 

Kurtosis 0.53 0.80 0.53 0.57 

Sign test p-value=1.00 p-value=0.40 p-value=1.00 p-value=0.40 

Wilcoxon’s test p-value=0.75 p-value=0.57 p-value=0.75 p-value=0.70 

Shapiro-Wilk test p-value=0.30 p-value=0.03 p-value=0.29 p-value=0.21 

Kolmogorov-Smirnov’s test p-value=0.93 p-value=0.71 p-value=0.93 p-value=0.88 

Nd 

Skewness -0.05 0.75 -0.05 -1.52 

Kurtosis -0.22 0.13 -0.22 1.24 

Sign test p-value=1.00 p-value=0.68 p-value=1.00 p-value=0.68 

Wilcoxon’s test p-value=1.00 p-value=0.83 p-value=1.04 p-value=0.68 

Shapiro-Wilk test p-value=0.99 p-value=0.53 p-value=0.99 p-value=0.19 

Kolmogorov-Smirnov’s test p-value=1.00 p-value=0.99 p-value=1.00 p-value=0.93 

Sm 

Skewness -1.12 0.71 -1.12 -0.56 

Kurtosis 0.57 -0.94 0.57 -0.94 

Sign test p-value=1.00 p-value=0.68 p-value=1.00 p-value=0.68 

Wilcoxon’s test p-value=1.00 p-value=1.00 p-value=1.04 p-value=1.00 

Shapiro-Wilk’s test p-value=0.34 p-value=0.07 p-value=0.34 p-value=0.14 

Kolmogorov-Smirnov’s test p-value=0.94 p-value=0.75 p-value=0.94 p-value=0.89 
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Table 2 Original data for the four case studies considered here. The isotopes selected for each element are shown under the heading ‘Isotopes’, along with their theoretical (derived from 
IUPAC 26) and experimentally measured ratios. The mass difference is denoted as ∆M. 

Case study 1: Cd 

Isotopes 
Theoretical 

ratio 

Experimental 

ratio 
∆M Isotopes 

Theoretical 

ratio 

Experimental 

ratio 
∆M Isotopes 

Theoretical 

ratio 

Experimental 

ratio 
∆M 

106/114 0.043508528 0.031349113 8 111/114 0.445527323 0.391757742 3 113/114 0.425339367 0.406410177 1 

  0.031121068 8   0.391053577 3   0.405081916 1 

  0.030958661 8   0.394968971 3   0.406683127 1 

  0.030647223 8   0.392116797 3   0.406479036 1 

  0.030951996 8   0.393185914 3   0.405911499 1 

108/114 0.030978072 0.023971763 6 112/114 0.839888618 0.772383915 2 116/114 0.260703098 0.279916302 -2 

  0.023763753 6   0.768285734 2   0.278555226 -2 

  0.0247017* 6   0.775911501 2   0.279184221 -2 

  0.024381751 6   0.774078028 2   0.281141181 -2 

  0.02392011 6   0.772314239 2   0.279164297 -2 

110/114 0.434737208 0.365326652 4         

  0.365379831 4         

  0.370625246 4         

  0.36543465 4         

  0.366794537 4         

Case study 2: Cr 

50/52 0.051456543 0.04146233 2 53/52 0.114016237 0.126390065 -1 54/52 0.028414518 0.035143948 -2 

  0.039952749* 2   0.125910941 -1   0.03487478 -2 

  0.041939234 2   0.125490294 -1   0.034398109 -2 

  0.042557359 2   0.126713427 -1   0.036049048 -2 

  0.042027005 2   0.127015489 -1   0.035308014 -2 

  0.042005136 2   0.125975986 -1   0.03475144 -2 

  0.041460437 2   0.126565896 -1   0.035736555 -2 

  0.040932561 2   0.125553057 -1   0.034422643 -2 

Case study 3: Nd (**)  Case study 4: Sm (**)  

142/146 1.57961487 1.491953 4     144/147 0.2048032 0.197872 3 

143/146 0.70824364 0.679507 3     148/147 0.74983322 0.758822 -1 

144/146 1.38449008 1.345698 2     149/147 0.92194797 0.943961 -2 

145/146 0.48245971 0.475716 1     150/147 0.49232822 0.510151 -3 

148/146 0.33486532 0.34442 -2     152/147 1.78452302 1.891842 -5 

150/146 0.32800047 0.346675 -4     154/147 1.51767845 1.647119 -7 

(*) outliers excluded from the studies 

(**) Case Studies 2 and 3 stem from reference 
5
. 
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Parabolic shape?
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no

Discard

model

Calculate: 

1. Sy/x and normalize to RSDF

2. Coeficient of determination

3. Tests for normality of residuals

Select model with best statistics

Lack-of-fit?
yes

no

Discard
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Figure 1 Effect on the regression lines calculated by the ordinary least squares criterion when outliers are present in the dataset 
(the rotational and translational denominations stem from reference 

24
) and a graphical example of homoscedasticity (c) and 

heteroscedasticity (d) in the residuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Conceptual description of the approach proposed to select the most suitable model to calculate the mass discrimination 
factor, K. 
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Figure 3 Case study 1 (Cd): Statistics associated to the calibration and graphical representation of the residuals. Models to 
calculate the K factor: a) exponential, b) straight-line, c) power, and d) Russell. 
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Figure 4 Case study 2 (Cr): Statistics associated to the calibration and graphical representation of the residuals. Models to 
calculate the K factor: a) exponential, b) straight-line, c) power, and d) Russell. 
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Figure 5 Box and Whiskers plot of the residuals for each model (Exp= exponential, Lin= straight line, Pow= power, Rus= Russell). 
The cross in the middle of the box represents the average value whereas the vertical line within the box represents the median. 
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Figure 6 Case study 3 (Nd): Standard error of the fit (Sy/x) and graphical representation of the residuals. Models to calculate the K 
factor: a) exponential, b) straight-line, c) power, and d) Russell.  
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Figure 7 Case study 3 (Sm): Standard error of the fit (Sy/x) and graphical representation of the residuals. Models to calculate the K 
factor: a) exponential, b) straight-line, c) power, and d) Russell. 
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