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Laser induced breakdown spectroscopy(LIBS) technique coupled with support vector machine(SVM) and
partial least square(PLS) methods was proposed to perform quantitative and classification analysis of 20
slag samples. The characteristic line (Ca, Si, Al, Mg and Ti) of LIBS spectra for slag samples can be10
identified based on NIST database. At first, quantitative analysis of the major components(Fe2O3, CaO,
SiO2, Al2O3, MgO and TiO2) in slag samples was completed by SVM with the full spectra as input
variable, and two parameters(kernel parameter of RBF-γ and σ2) of SVM were optimized by grid
search(GS) approach based on 5-fold cross-validation(CV). The performance of SVM calibration model
was investigated by 5-fold CV, the prediction accuracy and root mean square error(RMSE) of SVM and15
PLS were employed to validate the predictive ability of multivariate SVM calibration model in slag. SVM
model can eliminate the influence of nonlinear factors due to self-absorption in the plasma and provide a
better predictive result. And then, two type of slag samples(open-hearth furnace slag and high titanium
slag) were identified and classified by partial least squares-discrimination analysis(PLS-DA) method with
different input variables, sensitivity, specificity and accuracy were calculated to evaluate the classification20
performance of PLS-DA model for slag samples. It has been confirms that LIBS technique coupled with
SVM and PLS methods is promising approach to achieve the online analysis and process control of slag
and even metallurgy field.

1. Introduction
Slag is an significant product in the steel-making industry, and25
determines the quantity and performance of steel product. In the
process of metal smelting, the real-time monitoring of slag is of
great significant to ensure performance of molten steel,
determine whether it is reached to the end of smelting, and
reduce energy consumption. The major component of slag30
include CaO, SiO2, Al2O3, MgO, Fe2O3, TiO2 and so on.
Conventional approaches of slag analysis mainly include:1-6
chemical analysis, X-ray fluorescence(XRF), inductively
coupled plasma optical emission spectroscopy(ICP-OES), mass
spectroscopy(MS) and so on. However, these approaches35
require complicated sample preparation and much analysis time,
which fails to timely obtain the information of steel product,
and even hinders their application for real time and fast analysis.
Laser induced breakdown spectroscopy(LIBS) is one of the

most valuable and prospect analysis technique based on laser40
plasma spectral with capable of quantitative and classification
detection. Compared with conventional analytical techniques,
the LIBS technique bears some obvious advantages,7-9 such as
multi-elemental simultaneous analysis, all types of the samples
(solids, liquids, and gases) can be analyzed, less sample45

requirement and minimal sample preparation. At present, the
LIBS technology has become an international research focus in
the metallurgical analysis.10-12 The application of LIBS
technique to metallurgical industry includes iron ore
selection,14,15 process control,16,17 iron slag analysis18-21 and so50
on.
The slag analysis on LIBS refers to classification and

quantitative analysis. The classification of slag samples can be
fulfilled depends on difference of its major component and
corresponding concentration. In other words, it is completed by55
the difference comes from spectra integrated intensity and
wavelength of LIBS spectra. However, quantitative analysis of
slags is employed to detect the concentration of certain
component or element of unknown slag samples. The
quantitative analysis methods of slag on LIBS include internal60
standard method, calibration-free(CF)20,22 and multivariate
calibration methods,19 which is completed by constructing the
relationship between the integrated intensity of the analysis line
or intensity ratio(analysis line vs reference line) of interest
element and the known concentration of a set of calibration65
samples, whereas CF assumes local thermodynamic
equilibrium(LTE) in the laser plasma to calculate its plasma
temperature, from which the composition of the sample is then
derived, regardless of the matrix effect. The internal standard
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method and CF are univariate and established by using the
intensity of single feature lines and the corresponding
concentration of the certain component or element. However,
the univariate calibration model often fails to meet requirement
of the quantitative analysis due to the fluctuation of laser energy,5
the inhomogeneity of samples and complex matrix effect.22 The
chemical composition of slag sample is always affected by
many matrix effects. There are serious overlapping spectral
peak of the spectrum in the iron substrate, and the traditional
univariate calibration model can’t eliminate the impact of these10
interference factors. Multivariate calibration method is an
effective tool to overcome matrix effect for complex sample. At
present, multivariate calibration methods for slag analysis was
partial least squares(PLS).19 However, support vector
machines(SVM) is a new and promising classification and15
regression method proposed by Vapnik.23 It was originally
developed for classification problems, but can also be extended
to solve non-linear regression problems by means of ε-
insensitive loss function.
The present work explores the combination of LIBS20

technology coupled with SVM and PLS method for quantitative
and classification analysis of slag samples. A series of 20 slag
samples were compressed into pellets and prepared for LIBS
measurement. At first, quantitative analysis of the major
components(Fe2O3, CaO, SiO2, Al2O3, MgO, MnO2 and TiO2)25
in slag samples was completed by SVM with the full spectra as
input variable, and two parameters of SVM model were
optimized by grid search(GS) approach. The performance of
SVM calibration model was investigated by 5-fold CV, the
prediction accuracy and root mean square error(RMSE) of SVM30
and PLS were employed to validate the predictive ability of
SVM calibration model in slag. And then, two type of slag
samples(open-hearth furnace slag and high titanium slag) were
identified and classified by PLS-DA method with different
input variables, sensitivity, specificity and accuracy were35
calculated to evaluate the classification performance of PLS-
DA model for slag samples.

2. Methodology
2.1. LIBS setup and acquisition conditions
The detailed description of LIBS setup was shown in the40

previous works.24 A Q-switched Nd: YAG laser( λ=1064nm, 10
ns pulse FWHM, 80 mJ/pulse, repetition rate of 5 Hz) was used
to generate the plasma in air at atmosphere pressure on the
pellets. The pellet was placed directly on an X-Y-Z manual
micrometric stage. The pulse laser beam was focused onto the45
slag sample surface vertically by a 50mm focal-distance lens,
which was generated a spot of about 0.2 mm diameter. The
emission from the plasma created was collected with a 4-mm
aperture, with a 7mm focus fused silica collimator placed at 45°
angel with respect to the laser pulses and a distance of 3 cm50
from the sample, and then focused into an optical fiber, which
was coupled to the entrance of the Echelle spectrometer Aryelle
400 (LTB, German). The spectrometer provides a constant
spectral resolution (CSR) of 6000 over a wavelength range 220-
800nm displayable in a single spectrum. An electron-55
multiplying CCD(EMCCD) camera (QImaging, UV enhanced,
1004 ×1002 Pixels, USA) coupled to the spectrometer was used

for detection of the dispersed light. Intensity and wavelength
were calibrated by Hg-Ar lamps equipped with LTB 400
spectrometer. The overall linear dispersion of the spectrometer60
camera system ranges from 37 pm/pixel(at 220nm) to
133pm/pixel(at 800nm). To prevent the EMCCD from detecting
the early plasma continuum, a mechanical chopper is used in
front of the entrance slit. The experiments were carried out
under atmosphere condition, and the gate width of spectrometer65
was set to 2 ms. The detector was set to 1.5 μs delay time
between the laser pulse in order to prevent the detection of
bremsstrahlung radiation.
2.2. Slag samples and LIBS measurements
A total of 20 slag samples were prepared by mixing six70

different reagents(CaO, SiO2, Al2O3, MgO, TiO2 and Fe2O3)
according to two standard samples(open-hearth furnace
slag(GSBH42011-94) and high titanium slag(YS/T 298-2007)).
All of the six reagents were analytical pure reagent. Each slag
sample was homogenized to produce a very fine powder until75
all of the powder passed through a 200-mesh stainless steel
sieve using a ball grinding mill. Table 1 lists the
concentration(wt. %) of major component of 20 slag samples(1-
10# for open-hearth furnace slag, and 11-20# for high titanium
slag). The slag sample is compressed a pellet to avoid laser80
scattering and benefit for collecting LIBS spectra. The slag
pellet was made with a tablet press at 400 Mpa for 5 min. LIBS
spectra of 20 different position of each sample surface are
gathered. In order to decrease the effects of shot to shot
fluctuations, each measure spectrum was obtained by85
accumulation of 50 laser pulses. The total of the spectra for 20
slag sample was 400(20 LIBS spectra for each slag sample).
The data processing, classification and quantitative analysis for
slag samples were completed on Matlab(2007a).
2.3. Support Vector Machines90
Support vector machine(SVM) is a new and promising

classification and regression method proposed by Vapnik.22 It
was originally developed for classification problems, but can
also be extended to solve non-linear regression problems by
means of ε-insensitive loss function. SVM method proposed is95
aimed at minimizing the structural risk rather than the empirical
risk, and preserving a good generalization ability rather than
optimizing the agreement with a given (limited) training set.
For a given training set A= )},(),...,,(),,{( 2211 nn yxyxyx ,

where each ix is the input spectrum and has a corresponding100
target value or class label iy for i =1, 2,..., n, where n refers to
the number of the training samples. The concentration of major
component from unknown slag sample can be predicted by the
multivariate regression function )(xf based on A. The complete
SVM equations are summarized as follows22:105

b))y()x()(()x(f
n

1j,i
iiii

*  


 (1)

Where i and *
i are the Lagrange multipliers satisfying

the constraint 0i , Ci * . C is an additional parameter
called the penalty error which determines the trade-off between
the training error and model simplicity. The higher the value of110
C the more complex the boundary, and the more closely it fits
samples, hence the lower the number of samples outside the
margins. An infinite value of C tries to fit all samples inside the
margins.
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Table 1 The concentration(wt %) of major component in slag
samples
No. sample Fe2O3 SiO2 TiO2 CaO MgO MnO2 Al2O3

1# 19.66 20.22 0.72 20.56 20.14 12.35 6.35

2# 16.15 17.90 0.40 23.15 21.27 14.27 6.86

3# 16.28 18.53 0.43 27.81 17.66 13.11 6.18

4# 17.64 18.71 1.06 24.61 15.68 15.12 7.18

5# 18.97 16.68 0.84 23.17 16.69 15.85 7.80

6# 20.06 19.99 0.53 22.93 17.62 12.84 6.03

7# 20.88 18.71 0.56 24.53 14.82 13.51 6.99

8# 19.86 16.41 0.65 26.77 17.17 12.90 6.24

9# 19.76 18.41 0.74 25.14 16.12 12.40 7.43

10# 18.84 18.22 0.78 25.03 16.92 14.18 6.03

11# 4.18 2.92 83.87 0.77 2.72 1.57 3.97

12# 4.53 2.92 84.32 0.57 3.02 1.11 3.53

13# 4.81 2.12 85.02 0.48 2.52 1.31 3.74

14# 4.82 2.82 84.74 0.43 2.72 1.07 3.40

15# 4.41 2.32 85.57 0.44 2.71 1.26 3.29

16# 3.44 3.05 85.44 0.60 3.05 1.08 3.34

17# 2.90 3.11 85.80 0.68 2.81 1.20 3.51

18# 4.35 3.17 83.83 0.74 2.87 1.29 3.76

19# 5.98 4.20 81.57 0.62 2.67 1.24 3.72

20# 3.62 2.51 85.44 0.62 2.99 1.45 3.38

The validity of the optimum model is tested in the prediction
step, where an unknown ĉ value can be obtained as follows:5
For linear SVR prediction

bxxc ii

n

i
ii  



'*

1
)(ˆ  (2)

While, for nonlinear SVR prediction(i.e., using the kernel
functions):

byxKc ii

n

i
ii 



),()(ˆ
1

* (3)10

In support vector regression, All SVM models in our present
study were implemented using the shareware program LibSVM
developed by Lin25. The radial basis function(RBF) was used as
kernel function in this work. For RBF kernel, the most
important parameter is the width of the radial basis function. In15
addition, in order to evaluate the performance of the model to
achieve quantitative and classification of slag, the root-mean-
square error(RMSE) was calculated. The definition that we
adopted for RMSE is given by

N
iiRMSE

N

1i

2)yŷ( 
(4)20

Where iŷ corresponds to the reference value of concentration
of the sample i, iy is the value predicted by SVM, and N is the
number of samples.
2.4. Partial least squares-discrimination analysis(PLS-DA)
PLS-DA is a multivariate inverse least-squares discrimination25

method used to classify samples based on a classical PLS
regression, which provides a multivariate linear model for the
relationship between a set of prediction variables and a set of
response variables. The first step of PLS is to transform input

30
Fig. 1 LIBS spectrum of 2#(open-hearth furnace slag) and
13#(high titanium slag)
variables into latent variables (LVs) in order to minimize the
error. In the case of PLS-DA, the response variable is expressed
by class membership. Then the PLS predicts the class number35
for each sample where the rotation of the LVs is focused on
class separation.
The sensitivity, specificity and accuracy are the statistical

parameters to evaluate the performance of PLS-DA model for
slag samples. The sensitivity is the percentage of the samples of40
a category accepted by the class model. The specificity is the
percentage of the samples of the categories which are different
from the modeled one, rejected by the class model. The
accuracy of classification procedure is expressed as fraction of
correctly classified samples to the total samples. 2645

3. Results and discussion
3.1. LIBS spectra and spectral normalization
Fig 1 shows the averaged normalization(by the maximum

spectral intensity) spectrum of 2# and 13# slag sample in the
range of 220-800nm, which includes the emission lines of the50
major component in slag. Slag is complex sample containing
many chemical elements and thus related to LIBS spectra
characterized by hundreds of atomic lines. There are obvious
difference between the averaged normalization LIBS spectrum
of 2# and 13# slag sample, which contributes to the55
classification and identification of open-hearth furnace slag and
high titanium slag. The biggest different between open-hearth
furnace slag and high titanium slag comes from the
concentration of TiO2, the concentration(wt %) of TiO2 for
open-hearth furnace slag is less 1.00%, moreover, the60
concentration(wt %) of TiO2 for high titanium slag is over
80.00%. Spectral lines of major element(Ca, Si, Al, Mg, Fe, Mn
and Ti) in slag sample were detected and identified based on
NIST atomic database.27 Some of the stronger elemental
emission lines used for quantitative and classification analysis65
of slag sample were listed in Table 2. There are relative rich for
Fe emission lines in slags, and spectral intensity of Ca, Si, Al,
Mg and Ti were affected by matrix effect from slag samples and
the rich iron emission lines.
3.2. Quantitative analysis of major component of slag70
Quantitative analysis of major component of slag samples
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Table 2 Some of the stronger element emission line for slag
sample

element spectral line/nm

Fe 278.81, 382.04, 385.99, 438.35

Si 288.15, 504.10, 594.85, 742.35

Ti 498.17, 499.11, 500.72, 501.42

Ca 315.98, 317.93, 393.37, 396.85

Mg 279.55, 280.27, 517.27, 518.36

Mn 279.48, 293.30, 293.93, 294.92

Al 257.51, 308.22, 309.27, 396.15

Fig. 2 The performance of PLS and SVM calibration model
with 5-fold cross-validation5
Table 3 The performance of PLS and SVM calibration model
by 5-fold cross-validation with correlation coefficient(R2)

Component PLS SVM

Fe2O3 0.8552 0.9994

SiO2 0.8499 0.9984

TiO2 0.9847 1.0000

CaO 0.9614 1.0000

MgO 0.8095 0.9840

MnO2 0.7701 0.9982

Al2O3 0.7063 0.9819

plays a significant role to control quality and performance of
steel products. Slags are complex samples containing many
chemical elements and thus related to LIBS spectra10
characterized by hundreds of atomic lines. The whole spectra
was selected as input valuable to complete the quantitative
analysis of slag samples. In this work, the spectra for each slag
sample was the average of 20 LIBS spectra from different
positions. The total of the spectra for slag sample was 20, 1615
samples(1-5#, 7-9#, 11-14#, 16-17# and 19-20#) were selected
for the calibration the quantitative analysis(PLS and SVM)
model, and the rest of samples(6#, 10#, 15# and 18#) were used
for validation of the model.
Prior to construct the SVM calibration model, two20

significant parameter(kernel parameter of RBF-γ and σ2) in
SVM were optimized by GS approach with 5-folds CV in order
to obtain the best performance of SVM calibration model. The
optimized kernel parameter of RBF-γ and σ2 were 70 and 862.
For the PLS model, the best latent variables(LV) optimized by25
5-fold cross-validation is 8. Under the optimized SVM
parameters and latent variables, the PLS and SVM calibration

Table 4 The prediction performance of PLS and SVM for slag
sample

Component

PLS SVM

Correlation

coefficient(R2)
RMSE

Correlation

coefficient(R2)
RMSE

Fe2O3 0.7597 0.0631 0.9521 0.0243

SiO2 0.8237 0.0526 0.9099 0.0310

TiO2 0.9848 0.1356 0.9919 0.0783

CaO 0.7207 0.1424 0.9652 0.0622

MgO 0.8740 0.0420 0.8816 0.0394

MnO2 0.7635 0.0305 0.8642 0.0156

Al2O3 0.8874 0.0218 0.7699 0.0665

model was constructed using 16 training samples with the30
whole spectra as input variable. The predictive ability of PLS
and SVM calibration model for slag sample was estimated by 5-
folds CV. The RMSE and correlation coefficient(R2) of major
component in slag sample by PLS and SVM calibration model
were shown in Fig 2 and Table 3. As we can see in Fig 2 and35
Table 3, the RMSE of major component in slag sample by SVM
calibration model is obvious lower than by PLS calibration
model; at the same time, the R2 of major component in slag
sample by SVM calibration model is obvious lager than by PLS
calibration model. Hence, the SVM calibration model for slag40
sample shows a better performance than PLS calibration model.
In order to validate the predictive abilities of SVM

calibration model of slag sample, we compared SVM method
with PLS method. Based upon the cross-validation results for
all two models, SVM has a better predictive performance than45
the PLS models for slag samples. Table 4 lists the prediction
performance of slag samples with PLS and SVM model. The
SVM model was able to predict the concentration of major
component in slag sample. As we can see in Table 4, there is a
good linear relationship between the predictive value and the50
reference value of major component in test samples, and the R2
of seven component in slag sample is lager than R2 for PLS.
Because the concentrations of TiO2 and CaO are greater than
other components in slag, the TiO2 and CaO for test slag
samples shows the best linear relationship. The concentration of55
Al2O3 in slag is relative low; therefore, the quantitative analysis
result was affected by strong spectral lines from other elements
and the matrix effect. The quantitative analysis of major
component in slag sample is helpful for the classification
analysis of different slags.60
3.3. Identification and classification of two type of slag
sample
Identification and classification of slag samples contributes to

distinguish the quality and performance of steel product. It was
fulfilled depend on difference of the component and correspond65
concentration of slag. In other words, identification and
classification of slag sample was conformed by the difference
comes from spectra integrated intensity and wavelength of slag
LIBS spectra. Open-hearth furnace slag and high titanium slag
were investigated in this work, and their major component were70
CaO, SiO2, Al2O3, MgO, Fe2O3, MnO2 andTiO2.
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Table 5 The performance of PLS-DA training model with
different input variable by 5-folds cross-validation

Input variable
Latent

variable
Sensitivity Specificity Accuracy

Cost

time(s)

the full spectra 2 0.9986 1.0000 0.9993 11.26

the full

normalized

spectra

3 0.9928 1.0000 0.9964 10.64

the first four

more intensity

emission lines

of major
component

1 1.0000 1.0000 1.0000 2.51

The number of slag samples was 20, and 20 spectra was
recorded for each slag sample. The total of LIBS spectral for5
slag samples is 400. The training set and test set were selected
by Kennard-Stone algorithm28,29 with the ratio of the number of
train samples to the whole data is 0.7. The number of training
samples(i.e. LIBS spectra, 14 spectra of 20 spectra for each slag
sample was used for training sample) is 280, and the number of10
test samples is 120.
In PLS-DA, the latent variables are the number of lower

dimensions onto which both the predictor and response
variables are projected, and are generated to maximize the
variance between each sample class. Identifying the variables15
that contribute the most to the separation of classes in the model
ensures that the separation is attributable to the physical or
chemical properties of the underlying system. The optimal
number of LV for each PLS-DA model is determined by the
point at which increasing the number of LV incorporates noise20
and other non-relevant information into the fit. Including too
many LV could lead to overfitting in the model; overfitting can
be avoided by testing the model with additional sample spectra
not used to train the model30.
The performance of PLS-DA training model was investigated25

by 5-fold CV with different input variables(the whole LIBS
spectra without normalization, the full LIBS spectra with
normalized by maximum spectral intensity, the first four more
intensity emission lines of major component). The first four
more intensity emission line of major components in slags was30
shown in Table 2. In 5-fold CV, the origin LIBS dataset is
divided into five subsets. The holdout method is repeated five
times, each time using one distinct set for testing and remaining
four sets for training. The performance of PLS-DA training
model with different input variable is shown in Table 5. As seen35
as Table 5, the sensitivity, specificity and accuracy of slag
sample are the largest(1.0000) when the input variable is the
first four more intensity emission lines of major component, and
it takes less time(2.51 s). Hence, the first four more intensity
emission lines of major component was selected as input40
variables to construct the PLS-DA training model for slags.
Based upon the cross-validation results for PLS-DA models,

PLS-DA model with the first four more intensity emission lines
of major component as input variable has a better identification
and classification performance than with other input variable for45
slag samples. Hence, the PLS-DA model with the first four
more intensity emission lines of major component as input
variable was used to predict the external test set. Table 6 and

Table 6 The classification results of PLS-DA training model for
slags50
Slags Classification accuracy(%) Misclassified ratio

Open-hearth furnace slag 100 --

high titanium slag 96.67 3.33

Fig. 3 The classification results with PLS-DA for slag samples

Fig 3 show the classification results of PLS-DA training model
for slags. In Fig 3, 1 and -1 stands for the high titanium slag and55
open-hearth furnace slag, respectively. Open-hearth furnace
slag can be classified completely by PLS-DA training model.
The classification accuracy of high titanium slag is 96.67%, this
is possible because the some component of slag is similar and
not easy to be distinguished. The nearly component, variations60
in the sample surface and instruct variability will cause
difficulties.

Conclusions
LIBS technique coupled with support vector machine(SVM)

and partial least square(PLS) methods has been successfully65
used for the quantitative and classification analysis of 20 slag
samples. The characteristic line (Ca, Si, Al, Mg and Ti) of LIBS
spectra for slag samples can be identified based on NIST
database. At first, quantitative analysis of the major
components(Fe2O3, CaO, SiO2, Al2O3, MgO and TiO2) in slag70
samples were completed by SVM with the whole spectra as
input variable, and the optimized kernel parameter of RBF-γ
and σ2 of SVM based on grid search approach were 70 and 862.
The performance of SVM calibration model was investigated by
5-fold CV, the averaged prediction accuracy and root mean75
square error(RMSE) of SVM and PLS were calculated to
validate the predictive ability of multivariate SVM calibration
model in slag. SVM model can eliminate the influence of
nonlinear factors dues to self-absorption in the plasma and
provide a better predictive result. And then, two type of slag80
samples(open-hearth furnace slag and high titanium slag) were
identified and classified by PLS-DA method with different
input variables, sensitivity, specificity and accuracy were
calculated to evaluate the classification performance of PLS-
DA model for slag samples. Open-hearth furnace slag can be85
classified completely by PLS-DA training model and the
classification accuracy of high titanium slag is 96.67%. It
confirms that LIBS technique coupled with SVM and PLS
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methods is promising approach to achieve the online analysis
and process control of slag and even metallurgy field.
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