
JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

1	
2	
3	Ce-Nd separation by solid-phase micro-extraction
4 1	CE-NU separation by some-phase micro-extraction
5	
6 2	and its application to high-precision ¹⁴² Nd/ ¹⁴⁴ Nd
7 ²	
8	measurements using TIMS in geological materials
9 3	measurements using 1 mis in geological materials
10	
11 12 4	
13	
14 5	Chao-Feng Li, * ^{,a} Xuan-Ce Wang ^b You-Lian Li ^a
15	
16	
10 17 6	Zhu-Yin Chu ^a Jing-Hui Guo ^a Xiang-Hui Li ^c
18	
19 7	
20	
21 8	^a State Key Laboratory of Lithospheric Evolution, Institute of Geology and
22 °	Successes Europeanies of Endospheric Evolution, institute of Ocology and
23	
24 9	Geophysics, Chinese Academy of Sciences, Beijing 100029, China
25	
26 10	^b The institute for Geoscience Research (TIGer), Curtin University, GPO Box U1987,
27	
28	$\mathbf{D} = (1 - \mathbf{W} + C \mathbf{A} \mathbf{C} + \mathbf{A} + 1)$
29 11	Perth, WA6845, Australia
30	
31 12	^c Isotope Research Institute of Henan Academy of Sciences Co. Ltd, Zhengzhou
32	
33	450052, China
34 13	450052, China
35 36	
37 ¹⁴	
38	
39 15	
40	
11	
41 42 16	
43	
44 17	
45	
46 18	
47	
48	
49 19	
50	
51 20	*Corresponding author: Chao-Feng Li
52	1 0 0
53 54 21	E mail addraga: afli@mail iggaag ag an
54 21 55	E-mail address: cfli@mail.iggcas.ac.cn
56	
57 22	Tel: +86-10-82998583
58	
59	
60	0

3 4 5 6 7 8 9 22 25 32

23	Abstract:
----	-----------

24	In view of the low initial abundance of ¹⁴⁶ Sm, ¹⁴² Nd anomalies are expected to be
25	extremely small (less than 40 ppm), and their detection requires ultra-precise
26	¹⁴² Nd/ ¹⁴⁴ Nd measurements. A rapid solid-phase micro-extraction (SPME) technique,
27	using HEHEHP resin as sorbent, is established to completely separate Ce from rare
28	earth elements (REEs) mixtures. This technique is applied to ultra-high-precision
29	¹⁴² Nd/ ¹⁴⁴ Nd measurements in geological materials. In contrast to the traditional
30	liquid-liquid micro-extraction (LLME) technique, the benefits of SPME tandem
31	column are high Nd recovery, low residual Ce (Ce/Nd < 10^{-6}), and easy operability. In
32	addition, a single HEHEHP resin column, replacing the traditional two-column
33	scheme (AG 50W + HDEHP resins), is used to further purify Nd by removing Na salt
34	and Sm isobaric interferences. All mean values of ¹⁴⁰ Ce/ ¹⁴⁴ Nd of geological samples
35	after separation never exceed 0.000010 even though the Ce/Nd ratio of geological
36	materials is $>$ 3.0, Thus, ¹⁴² Ce interferences on ¹⁴² Nd never exceed 1.3 ppm.
37	Ultra-high-precision thermal ionization mass spectrometry analyses of silicate
38	standards show that the internal precision of all runs are better than 4 ppm (2 RSE) for
39	¹⁴² Nd/ ¹⁴⁴ Nd values. ¹⁴² Nd/ ¹⁴⁴ Nd values for JNdi-1, JR-3, and BCR-2 have external
40	precisions of \pm 4.8, \pm 4.4, and \pm 3.9 ppm (2 RSD), respectively. The external
41	reproducibility is sufficient to distinguish and resolve 5 ppm anomalies in $^{142}Nd/^{144}Nd$
42	values.
43	

Keywords: ¹⁴²Nd/¹⁴⁴Nd; Solid-phase micro-extraction; HEHEHP resin; TIMS

1. Introduction

46	Sm and Nd have two different radiogenic decay systems that can be useful in
47	evaluating the hypothesis that the Earth and chondrites have the same Sm/Nd ratios,
48	i.e., ¹⁴⁶ Sm decays to ¹⁴² Nd $(T_{1/2} = 68 \text{ Ma})^1$ and ¹⁴⁷ Sm decays to ¹⁴³ Nd $(T_{1/2} = 106 \text{ Ma})^1$
49	Ga). ¹⁻³ In particular, short-lived ¹⁴⁶ Sm– ¹⁴² Nd radioactive nuclides are ideal tools for
50	constraining the early silicate differentiation of planetary bodies and the early history
51	of the Earth's mantle. ²⁻⁸ Because of its low initial abundance, ¹⁴⁶ Sm is effectively
52	extinct after 4–5 half-lives, so that ¹⁴² Nd/ ¹⁴⁴ Nd anomalies can be solely related to the
53	differentiation of silicate reservoirs during the first few hundred million years of the
54	Earth. However, their detection requires ultra-precise ¹⁴² Nd/ ¹⁴⁴ Nd ratio measurements
55	because the variation range is very small (< 50 ppm). ² New generation mass
56	spectrometers (TIMS) has been successfully used to perform this challenging work
57	and published reproducibilities of 142 Nd/ 144 Nd are around 5 to 7 ppm (2 RSD), $^{2-15}$ the
58	best reproducibility of 142 Nd/ 144 Nd is published by Caro et al. (2006) at 2 ppm. ³ For
59	ultra-high-precision ¹⁴² Nd/ ¹⁴⁴ Nd isotopic measurements, a good separation scheme is
60	indispensable. The high-purity separation of Nd from the matrix and isobaric
61	interfering elements is important. In particular, Ce and Sm are the most strongly
62	interfering elements and must be completely separated. During TIMS analysis,
63	140 Ce/ 144 Nd and 147 Sm/ 144 Nd ratios must be lower than 0.000010.
64	Currently, ion exchange resin techniques ^{2-12, 14-16, 18-27} are widely used to separate
65	Nd from REEs. It is mature to completely separate Sm from Nd using Ln Spec
66	(HDEHP, di(2-ethylhexyl) orthophosphoric acid) resin or HEHEHP (2-ethylhexyl

1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 11 2 11 2 11 2 11 11 2 11 11 11 2 11 11		
$\begin{array}{c} 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 1\\ 42\\ 43\\ 44\\ 5\\ 46\\ 47\\ 48\\ 9\\ 50\\ 1\\ 52\\ 53\\ \end{array}$		
54 55 56 57 58 59 60		

67	phosphoric mono-2-ethyhexyl ester) resin. In previous studies, the ¹⁴⁷ Sm/ ¹⁴⁴ Nd ratio is
68	usually never higher than 0.000005 using Ln Spec resin or HEHEHP resin. ²⁻²⁶ In
69	contrast to eliminating Sm, complete separation of Ce from Nd is highly difficult.
70	Separation of Ce and Nd is usually performed from high purity REE fractions that are
71	obtained using column chromatographic techniques, such as AG $50W^{4, 5, 18-27}$ or
72	TRU-Spec ^{2, 3, 7, 10, 11,14} resins. Previously reported procedures of Nd extraction from
73	REEs fractions of rock samples for ¹⁴² Nd/ ¹⁴⁴ Nd measurements include the
74	α -hydroxyiso-butyric acid chromatographic technique (HIBA) ^{4, 7, 14, 16} and the
75	liquid-liquid micro-extraction (LLME) ^{3, 10, 11, 17, 18} techniques. The HIBA technique
76	needs a good control of the pH value of the eluent solution ^{4, 7, 14, 16} and is better
77	performed in an acid-free environment. Hence, the pH value of HIBA solution has to
78	be calibrated immediately before performing every experiment. In addition, a narrow
79	and long column $(0.2 \times 20 \text{ cm})^{4,5}$ allows for good sample purity, which gives rise to
80	low eluting speed and very long separation time. Usually, three repetitions of HIBA
81	chemistry are necessary to reduce ¹⁴² Ce isobaric interference on ¹⁴² Nd. The
82	¹⁴² Ce/ ¹⁴² Nd was always below 0.000004 after performing HIBA chemistry separation
83	thrice. ^{4, 5} The LLME technique was presented by Rehkämper et al. (1996) ¹⁷ , and it
84	proved to be the most effective method to eliminate Ce from REEs. The LLME
85	technique is based on the distribution of the species of interest between two
86	immiscible phases, namely the aqueous and organic phases. This LLME technique
87	involves the oxidation of Ce^{3+} into its tetravalent state by a strong oxidizing agent
88	(NaBrO ₃ in 10 M HNO ₃) and preferential complexation of Ce^{4+} by an organic

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

8	9 extractant (HDEHP). ¹⁷ This method combined with cation exchange resin technique
9	was further improved by Caro et al. $(2006)^3$ and Ali et al. $(2011)^{18}$ so that the
9	142 Ce/ 142 Nd is always below 0.000003. However, concerning the LLME technique,
9	2 good technical skill is needed for extracting Nd because the volumes of organic
9	extractant phase containing Ce^{4+} and the aqueous solution containing Nd^{3+} are very
9	4 small (0.5 mL). This HDEHP organic extractant is pipetted away and discarded,
9	5 leaving behind the Ce-free aqueous phase solution. Generally, the HDEHP extraction
9	6 is repeated thrice to eliminate any residual HDEHP organic phase from the Nd and Na
9	enriched phase using n-heptane. ^{3, 18} Imperfect LLME operation will directly lead to
9	8 low recovery of Nd or incomplete Ce elimination. For most geologists, achieving high
9	9 recovery (> 90 %) and high purity for Nd without Ce (Ce/Nd < 0.1 %) during the
10	0 LLME step is greatly challenging. In addition, separating Na using a cation resin
10	column is indispensable because a lot of Na salt impinges on the ionization efficiency
10	of Nd during TIMS measurements. ^{3, 18} This causes a severe suppression in signal
10	3 intensity, unstable ion beam emission, and an abnormal isotopic fractionation process.
10	Generally speaking, LLME and the Na eliminating procedure give rise to the
10	5 relatively low recovery (~ 80 %) of Nd and tedious operation steps. ^{3, 18}
10	6 In this study, a solid-phase micro-extraction tandem column technique using
10	7 HEHEHP resin as absorbent was developed to eliminate Ce. Using our method, yield
10	of 97.3 % are achieved for Nd and very minor Ce (Ce/Nd < 10^{-6}) was detected in the
10	9 Nd fraction. In addition, Nd with high purity can be quickly separated from the mixed
11	0 resulting Na + REEs solution using a short HEHEHP resin column rather than the

111	traditional two-column (AG 50W + HDEHP) ^{2, 3, 7, 8, 10, 11, 14, 15, 18} technique, which
112	significantly improves separation speed (two working days). In contrast to traditional
113	methods, ²⁻¹⁸ our method greatly cut down separation time and the overall Nd yield was
114	significant improved to ~ 92 %. The accuracy of 142 Nd/ 144 Nd results achieved using
115	the proposed protocol was validated through TIMS measurements of nine certified
116	reference materials (CRMs) of silicate rocks with a wide range of Sm/Nd, Ce/Nd and
117	bulk compositions.

2. Experimental

2.1 Reagents and Materials

All analytical reagent grade acids (hydrochloric acid, nitric acid and hydrofluoric acid) were purified using SavillexTM DST-1000 sub-boiling distillation system (Minnetonka, USA). Ultra-pure water with resistivity of 18.2 M Ω .cm⁻¹ was used (Milli-O). Sodium bromate (NaBrO₃) with high purity (>99 %) was purchased from Alfa Aesar. The employed cation exchange column is 7 cm long and has a 6 mm inside diameter with a 30 mL reservoir, packed with 2 mL Bio-Rad AG 50W-X12 resin (200-400 mesh). The solid-phase micro-extraction mini-column is 2 cm long and has a 3 mm i.d and a 0.4 mL reservoir. It is packed with 0.08 mL of HEHEHP resin. The HEHEHP column is 6 cm long and has a 4 mm inside diameter, packed with 0.55 mL HEHEHP resin. The HEHEHP resin, manufactured by the Beijing Research Institute of Chemical Engineering and Metallurgy and conventional for Sm-Nd separation,¹⁹ was based on 2-ethylhexyl phosphoric mono-2-ethyhexyl ester

133	(HEHEHP) coated on Teflon powder in fine-grained form (75-100 μ m).
134	A stock solution of 500 ppm JNdi-1 Nd standard was gravimetrically prepared to
135	examine the reproducibility of Nd isotopic ratios by a Triton Plus TIMS instrument.
136	Nine rock powders of CRMs were obtained from the United States Geological Survey
137	(USGS) and Geological Survey of Japan (GSJ). These CRMs include USGS BCR-2
138	(basalt), BHVO-2 (basalt), W-2 (diabase), AGV-2 (andesite), RGM-2 (rhyolite),
139	GSP-2(granodiorite) GSJ JR-3(rhyolite), JG-1a (granodiorite), and JA-3 (andesite).
140	
141	2.2 Sample digestion
142	All chemical preparations were conducted on special class 100 workbenches
143	inside a class 1000 clean laboratory. Approximately 100 to 110 mg of rock powder
144	were weighed into a steel-jacketed acid-washed high-pressure PTFE bomb. The
145	samples were dissolved on a hotplate at 190 °C using an acid mixture of 3 mL of 29 M
146	HF, 0.3 mL of 14 M HNO ₃ , and 0.3 mL of 11.8 M HClO ₄ for four days. Digested
147	samples were dried on a hotplate overnight at $\sim 120^{o}\mathrm{C}$ and then reconstituted in 3 mL
148	of 6 M HCl. This solution was again dried at \sim 160 °C. Finally, the samples were
149	re-dissolved with 1.1 mL of 2.5 M HCl on a 100 °C hotplate overnight before
150	commencing ion exchange chemistry.
151	
152	2.3 Column chemistry

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

154 First, the solutions obtained after sample digestion were centrifuged at 5000 rpm for

As shown in Fig 1 and Table 1, our separation method is composed of three steps.

1
2
3 4 5 6 7 8
4
5
6
7
8
9
10
9 10 11
12
12 13
1/
14
10
10
17
18
13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

155	8 min. Before sample loading for the separation of REEs from the sample matrix, the
156	resin column was pre-washed with 30 mL of 6 M HCl and 3 mL of H_2O in turn. Then,
157	as shown in Table 1a, 1 mL of the supernatant was loaded onto the pre-conditioned
158	cation columns containing 2 mL of AG50W-X12 (200-400 mesh) resin for separation
159	of REEs from the sample matrix. After rinsing for 4 times with 0.5 mL of 2.5 M HCl,
160	the column was washed with 9.5 mL of 5 M HCl to remove the matrix elements. Then,
161	16.5 mL of 4 M HCl was used to strip Nd and efficiently remove Ba, La, and some Ce.
162	In this step, all matrix elements (K, Na, Ca, Mg, Al, Fe, Ti), \sim 70 % of La, \sim 75 % of
163	Ba and ~ 65 % of Ce were eliminated and LREEs fractions enriched in Nd (~ 98.2 %)
164	and Sm were obtained. Second, the eluted fraction enriched in Nd was evaporated to
165	dryness and re-dissolved in 0.4 ml of an oxidizing solution of 10 mM NaBrO ₃ in 10
166	M HNO ₃ . During this step, all Ce^{3+} was oxidized to Ce^{4+} . As shown in Table 1b, a
167	tandem micro-column containing 0.16 ml of HEHEHP resin, each single
168	micro-column was packaged with 0.08 ml of HEHEHP resin, was pre-washed with
169	0.4 mL of 10 M HNO3 and 0.8 ml of 10 mM NaBrO3 in 10 M HNO3 in turn for
170	preparation of column condition. The dissolved REEs fraction was loaded on the mini
171	HEHEHP resin column and collected, 0.2 mL of 10 mM NaBrO ₃ in 10 M HNO ₃ was
172	used to elute the residual minor Nd on the column. During this step, all Ce^{4+} (>
173	99.999%) is strongly sorbed to the HEHEHP resin. The Ce-Nd separation coefficient
174	for this step exceeded 10^6 , due to the employed tandem column, two complete
175	extractions were performed. During this step, all Na, Ba and 97.3 % of Nd+Sm were
176	eluted. Finally, the enriched Na, Nd and Sm fraction without Ce was dried and

177	re-dissolved using 0.2 ml of 0.1 M HCl. As shown in Table 1c, Sm and Nd separation
178	was conducted using a small column containing 0.55 mL of HEHEHP resin. During
179	this step, most Nd (~ 96.5 %) with high purity was separated from the mixed solution
180	(Na + Sm + Nd). All Na was washed before collecting Nd. In final, total procedural
181	blanks were 65–90 pg for Nd and the yield of Nd was higher than 92 %. Procedural
182	blanks were thus negligible, since the ratio of Nd sample/blank was larger than 3300.
183	

184 2.4 TIMS Measurement

The Nd isotopic ratios were measured using a Triton Plus TIMS instrument (ThermoFisher) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) in Beijing, China. Nd was measured as Nd⁺ using a double Re filaments configuration. 0.5 µl of 0.1 M phosphoric acid was first loaded on a degassed Re filament and dried at 0.8 A. Nd samples then were dissolved and loaded in 1 μ l of 2 M of HCl and dried at 0.8 A. Finally, after 0.5 μ l of 0.1 M phosphoric acid was loaded and dried, the filaments were heated to a dull red glow at c.a 2.2 A for 3 seconds. Previous researches demonstrated that a multi-dynamic measurement approach could obtain the best external reproducibility of ¹⁴²Nd/¹⁴⁴Nd (2~6 ppm).^{2,3,} 9-11 Hence, we also employed a multi-dynamic measurement approach. Two quadrupole lenses in the Triton Plus were used to adjust the dispersion of the ion beams so that good peak overlaps were obtained during multi-dynamic data acquisition. During measurements, the intensity of the ¹⁴²Nd signal typically ranged between 2.7 and 4.5 V. Each measurement corresponded to 24 blocks of 26 ratios (8 s

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

199	integration time) using amplifier rotation. Measurements including filament warm are
200	typically 7~8 hours long. All raw data were corrected for mass fractionation using the
201	exponential law and 146 Nd/ 144 Nd = 0.7219 following the off-line method reported by
202	Caro et al. (2006) ³ and Upadhyay et al.(2008). ⁹ The ¹⁴² Nd ⁺ signals are corrected for
203	$^{142}\mathrm{Ce}^+$ interference using a $^{142}\mathrm{Ce}/^{140}\mathrm{Ce}$ value of 0.125653. ¹⁸ The $^{144}\mathrm{Nd}^+$ signals are
204	corrected for 144 Sm ⁺ interference using a 144 Sm/ 147 Sm value of 0.204803. ¹⁸ The 148 Nd ⁺
205	and $^{150}Nd^+$ signals are corrected for $^{148}Sm^+$ and $^{150}Sm^+$ interference using a
206	148 Sm/ 147 Sm value of 0.749833 and a 150 Sm/ 147 Sm value of 0.492328. ¹⁸ Further details
207	of collector array and the run conditions were listed in Table 2. JNdi-1 Nd standards
208	were analyzed during the sample measurement period to monitor instrument status.
209	The repeated analyses of JNdi-1 Nd standards yielded highly reliable and reproducible
210	results over a long period of time (~2 years). All JNdi-1 data overlap within errors
211	with recently reported results. The JNdi-1 average value of ¹⁴² Nd/ ¹⁴⁴ Nd and
212	$^{143}\text{Nd}/^{144}\text{Nd}$ was 1.1418367 \pm 0.0000055 (2 SD, n = 37) and 0.5121009 \pm 0.0000036
213	(2 SD, $n = 37$), respectively (Table S-1), in good agreement with recently reported
214	142 Nd/ 144 Nd (Table 3) ^{7, 10-12, 15, 27} and 143 Nd/ 144 Nd $^{15, 19, 20, 22-28}$ values.
215	

3. Results and discussion

3.1 Merit of solid-phase micro-extraction using HEHEHP resin

In ultra-high-precision ¹⁴²Nd/¹⁴⁴Nd measurements, the biggest separation
challenge is to completely eliminate Ce from Nd. To test the separation efficiency of
Ce from Nd, serial solutions of mixed REEs standards (oxided by the mixed NaBrO₃

Journal of Analytical Atomic Spectrometry

1 2 3	
4 5 6 7	
, 8 9 10	
11 12 13 14	
15 16 17 18	
23456789101123415167892222222222222223333333333333333333333	
22 23 24 25	
26 27 28 29	
30 31 32	
34 35 36	
39 40	
41 42 43 44	
45 46 47 48	
49 50 51	
52 53 54 55	
56 57 58 59	
60	

221	$+10 \text{ M HNO}_3$ solution) were passed through the tandem micro-column containing
222	0.16 ml of HEHEHP resin. No Ce was detected using ICP-MS, \sim 97.3 % of Nd and all
223	other REEs and Na were collected in Nd analyte object. To check the residual Ce
224	during TIMS measurements, six mixed standards (Ce + Nd) with the ratios of Ce/Nd
225	= 2.0, 3.0 and 4.0 (with 5 μ g of Nd) were separated using the SPME technique. Then,
226	because a large amount of Na salt affects the stability of the ion beam, one-third of
227	those samples were loaded and determined using TIMS. As indicated in Table 4, all
228	¹⁴⁰ Ce/ ¹⁴⁴ Nd ratios were lower than 0.000015. This means that ¹⁴² Ce interferences on
229	142 Nd even for those tests with Ce/Nd = 4.0 are always lower than 2 ppm after
230	performing the SPME separation. Usually, the yield of Nd is about 70~90 % using the
231	traditional LLME technique corresponding to a separation coefficient of 10 ³ for Ce
232	and Nd. ^{3, 18} In contrast to the LLME technique, the recovery of Nd was stable and
233	high (~ 97.3 %), whereas the separation coefficient of Ce and Nd using the SPME
234	technique exceeded 10^6 , which is significantly higher than 10^3 using the LLME
235	technique. ^{2, 3, 10, 11, 15, 17, 18} However, the HEHEHP resin in the tandem micro-column
236	cannot be recycled because the HEHEHP resin had been oxided and had absorbed a
237	lot of Ce.
238	

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

239 **3.2 Elimination of Na and Sm interferences**

High-purity of Nd was obtained following the procedure detailed in Table 1c. To
examine the separation efficiency of Na and Sm, a mixed standard containing 5 µg of
REEs and 150 µg of Na, 10 µg of Ba was dried and performed separated using the

1
2
2 3 4 5 6 7
4
5
6
7
8
9
8 9 10 11
11
12
13
1/
14
10
10
17
18
19
12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 23 34 35 36 37 83 90
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
40
49 50
51
52
53
54
55
56
57
58
59
60
00

243	procedure of Table 1c. Table-5 showed that all Na, Ba and most of La(\sim 98.5 %) and
244	Ce (~ 97.6 %) were washed out before collecting Nd. All Sm and MREEs + HREEs
245	were washed out after collecting Nd. Sm-Nd separation using a short HEHEHP resin
246	column resulted in 144 Sm/ 144 Nd, 148 Sm/ 148 Nd and 150 Sm/ 150 Nd ratios usually less than
247	1 ppm, thus, performing Sm isobaric interference correction was not necessary.
248	During this step, ~ 96.5 % Nd was collected. In contrast to previous studies, the
249	two-column method was simplified to one column, and the preparation of a cation AG
250	50W resin column to eliminate Na salt before performing the Sm-Nd separation was
251	not needed.
252	
253	3.3 Validation of the method and final results
254	To assess the analytical reproducibility and feasibility of our chemical procedure
255	for silicate samples, nine CRMs were selected to encompass a wide range of matrix
256	compositions (from mafic to felsic) and Ce/Nd were determined. As shown in Table 6,
257	the 142 Nd/ 144 Nd and 143 Nd/ 144 Nd isotopic ratios of all analyzed USGS and GSJ
258	reference materials were obtained with an internal precision (2 SE) better than
259	0.000005 and 0.000002, respectively. The ¹⁴³ Nd/ ¹⁴⁴ Nd data presented in Table 6 agree
260	
	well with previously published data obtained through TIMS or MC-ICP-MS. ^{19-26, 29-30}
261	
	well with previously published data obtained through TIMS or MC-ICP-MS. ^{19-26, 29-30}
261	well with previously published data obtained through TIMS or MC-ICP-MS. ^{19-26, 29-30} Few ¹⁴² Nd/ ¹⁴⁴ Nd data except for BCR-2 ³¹ were reported for those standards in previous
261 262	well with previously published data obtained through TIMS or MC-ICP-MS. ^{19-26, 29-30} Few ¹⁴² Nd/ ¹⁴⁴ Nd data except for BCR-2 ³¹ were reported for those standards in previous studies. Hence, it is difficult to compare the actual difference of ¹⁴² Nd/ ¹⁴⁴ Nd data in

1	
2 3	
4	
5	
6	
6 7	
8	
9	
9 10	
11	
11 12	
13	
13 14 15	
15	
16 17	
18	
19	
20 21 22 23	
22	
23	
24	
05	
26	
25 26 27 28	
28	
29	
30	
31	
32	
33 34	
34 35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
48 49	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

265	The reproducibility of our procedure was demonstrated by nine different
266	dissolutions of BCR-2 and JR-3 powder materials. As shown in Table 6, replicate
267	measurements (n = 9) of BCR-2 yielded a 142 Nd/ 144 Nd value of 1.14183491 ±
268	0.0000044 and a 143 Nd/ 144 Nd value of 0.5126205 ± 0.0000032 (2 SD). Replicate
269	measurements (n = 9) of JR-3 yielded a 142 Nd/ 144 Nd value of 1.1418339 ± 0.0000050
270	and a 143 Nd/ 144 Nd value of 0.5126666 ± 0.0000016 (2 SD). The 142 Nd/ 144 Nd external
271	reproducibility of both BCR-2 and JR-3 were better than 5 ppm (2 SD). Notable is the
272	fact that JR-3 has a high ratio of Ce/Nd $(3.13)^{32}$ and a high content of Ce $(319 \text{ ppm})^{32}$;
273	~110 mg of JR-3 yields ~35.1 μ g of Ce. Thus, to completely separate Ce from JR-3 is
274	the biggest challenge for our method, even though all 140 Ce/ 144 Nd values for JR-3 are
275	never higher than 0.0000009 during TIMS measurements. The maximum 142 Ce
276	interference is ~ 1.1 ppm on the ¹⁴² Nd/ ¹⁴⁴ Nd ratio. The ¹⁴² Ce interference is lower than
277	0.6 ppm for most silicate samples. This suggests our method is perfect for Ce and Nd
278	separation.
279	The reproducibility and precision of 142 Nd/ 144 Nd data obtained for silicate
280	samples using the presented novel methods are satisfactory and completely fit the
281	demands for the application of the ¹⁴⁶ Sm- ¹⁴² Nd isotope system.

Journal of Analytical Atomic Spectrometry Accepted Manuscr

282

283 **4. Conclusions**

A rapid and robust SPME method using HEHEHP resin as sorbent was developed to eliminate Ce from REEs. Removal of up to 99.999 % of Ce was achieved with a tandem micro-column. Base on the SPME method, using a short

Journal of Analytical Atomic Spectrometry

287	HEHEP resin column, Ce was further removed to 97.6 %, and 96.5 % of Nd with high
288	purity was obtained. Thus, the separation factor between Ce and Nd exceeded 10^8 in
289	final. During this step, all Na and Sm were also completely eliminated. Therefore, the
290	traditional two-column separation procedure to separate Nd from Na and Sm was
291	further simplified to one-column. In contrast to the traditional methods, the proposed
292	separation procedure achieved the satisfactory and rapid separation of Nd-Ce-Sm,
293	thereby offering significant advantages over existing methods in terms of simplicity,
294	Nd recovery, miniaturization, and waste reduction.
295	
296	Acknowledgements

We are grateful to editor for patience and two reviewers for critical and constructive comments that greatly improved this manuscript. We are particularly thankful to Dr. Manuela Fehr for English improvement of this article. This work was jointly supported by the National Natural Science Foundation of China (grant numbers 41373020 and 41273018) and the State Key Laboratory of Lithospheric Evolution (grant number 11301520), Institute of Geology and Geophysics, Chinese Academy of Sciences.

1	
2	
3	
4	
5	
- 3 4 5 6 7 8	
7	
8	
9	
10	
10	
12	
14	
15	
16	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
18	
19	
20	
21	
22	
23	
24	
20	
20 27	
27 28 29	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
56 57	
57 58	
59	
60	

309	References:
310	1. N. Kinoshita, M. Paul, Y. Kashiv et al., Science., 2012, 335, 1614–1617.
311	2. G. Caro, B.Bourdon, J.L. Birck, S. Moorbath. Nature, 2003, 423, 428-432.
312	3. G. Caro, B. Bourdon, J.L. Birck, S. Moorbath, Geochim. Cosmochim. Acta., 2006,
313	70, 164–191.
314	4. M. Boyet, R.W. Carlson, Science., 2005, 309, 576-581.
315	5. M. Boyet, R.W. Carlson, Earth. Planet. Sci. Lett., 2006, 250, 254-268.
316	6. J. O'Neil, R. W. Carlson, D. Francis, R. K. Stevenson, Science., 2008, 321,
317	1828–1831.
318	7. H. Rizo, Boyet. M, J. Blichert-Toft, J. O'Neil, M. Rosing, J. L. Paquette, Nature.,
319	2012, 491, 96–100.
320	8. D. Upadhyay, E. E. Scherer, K.Mezger, Nature., 2009, 459, 1118-1121.
321	9. D. Upadhyay, E. E. Scherer, K.Mezger, J. Anal. At. Spectrom., 2008, 23, 561-568.
322	10. A.S.G. Roth, B. Bourdon, S.J. Mojzsis, J.F. Rudge, M. Guitreau, J. Blichert-Toft,
323	Geochem. Geophys. Geosyst., 2014, 10.1002/2014GC005313
324	11. A.S.G. Roth, B. Bourdon, S.J. Mojzsis, M. Touboul, P. Sprung, M. Guitreau,
325	J. Blichert-Toft, Earth. Planet. Sci. Lett., 2013, 361, 50-57.
326	12. A. Gannoun, M. Boyet, H. Rizo, A. E. Goresy, PNAS., 2011, 108, 7693-7697.
327	13. R. Andreasen, M. Sharma, Int. J. Mass Spectrom., 2009, 266, 34-41.
328	14. M. Sharma, C. Chen, Precambr. Res., 2004, 135, 315-329.
329	15. M.G. Jackson, Geochem. Geophys. Geosyst., 2012, 13, DOI: 10.1029/2012
330	GC004114.

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

331	16. A. Makishima, E. Nakamura, Chem. Geol., 1991, 94, 1–14.
332	17. M. Rehkämper, M. Gartner, S. J. G.Galer, S. L. Goldstein, Chem. Geol., 1996,
333	129, 201–208.
334	18. A. Ali, G. Srinivasan, Int. J. Mass. Spectrom., 2011, 299, 27-34.
335	19. Z.Y. Chu, F. K. Chen, Y. H.Yang, J. H. Guo, J. Anal. At. Spectrom., 2009, 24,
336	1534–1544.
337	20. B. Lefvre, C. Pin, Anal. Chem., 2001, 73, 2453-2460.
338	21. Y. Orihashi, J. Maeda, R. Tanaka, R. Zeniya, K. Niida, Geochem. J., 1998, 32,
339	205–211.
340	22. T. Miyazaki, K. Shuto, Geochem. J., 1998, 32, 345-350.
341	23. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, T. Liu, Anal. Chim. Acta., 2011,
342	706, 297–305.
343	24. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, J. Anal. At. Spectrom., 2011, 26,
344	2012–2022.
345	25. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, L.J. Feng, Z.Y. Chu, Anal. Chem.,
346	2012, 84, 6040–6047.
347	26. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, Y.H. Yang, Anal. Chim. Acta.,
348	2012, 727, 54–60.
349	27. C.F. Li, Y.T. Lin, J.H. Guo, Q.L. Li, X.H. Li, X.H. Li, Chin. J. Anal. Chem.,
350	2010, 38, 989–993.
351	28. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M.
352	Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T.

4,

353	Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu and C.
354	Dragusanu, Chem.Geol., 2000, 168, 279–281.
355	29. D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. D. Jong, G. A. Williams, D.
356	Hanano, W. Pretorius, N. Mattielli, J. S. Scoates, A. Goolaerts, R. M. Friedman
357	and J. B. Mahoney, Geochem. Geophys. Geosyst., 2006, DOI: 10.1029/
358	2006GC001283.
359	30. Y.H. Yang, H.F. Zhang, Z.Y. Chu, L.W. Xie, F.Y.Wu, Int. J. Mass Spectrom.,
360	2010, 290, 120–126.
361	31. A.S.G. Roth, E.E. Scherer, C. Maden, K. Mezger, B. Bourdon, Chem.Geol., 201
362	386, 238–248.
363	32. P. Dulski, Geostand. Newsl., 2001, 25, 87–125.
364	
365	Figure captions
366	Figure 1. Our separation protocol compared with traditional methods ^{3, 10, 11, 18}

Figure 2. ¹⁴²Nd/¹⁴⁴Nd data for CRMs samples are plotted as deviations in ppm (μ^{142} Nd) from the JNdi-1 standard relative to the terrestrial Nd standard JNdi-1. μ^{142} Nd = $((^{142}Nd/^{144}Nd)_{sample}/(^{142}Nd/^{144}Nd)_{JNdi-1}-1)\times 10^6$, where ¹⁴²Nd/¹⁴⁴Nd value of JNdi-1 is the average value in this study (1.1418367 ± 0.0000055, 2 SD, n = 37). The dashed line area defines the external error of 5 ppm (2 RSD) of the repeated measurements of JNdi-1 standard (n = 37). Error bars are 2 SE errors of individual measurements.

Table 1. Three-step Nd purification scheme using columns of AG 50W-X12 resin,
solid-phase micro-extraction, and HEHEHP resin, sequentially.

a. the first column containing	g 2 mL of AG50W-12 resin
--------------------------------	--------------------------

Procedure	Eluting	reagent	Eluting volume (mL)
Cleaning column	6.0 M	HCl	30.0
Cleaning column	Milli-Q	Water	3.0
Loading sample	2.5 M	HC1	1.0
Rinsing	2.5 M	HC1	2.0
Rinsing	5.0 M	HC1	9.5
Eluting LREEs	4.0 M	HCl	16.5

b. the second mini solid-phase micro-extraction tandem column containing 0.16 mL of HEHEHP resin

Procedure	Eluting reagent	Eluting volume (mL)
Cleaning column	10 M HNO ₃	0.4
Cleaning column	10 mmol NaBrO3 in 10 M HNO3	0.8
Loading and collecting Nd	10 mmol NaBrO3 in 10 M HNO3	0.4
Collecting Nd	10 mmol NaBrO ₃ in 10 M HNO ₃	0.2

c. the third column containing 0.55 mL of HEHEHP resin

_				
Procedure	Eluting	reagent	Eluting volume (mL)	Fractions
Cleaning column	3 M	HCl	10.0	
Cleaning column	Milli-Q	Water	2.0	
Loading sample	0.1 M	HCl	0.2	F 1
Rinsing	0.1 M	HCl	0.4 (0.1 x 4)	F 1
Rinsing Na, Ba, La, Ce, Pr	0.2 M	HCl	3.0	F 2
Eluting Nd	0.2 M	HC1	1.5	F 3
Rinsing Sm+MREEs+HREEs	6.0 M	HCl	3.0	F 4

Comment: The yield of Nd during the three-step separation procedure is about 98.2 %, 97.3 % and 96.5%, respectively. In the final, the yield of Nd is about 92.2 % after performing three-step separation.

1	
	0
	0
	C)
	σ
5	
	Ο
	D
ļ	3
1	
	0
	0
	Ö
	0
	1
÷	
	Ξ
	Ο
÷	
	0
	U
	0
	ת
	-
	C
1	
	0
	2
1	
	Π
	O
l	
1	
1	
	σ

Journal of

Cup	L3	L2	L1	CC	H1	H2	Н3	H4	Foucs (V)	Disp (V)
S1	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁸ Nd	¹⁵⁰ Nd	0	0
S2		¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁹ Sm	0	5.0
S 3	¹⁴⁰ Ce		¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	0	10.0

Table-2 Cup	setting of	f dvnamic	multi-collector mode	
	Secting of	aymanne	main concetor moue	

Run conditions:

Ionization filament heated to 4.6A (1680~1720°C), evaporation filament heated to 1.6-1.9 A.

Typically, a block consisted of 26 cycles each with 3 sequences of 8 seconds integration.

Amplifers rotated left every block, baseline measured every block.

Peak center on ¹⁴⁵Nd, ¹⁴⁴Nd and ¹⁴³Nd and ion source lens focus on ¹⁴⁵Nd done every 4 block, turret position optimized at start.

Typical ¹⁴²Nd signal strength on $10^{11}\Omega$ resistor was 3~4 V for most samples.

Magnet removed from the ion source.

Rejected ratios always less than 5 % of total.

Zoom system was employed to improve peak shape. It included Focus quadrupole and Dispersion quadrupole lens.

Reference	Reference	External precision	Measurement
	Value	(2 SD)	Mode
Gannoun A et al. $(2011)^{12}$	1.1418331	0.0000066 (n=18)	Static
Li et al.(2010) ²⁷	1.1418353	0.0000074 (n=12)	Static
Rizo et al. $(2012)^7$	1.1418400	0.0000030 (n=50)	Dynamic
Roth A.S.G et al. $(2014)^{10}$	1.1418370	0.0000049 (n=13)	Dynamic
Roth A.S.G et al. $(2013)^{11}$	1.1418351	0.0000042 (n=30)	Dynamic
Jackson M.G et al.(2012) ¹⁵	1.1418383	0.0000063 (n=12)	Dynamic
Li et al.(2010) ²⁷	1.1418348	0.0000044 (n=12)	Dynamic
Mean	1.1418362	0.0000046	

Table 3. Published JNdi-1¹⁴²Nd/¹⁴⁴Nd values determined using Triton Plus TIMS

separation		
Sample	¹⁴⁰ Ce/ ¹⁴⁴ Nd	Ce/Nd
HEH-1	0.000010	2.0
HEH-2	0.000002	2.0
HEH-3	0.000002	3.0
HEH-4	0.000002	3.0
HEH-5	0.000015	4.0
HEH-6	0.000012	4.0

Table 4. Evaluation of residual Ce in the mixed standards after SPMEseparation

Note: HEH-1 to HEH-6 are artificial mixed standard solution with the different Ce/Nd ratios. ¹⁴⁰Ce/¹⁴⁴Nd ratios mean the actual measurement values using TIMS after performing SPME separation.

- -	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 10 \\ 11 \\ 10 \\ 2 \\ 12 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
40	
43	
44	
45 46 47	
46	
17	
47	
48	
49	
50	
51	
E0	
52	
53	
54	
55	
56	
50	
49 50 51 52 53 54 55 56 57 58 59 60	
58	
59	
60	
50	

1

column				
Elements	Fraction 1(%)	Fraction 2(%)	Fraction 3(%)	Fraction 4(%)
Na	92.5	7.5	0	0
Ba	86.3	13.7	0	0
La	28.2	70.2	1.5	0
Ce	2.4	95.2	2.4	0
Pr	0	84.8	14.5	0.7
Nd	0	2.3	96.5	1.2
Sm	0	0	0	100
ΣHREE+MREE	0	0	0	100

Table 5.	Sample	purity	and	the	recovery	of	Nd	in	the	third	нененр	resin
column												

Note: The sample purity in different fractions is corresponding to fractions defined in Table 1c

Table 6. Results for Nd isotopic	atios in international CRMs determined using Triton Plus	TIMS

CRMs	¹⁴² Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴⁵ Nd/ ¹⁴⁴ Nd	¹⁴⁸ Nd/ ¹⁴⁴ Nd	¹⁵⁰ Nd/ ¹⁴⁴ Nd	146 Nd/ 144 Nd _m	¹⁴⁰ Ce/ ¹⁴⁴ Na
	this study (± 2 SE)	this study (± 2 SE)	Refer Values	this study (± 2 SE)	this study (± 2 SE)	this study (± 2 SE)		
JR-3	1.1418321(41)	0.5126655(14)	0.512679 ²⁴	0.3484047(9)	0.2415759(13)	0.2364463(15)	0.720838	0.000004
JR-3	1.1418370(41)	0.5126669(13)		0.3484051(9)	0.2415758(13)	0.2364449(14)	0.721626	0.000006
JR-3	1.1418340(39)	0.5126665(17)		0.3484048(12)	0.2415775(17)	0.2364419(17)	0.723291	0.000003
JR-3	1.1418316(40)	0.5126667(13)		0.3484055(9)	0.2415734(13)	0.2364436(14)	0.721024	0.000006
JR-3	1.1418322(42)	0.5126657(15)		0.3484049(10)	0.2415773(15)	0.2364483(15)	0.721186	0.000005
JR-3	1.1418369(41)	0.5126678(13)		0.3484031(9)	0.2415787(12)	0.2364475(13)	0.722543	0.000002
JR-3	1.1418343(41)	0.5126673(14)		0.3484048(9)	0.2415770(13)	0.2364466(14)	0.721904	0.000002
JR-3	1.1418370(38)	0.5126673(14)		0.3484033(10)	0.2415782(12)	0.2364467(14)	0.722885	0.000003
JR-3	1.1418305(38)	0.5126658(13)		0.3484043(9)	0.2415786(13)	0.2364473(13)	0.720606	0.000004
Mean	1.1418339	0.5126666		0.3484045	0.2415769	0.2364459		9
2 SD	0.0000050	0.0000016		0.0000016	0.000003	0.000004		U
2 RSD (%)	0.00044	0.00031		0.00046	0.00140	0.00176		
BCR-2	1.1418364(42)	0.5126203(15)	0.512641 ¹⁹ ; 0.512636 ²⁴	0.3484045(11)	0.2415784(16)	0.2364496(17)	0.720932	0.000002 <
BCR-2	1.1418343(42)	0.5126183(14)	0.512634 ²⁹ ; 0.512640 ³⁰	0.3484041(11)	0.2415766(15)	0.2364529(15)	0.722074	0.000002
BCR-2	1.1418342(36)	0.5126232(15)		0.3484058(10)	0.2415781(13)	0.2364459(14)	0.722042	0.000007
BCR-2	1.1418374(40)	0.5126217(14)		0.3484032(11)	0.2415758(14)	0.2364510(15)	0.721615	0.000005
BCR-2	1.1418355(39)	0.5126203(13)		0.3484046(10)	0.2415768(12)	0.2364457(13)	0.721406	0.000002
BCR-2	1.1418319(41)	0.5126203(13)		0.3484050(9)	0.2415759(13)	0.2364453(14)	0.721549	0.000003
BCR-2	1.1418323(37)	0.5126184(13)		0.3484047(9)	0.2415769(13)	0.2364454(14)	0.720699	0.000009 <

Page 24 of 26

JA-3 $1.1418314(43)$ $0.5128387(15)$ 0.512859^{22} ; 0.512850^{24} $0.3484043(10)$ $0.2415781(14)$ $0.2364437(16)$ 0.723033 0.000010 W-2 $1.1418347(44)$ $0.5125067(16)$ 0.512512^{24} ; 0.512516^{30} $0.3484034(11)$ $0.2415835(15)$ $0.2364497(16)$ 0.722207 0.000010 BHVO-2 $1.1418353(39)$ $0.5129682(14)$ 0.512983^{25} ; 0.512981^{29} $0.3484045(10)$ $0.2415800(13)$ $0.2364497(16)$ 0.721719 0.000002 JG-1a $1.1418382(43)$ $0.5123705(15)$ 0.512365^{21} ; 0.512383^{22} $0.3484045(9)$ $0.2415755(15)$ $0.2364476(16)$ 0.721063 0.000002 RGM-2 $1.1418338(42)$ $0.5127815(13)$ 0.512803^{26} $0.3484045(9)$ $0.2415821(14)$ $0.2364519(14)$ 0.722395 0.000002 GSP-2 $1.1418351(41)$ $0.5113480(14)$ 0.511368^{24} ; 0.511369^{29} $0.3484053(10)$ $0.2415758(14)$ $0.2364483(15)$ 0.720373 0.000008 Iote: The measured average value for $^{146}Nd/^{144}Nd_m$ in sequence S2 is shown for reference. Few $^{142}Nd/^{144}Nd$ data in silicate standards are reported except for BCR-2,	BCR-2 BCR-2 Mean 2 SD 2 RSD (%)	1.1418387(38) 1.1418338(36) 1.1418349 0.0000044 0.00039	0.5126221(12) 0.5126197(13) 0.5126205 0.0000032 0.00062		0.3484038(9) 0.3484042(8) 0.3484044 0.0000015 0.00043	0.2415772(12) 0.2415770(12) 0.2415770 0.0000017 0.00072	0.2364465(13) 0.2364477(13) 0.2364478 0.0000055 0.00234	0.722028 0.721543	0.000002 0.000004
W-2 $1.1418347(44)$ $0.5125067(16)$ $0.512512^{24}; 0.512516^{30}$ $0.3484034(11)$ $0.2415835(15)$ $0.2364497(16)$ 0.722207 0.000010 BHVO-2 $1.1418353(39)$ $0.5129682(14)$ $0.512983^{25}; 0.512981^{29}$ $0.3484045(10)$ $0.2415800(13)$ $0.2364598(15)$ 0.721719 0.000002 JG-1a $1.1418382(43)$ $0.5123705(15)$ $0.512365^{21}; 0.512383^{22}$ $0.3484045(10)$ $0.2415755(15)$ $0.2364476(16)$ 0.721063 0.000002 RGM-2 $1.1418338(42)$ $0.5127815(13)$ 0.512803^{26} $0.3484045(9)$ $0.2415821(14)$ $0.2364519(14)$ 0.722395 0.000002	AGV-2	1.1418360(40)	0.5127763(14)	0.512790 ²⁹ ; 0.512781 ³⁰	0.3484050(10)	0.2415770(14)	0.2364462(15)	0.721697	0.000008
BHVO-2 $1.1418353(39)$ $0.5129682(14)$ 0.512983^{25} ; 0.512981^{29} $0.3484045(10)$ $0.2415800(13)$ $0.2364598(15)$ 0.721719 0.000002 JG-1a $1.1418382(43)$ $0.5123705(15)$ 0.512365^{21} ; 0.512383^{22} $0.3484032(11)$ $0.2415755(15)$ $0.2364476(16)$ 0.721063 0.000006 RGM-2 $1.1418338(42)$ $0.5127815(13)$ 0.512803^{26} $0.3484045(9)$ $0.2415821(14)$ $0.2364519(14)$ 0.722395 0.000002 GSP-2 $1.1418351(41)$ $0.5113480(14)$ 0.511368^{24} ; 0.511369^{29} $0.3484053(10)$ $0.2415758(14)$ $0.2364483(15)$ 0.720373 0.000008 ote: The measured average value for 146 Nd/ 144 Nd _m in sequence S2 is shown for reference. Few 142 Nd/ 144 Nd data in silicate standards are reported except for BCR-2,	JA-3	1.1418314(43)	0.5128387(15)	$0.512859^{22}; 0.512850^{24}$	0.3484043(10)	0.2415781(14)	0.2364437(16)	0.723033	0.000010
JG-1a $1.1418382(43)$ $0.5123705(15)$ 0.512365^{21} ; 0.512383^{22} $0.3484032(11)$ $0.2415755(15)$ $0.2364476(16)$ 0.721063 0.000006 RGM-2 $1.1418338(42)$ $0.5127815(13)$ 0.512803^{26} $0.3484045(9)$ $0.2415821(14)$ $0.2364519(14)$ 0.722395 0.000002 GSP-2 $1.1418351(41)$ $0.5113480(14)$ 0.511368^{24} ; 0.511369^{29} $0.3484053(10)$ $0.2415758(14)$ $0.2364483(15)$ 0.720373 0.000008 ote: The measured average value for 146 Nd/ 144 Nd _m in sequence S2 is shown for reference. Few 142 Nd/ 144 Nd data in silicate standards are reported except for BCR-2,	W-2	1.1418347(44)	0.5125067(16)	0.512512 ²⁴ ; 0.512516 ³⁰	0.3484034(11)	0.2415835(15)	0.2364497(16)	0.722207	0.000010
RGM-2 $1.1418338(42)$ $0.5127815(13)$ 0.512803^{26} $0.3484045(9)$ $0.2415821(14)$ $0.2364519(14)$ 0.722395 0.000002 GSP-2 $1.1418351(41)$ $0.5113480(14)$ 0.511368^{24} ; 0.511369^{29} $0.3484053(10)$ $0.2415758(14)$ $0.2364483(15)$ 0.720373 0.000008 ote: The measured average value for 146 Nd/ 144 Nd _m in sequence S2 is shown for reference. Few 142 Nd/ 144 Nd data in silicate standards are reported except for BCR-2,	BHVO-2	1.1418353(39)	0.5129682(14)	0.512983 ²⁵ ; 0.512981 ²⁹	0.3484045(10)	0.2415800(13)	0.2364598(15)	0.721719	0.000002
GSP-2 $1.1418351(41)$ $0.5113480(14)$ 0.511369^{29} $0.3484053(10)$ $0.2415758(14)$ $0.2364483(15)$ 0.720373 0.000008 ote: The measured average value for 146 Nd/ 144 Nd _m in sequence S2 is shown for reference. Few 142 Nd/ 144 Nd data in silicate standards are reported except for BCR-2,				21 22					
ote: The measured average value for ¹⁴⁶ Nd/ ¹⁴⁴ Nd _m in sequence S2 is shown for reference. Few ¹⁴² Nd/ ¹⁴⁴ Nd data in silicate standards are reported except for BCR-2,	JG-1a	1.1418382(43)	0.5123705(15)	$0.512365^{21}; 0.512383^{22}$	0.3484032(11)	0.2415755(15)	0.2364476(16)	0.721063	0.000006
ote: The measured average value for ¹⁴⁶ Nd/ ¹⁴⁴ Nd _m in sequence S2 is shown for reference. Few ¹⁴² Nd/ ¹⁴⁴ Nd data in silicate standards are reported except for BCR-2,			· · ·	,		× ,			
	RGM-2 GSP-2 lote: The mea	1.1418338(42) 1.1418351(41) asured average valu	0.5127815(13) 0.5113480(14) ue for ¹⁴⁶ Nd/ ¹⁴⁴ Nd _n	0.512803 ²⁶ 0.511368 ²⁴ ; 0.511369 ²⁹ n in sequence S2 is shown fo	0.3484045(9) 0.3484053(10)	0.2415821(14) 0.2415758(14)	0.2364519(14) 0.2364483(15)	0.722395 0.720373	0.000002 0.000008

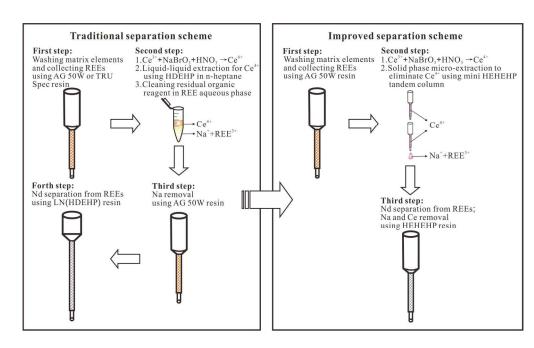
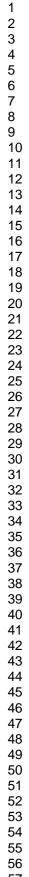



Figure 1 193x119mm (300 x 300 DPI)

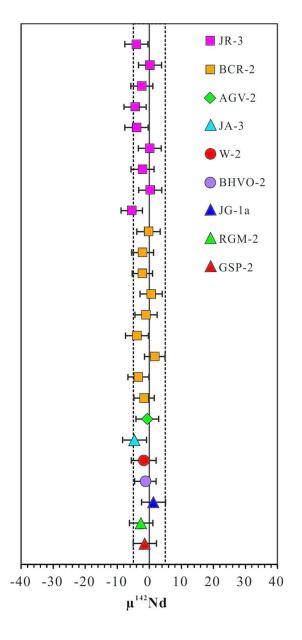


Figure 2 67x148mm (300 x 300 DPI)