JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

1	
2	
3	
4	
5	
6	
7	
Ŕ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
15	
40	
40	
4/	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
59	
60	

High-precision measurement of Eu/Eu* in geological 1 glasses via LA-ICP-MS analysis 2 Ming Tang^{a,*}, William F. McDonough^a, Ricardo Arevalo Jr.^b 3 4 5 ^aDepartment of Geology, University of Maryland, College Park, Maryland 20742, USA ^bNASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 6 7 Abstract 8 9 10 Elemental fractionation during laser ablation inductively coupled plasma mass 11 spectrometry (LA-ICP-MS) analysis has been historically documented between refractory 12 and volatile elements. In this work, however, we observed fractionation between light 13 rare earth elements (LREE) and heavy rare earth elements (HREE) when using ablation 14 strategies involving large spot sizes $(>100 \,\mu\text{m})$ and line scanning mode. In addition (1) 15 ion yields decrease when using spot sizes above $100 \,\mu\text{m}$; (2) (Eu/Eu*)_{raw} positively 16 correlates with carrier gas (He) flow rate, which provides controls over the particle size 17 distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)_{raw} shows positive correlation 18 with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate 19 change, roughly correlate with REE condensation temperatures. The REE fractionation is 20 likely driven by the slight but significant difference in their condensation temperatures. * Corresponding author at: Department of Geology, University of Maryland, College Park, Maryland 20742, USA. Tel.: +1 2403743443; fax: +1 (301) 405-3597.

E-mail: tangmyes@gmail.com (Ming Tang).

1

ournal of Analytical Atomic Spectrometry Accepted Manuscrip

1 2		
2 3 4	21	La
5 6	22	ev
7 8 9	23	co
10 11	24	is
12 13	25	dis
14 15 16	26	ma
17 18	27	of
19 20	28	pa
21 22 23	29	int
24 25	30	res
26 27 28	31	co
29 30	32	ab
31 32	33	me
33 34 35	34	ter
36 37	35	rep
38 39	36	
40 41 42	37	
43 44	38	In
45 46 47	39	La
48 49	40	spa
50 51	41	qu
52 53 54	42	to
55 56	43	ma
57 58 59 60		

21	Large particles may not be completely dissociated in the ICP and result in preferential
22	evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion
23	conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu
24	is less refractory than Sm and Gd. The extent of fractionation depends upon particle size
25	distribution of the aerosol, which in turn, is influenced by the laser parameters and
26	matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion
27	of large particles than high aspect ratio ablation, as confirmed by measurements of
28	particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation
29	introduces particles that cannot be decomposed and/or atomized by the ICP and thus
30	result in exacerbated elemental fractionation. Accurate quantification of REE
31	concentrations and Eu/Eu* requires reduction of large particle production during laser
32	ablation. For the reference materials analyzed in this work, the 100 μ m spot
33	measurements of Eu/Eu* agreed with GeoRem preferred values within 3%. Our long-
34	term analyses of Eu/Eu* in MPI-DING glass KL-2G and USGS glass BIR-1G were
35	reproducible at 3% (2 RSD).
36	

8 Introduction

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide spatially resolved, high-precision measurements of elemental concentrations. Accurate quantitation by LA-ICP-MS relies on effective external and internal standard calibration to address elemental and isotopic fractionation. However, the fractionation process is matrix dependent^{1, 2}, and may vary with ablation and ICP conditions³⁻⁵. Page 3 of 33

Rare earth element (REE) geochemistry, such as REE normalized abundances and Eu anomalies, can provide insights into various geological processes. Europium anomalies (Eu/Eu*, defined as $Eu_N/sqrt(Sm_N \times Gd_N)$, where the subscript N indicates chondrite normalized concentrations) have been used as oxybarometers of planetary bodies⁶⁻⁸ due to the multivalent nature of Eu under planetary redox conditions. Eu/Eu* in zircon has also been used to investigate redox potentials in magmas⁹. A recent study¹⁰ revealed a regional correlation between Eu/Eu* and MgO in mid-ocean ridge basalts (MORBs) from the East Pacific Rise (EPR), and suggested the potential use of Eu/Eu* as an indicator of magmatic evolution and crustal recycling processes. However, accurate and high-precision in situ determination of REEs at low concentrations (sub-ppmw to tens of ppmw) is challenging. Complications derived from matrix effects, laser parameters and dynamics within the ablation plume and the ICP torch serve to inhibit the precision and accuracy of these measurements. Although REEs are refractory (having condensation temperatures in a gas at 10^{-4} atm > 1000 °C¹¹), they can nonetheless be fractionated relative to one another during LA-ICP-MS analysis, leading to systematic errors even when the reference materials are compositionally well-matched to the sample unknowns. In this work, we measured REE concentrations and Eu/Eu* in glasses of various compositions (*i.e.*, SiO_2 from 45.5% to 58.6%), and characterized the mechanisms and sources of REE fractionation by studying the relative impacts of different laser parameters (repetition rate, beam size and ablation pattern) and carrier gas (He) flow rates. Laser ablation induced fractionation mechanisms

Journal of Analytical Atomic Spectrometry Accepted Manuscri

Journal of Analytical Atomic Spectrometry

66	Multiple physical and chemical processes are involved in laser ablation processing.
67	Generally, sample decomposition is induced by photon absorption, denoted as a
68	photophysical process including both photothermal (thermal) and photochemical (non-
69	thermal) activation ¹² . Photothermal activation occurs when thermal relaxation rates are
70	shorter than the pulse width. Photothermal activation results in thermal ablation by
71	increasing the temperature in the radiation-matter interaction zone, leading to surface
72	melting, sublimation and vaporization. In this case, the laser beam can be simply
73	regarded as a heat source. On the other hand, photochemical activation results in direct
74	bond breaking by promoting directly electrons across the bandgap on time scales shorter
75	than phonon relaxation rates. Both thermal and non-thermal ablation mechanisms
76	contribute to mass removal for most nanosecond- and picosecond-pulsed lasers. These
77	two types of ablation processes may also contribute to laser induced elemental
78	fractionation (LIEF), or non-stoichiometric ablation, via different mechanisms. In the
79	case of thermal ablation, distinct thermal properties (e.g., melting and boiling point) of
80	different elements or geological matrices (e.g., minerals, phases, etc.) give rise to
81	preferential evaporation ¹³⁻¹⁵ . In addition, surface melting and convection may lead to
82	surface deformation, zone refinement of the melt, and chemical inhomogeneities of the
83	resolidified material ^{12, 16} . Elemental fractionation induced by photochemical ablation may
84	be associated with ionization potentials of elements and subsequent selective ionization
85	during photon-electron coupling ^{12, 15} .
86	The primary drivers behind the fractionation mechanisms described above are laser

The primary drivers behind the fractionation mechanisms described above are laser
parameters (*e.g.*, wavelength, intensity and pulse duration) and the physical and chemical
properties of the material¹². An example is laser ablation of brass, a notoriously

Page 5 of 33

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

89	challenging material to analyze by LA-ICP-MS or LA-ICP-AES. The distinct thermal
90	and ionization properties of its two major chemical components, <i>i.e.</i> , Cu and Zn, lead to
91	their contrasting behaviors when brass is ablated by nanosecond and picosecond lasers
92	due to differences in condensation temperatures and electronics structures of these
93	elements ¹⁵ . Generally, the efficiency of coupling between laser energy and the sample
94	inversely correlates with laser wavelength, pulse duration and sample transparency. High-
95	energy photons (e.g., ultraviolet and shorter wavelengths) can ionize more efficiently via
96	single-photon absorption components in the sample ^{17, 18} . Long-pulse lasers (<i>e.g.</i> , 10^{-9} to
97	10^{-12} s) generate more thermal effects as a consequence of thermal relaxation within the
98	radiation-matter interacting zone ¹⁹ and plasma shielding effect ^{2, 14, 20, 21} . A laser induced
99	plasma extending from the sample surface towards the incident radiation serves to absorb
100	the laser energy that would otherwise couple to the sample; the absorption of incident
101	photons during long laser pulses causes the plume to expand and results in direct heating
102	of the sample via plasma-sample interaction. Since the work of Guillong and Günther ⁴ ,
103	particle size distribution has been recognized as another proxy of elemental fractionation
104	because (1) elemental composition may be particle size dependent ^{5, 17} and (2) conversion
105	of large particles into ions in the plasma may be incomplete and/or non-stoichiometric ^{4, 22,}
106	²³ . Crater development has been shown to influence laser-matter interaction, particle size
107	distribution and elemental fractionation ^{2, 17, 20, 24} . The aerosols produced can be
108	significantly enriched in volatile elements (e.g., Zn, Cd, Te, Se, Bi, etc.) during ablation
109	of deep craters (depth-to-diameter ratio > 6) ² . Despite significant signal reduction,
110	negligible fractionation of refractory elements (e.g., REEs, Y, U, Ca, etc.) was observed
111	even when the crater aspect ratios exceed 10 in Mank and Mason's study ²⁰ , with

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

112	fractionation between volatiles and non-volatiles dominantly attributed to plasma-sample
113	interaction in deep craters. Moreover, González et al. ²⁵ and Zhu et al. ²⁶ compared
114	scanning and spot ablation, and found that spot ablation provided better accuracy and
115	precision, and was less matrix-dependent than scanning ablation.
116	
117	Experimental
118	LA-ICP-MS
119	The measurements of REEs in multiple geological reference glasses were performed
120	using a Thermo Finnigan Element2 (Thermo Fisher Scientific. Waltham, Massachusetts,
121	USA), a single-collector, sector field, ICP-MS, coupled to a New Wave Research,
122	frequency-quintupled (213 nm) Nd: YAG laser system (Electro Scientific Industries, Inc.
123	Portland, OR, USA) in the Department of Geology, Plasma Laboratory at the University
124	of Maryland. Detailed operating conditions are reported in Table 1.
125	The sampler cone and skimmer cone were cleaned to remove surface oxides each day.
126	Both the ICP-MS and laser ablation system were allowed to warm up for 3 to 4 hours
127	after plasma ignition. Prior to analysis, the ion lenses and ICP-MS torch position were
128	tuned to maximize the signals on 43 Ca, 139 La and 180 Hf while maintaining 238 U 16 O/ 238 U \leq
129	0.2% during ablation of NIST612. Each analytical session was limited to no longer than 8
130	hours after tuning.
131	Each individual analysis incorporated a 30 s background acquisition followed by 90 s
132	spot or scanning analysis. The isotopes measured include ²³ Na, ²⁴ Mg, ²⁷ Al, ²⁹ Si, ⁴³ Ca,
133	⁴⁹ Ti, ⁵⁵ Mn, ⁵⁷ Fe, ¹³⁹ La, ¹⁴⁰ Ce, ¹⁴¹ Pr, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵³ Eu, ¹⁵⁷ Gd, ¹⁵⁹ Tb, ¹⁶³ Dy, ¹⁶⁵ Ho, ¹⁶⁶ Er,
134	¹⁶⁹ Tm, ¹⁷² Yb and ¹⁷⁵ Lu.

Table 1 The instrumental optimized	peration conditions used for LA-ICP-MS analysis
New Wave Nd: YAG lase	er parameters
Wavelength	213 nm
Energy density	$2-3 \text{ J cm}^{-2}$
Pulse duration	5 ns
Carrier gas	He
Ablation pattern	Single spot / line scanning
Laser beam size	55 μm, 80 μm, 100 μm, 125 μm, 150 μm, 175 μm
Repetition rate	5 Hz, 10 Hz, 20 Hz
Scanning speed	10 µm/s

Thermo Finnigan Element2 ICP-MS parameters

RF power	1250 W	
HV	8 kV	
Scan optimization	Speed	
Mass resolution	300 (m/Δm)	
Detection mode	Analogue or both	
Sampler cone	1.0 mm ID Al-alloy	
Skimmer cone	0.7 mm ID Al-alloy	
Cool gas flow	$16 \mathrm{L min}^{-1} \mathrm{Ar}$	
Auxiliary gas flow	$1.5 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$	
*Sample gas flow	$0.8 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$	

Journal of Analytical Atomic Spectrometry Accepted Manuscr

2
3
4
5
6
7
0
ð
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
∠ I 00
22
23
24
25
26
27
20
28
29
30
31
32
33
24
34
35
36
37
38
39
40
14
41
42
43
44
45
46
40 //7
47
48
49
50
51
52
53
50
54
55
56
57
58
59
60
00

1

	*Carrier gas flow	$0.6 \mathrm{L} \mathrm{min}^{-1} \mathrm{He}$
	Dwell time	5 ms at masses 23, 24, 27, 29, 43, 49, 55, 57;
		30 ms at masses 139, 140, 141, 146, 147, 159, 163,
		165, 166, 169, 172, 175;
		50 ms at masses 147, 157/158;
		100 ms at masses 153
137	* These gas flows were coupled at	a T-junction prior to the plasma torch.
138		
139	Particle size distribution measur	ement
140	The particle counter employed for	this study was an Airy Technology P611, which has 6
141	channels of cumulative and differe	nt particle counts simultaneously, allowing for the
142	detection of particles up to 0.3, 0.5	, 0.7, 1.0, 2.0 and 5.0 microns. The counter detects
143	about 50% of particles at 0.3 μ m, b	but 100% at >0.45 μ m. Reproducibility is better than
144	6%. The data are available in the supplementary material.	
145		
146	Reference materials and data rec	duction
147	The materials analyzed in this wor	k were three basaltic USGS glasses (BHVO-2G, BIR-
148	1G and BCR-2G) and five MPI-DI	NG glasses including KL-2G (tholeiitic basalt),
149	ML3B-G (tholeiitic basalt), GOR1	28-G (basaltic komatiite), GOR132-G (basaltic
150	komatiite) and T1-G (andesitic qua	artz-diorite). The USGS reference materials BHVO-2G,
151	BIR-1G and BCR-2G were used as	s external standards for calibration. The assumed
152	values for the reference materials w	were taken from GeoRem (<u>http://georem.mpch-</u>
153	mainz.gwdg.de/). Following Liu et	$t al.^{27}$ and Humayun <i>et al.</i> ²⁸ , we applied internal

Journal of Analytical Atomic Spectrometry

154	standardization by assuming that the sum of major element oxides (SiO ₂ + CaO + FeO +
155	$MgO + Al_2O_3 + MnO + Na_2O + TiO_2$) equals 100%. The advantage of this method is that
156	it doesn't require a second analytical measurement to obtain the concentration for a single
157	element used as an internal standard. This method led to a maximum of 2% absolute
158	overestimation of element concentrations, as K_2O and P_2O_5 were not included. All data
159	are provided in the supplementary file.
160	
161	Results and discussion
162	Spectral matrix effects
163	Spectral matrix effects occur when specific isotope currents in the mass spectrum are
164	overlapped by spectrometric species. These types of interferences include isobaric
165	spectral overlap, polyatomic molecular ion overlap, multiple charged species, and
166	background contribution to the measurement of the ion current ²⁹ . In addition, space
167	charge effect, which results in beam defocusing, also contributes to spectral matrix effect.
168	To examine spectral matrix effects, isotopic ratios of seven REEs, which were measured
169	prior to concentration determination, mostly agree with the true values within uncertainty
170	(Fig. 1). These analyses were not corrected for mass fractionation, which would induce
171	~1% offset per amu for the REE. Although poorly resolved by the precision, the
172	measured isotopic ratios 143/146, 147/149, 151/153 and 157/158 appear to be
173	systematically higher than the true values. This is because when scanning 143 through
174	174, the magnet mass was set at 143 and 167. Within each magnet mass, the Element2
175	performed high voltage scan (E-scan) and reached the next mass peak by decreasing the

176	acceleration voltage. This results in continuous sensitivity reduction when scanning from
177	low mass to high mass, and thus elevated ratios of light isotopes to heavy isotopes.
178	
179	Non-spectral matrix effects
180	Non-spectral matrix effects can be induced by non-stoichiometric sampling during laser
181	ablation, particle loss during transport and material dissociation and ionization in the ICP
182	Non-spectral matrix effects may not be effectively calibrated by external standards,
183	particularly those that are poorly matrix-matched with the sample unknowns, and result
184	in analytical error. Understanding the mechanisms of non-spectral matrix effects and
185	reducing their impact is key to achieving quantitative data accuracy and reproducibility.
186	In order to reduce non-spectral matrix effects, we maintained a constant laser energy
187	density at 2–3 J cm ⁻² throughout the experiments.
188	
189	Repetition rate
190	The repetition rate controls the rate of ablation/mass removal, and by extension crater
191	depth and crater depth-to-diameter ratio. To investigate the influence of repetition rate on
192	LIEF, we conducted a set of 100 μ m laser beam spot analyses with 5, 10 and 20 Hz
193	repetition rate. Under these conditions, the measured REE concentrations agree with

GeoRem preferred values within 10% (Fig. 2a-c). Although the signal intensities decayed

50-70% after 90s during 20 Hz ablation, no significant REE elemental fractionation was

198 Spot size

observed.

Journal of Analytical Atomic Spectrometry

	199	Ablation surface area and crater aspect ratio are associated with spot size (amongst other
	200	variables). Maintaining a constant repetition rate (10 Hz) and laser energy density (2–3 J $$
/	201	cm ⁻²), we compared spot analyses at 55, 100 and 150 μ m beam diameters (Fig. 2d-e). The
/	202	55 and 100 μ m analyses yielded REE concentrations matching GeoRem preferred values
/	203	within 10%. However, the HREE concentrations measured with 150 μ m spots
/	204	systematically deviated from the preferred values, indicating significant fractionation of
/	205	HREE from LREE. Such elemental fractionation cannot be well calibrated even when the
/	206	calibrating reference materials and sample unknowns have similar matrix compositions
/	207	(e.g., USGS basaltic glasses vs. MPI-DING basaltic glasses in this study).
/	208	
1	209	Scanning mode ablation
/	210	Line scanning mode promotes low depth-to-diameter aspect ratios and stable ion beam
/	211	signals (i.e., minimal signal degradation versus time). Scanning mode ablation was
/	212	examined with combinations of repetition rate (5 and 10 Hz) and beam size (55 and 100
/	213	μ m) at a fixed scan rate of 10 μ m /s. None of the experiments, however, gave results with
/	214	acceptable overall accuracy (Fig. 3) with HREEs being significantly fractionated from
/	215	LREE, indicating non-stoichiometric sample processing.
/	216	
/	217	Particle size distribution in laser induced aerosols
/	218	We measured particle size distribution in the laser-induced aerosols for BHVO-2G,
/	219	NIST610 and NIST614. These reference materials cover the transparency range of most
/	220	geological materials. When testing the spot mode, BHVO-2G generated low total counts
/	221	for particles above 1 µm and there is no clear relationship between the proportion of large

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

Journal of Analytical Atomic Spectrometry Accepted Manuscri

particles (>1 µm) and spot size (Fig. 4a). For NIST610, significantly greater proportion of large particles were produced, and a positive correlation between the proportion of large particles and spot size is observed (Fig. 4b). This relationship holds when using line scanning mode on BHVO-2G with an exception at $175 \,\mu m$ (Fig. 5). The lack of correlation in the BHVO-2G spot mode experiment might result from counting statistics, as the majority particles produced are likely smaller than 0.3 μ m. In the experiments comparing spot mode vs. line scanning mode, we observed that, at the same beam size, significantly more large particles were produced during line scanning ablation. The particle size distribution is also dependent upon sample transparency, and more transparent samples generated greater proportion of large particles (Fig. 6). Assessment The above observations lead us to conclude that (1) HREE can be fractionated from LREE during LA-ICP-MS analysis; (2) ablation using large laser spots (> 100 μ m) and line scanning mode induces significant matrix-dependent fractionation irrespective of the repetition rate and (3) Low aspect ratio ablation (large spot size and line scanning) and low photon absorption (high transparency) give rise to higher production rate for large particles. Preferential photon-electron coupling is unlikely to account for large REE fractionation observed here due to their similar ionization potentials (*i.e.*, 5.5 to 6.8 eV). Furthermore, such fractionation was rather limited, if present, when using spot ablation with 55 and 100 µm beams (relatively large depth-to-diameter aspect ratio). The deep

crater effect on REE fractionation was examined with a set of 20 Hz 55 µm spot

Page 13 of 33

Journal of Analytical Atomic Spectrometry

245	experiments, which generated a total of 1800 shots at each spot. The measured
246	concentrations agree with preferred values (Fig. 7). Guillong and Günther ⁴ observed that
247	even closely matched elements, such as Th and U, could be fractionated when a
248	significant portion of large particles cannot be fully decomposed and excited in the ICP.
249	The effect of particle size distribution was also emphasized by subsequent studies ^{17, 25, 30} .
250	To examine the effect of particle size distribution on REE fractionation, we compared
251	the measurements conducted under various He flow rates $(0.7 - 0.2 \text{ Lmin}^{-1})$. By
252	decreasing He flow rate from 0.70 L min ⁻¹ and 0.2 L min ⁻¹ the signals were reduced by a
253	factor of 2–5 (element dependent). The reduction of counts induced by lowering the He
254	flow rate may partially result from loss of ablated materials due to gravitational filtering
255	of large particles during transport. Particle separation during transport inevitably leads to
256	a change in particle size distribution. The raw Eu/Eu* and raw Yb/Yb*
257	(¹⁷² Yb/sqrt(¹⁶⁵ Tm* ¹⁷⁵ Lu)) positively correlates with He flow rate, which translates into
258	faster increase of Eu and Yb counts compared with their neighboring REEs. Europium
259	and Ytterbium, as well as their oxides, have lower condensation temperatures than the
260	other REEs, and they are, irrespective of the matrix, more sensitive to He flow rate than
261	their neighboring REEs (Fig. 8). And because He flow rate influences particle size
262	distribution of the aerosol reaching the ICP, the above observations point to a relationship
263	between elemental fractionation, condensation temperature and particle size distribution.
264	In addition to condensation temperature, electronic structures likely exert an effect on
265	elemental fractionation ³¹ , but this mechanism does not explain the correlations in Fig. 8.
266	The link between REE fractionation and condensation temperature is further supported
267	by the rough positive correlation between $cps_{0.2} / cps_{0.7}$ (the ratio of cps at 0.2 L min ⁻¹ He

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

flow rate to cps at 0.7 L min⁻¹ He flow rate) and condensation temperature (Fig. 9). The difference in condensation temperature may account for the observed LREE-HREE fractionation as LREEs are generally less refractory than HREEs¹¹. As to melting and boiling temperatures, we found no correlation between these physical parameters and **REE** fractionation. Figure 10 plots the ion yields (cps/spot diameter squared) at various mass stations as a function of spot size (10 Hz repetition rate). The low ion yields at small spot sizes (55 and 80 μ m) may result from significant plasma shielding effect in relatively narrow craters. However, the ion yield starts to decrease when spot size exceeds 100 µm. This negative correlation from 100 to 175 µm may reflect the reduction of ionization efficiency of aerosols in the plasma, which may be caused by mass loading effect due to (1) the large mass flux introduced into the plasma and/or (2) broader particle size distribution or a greater amount of large particles produced by low depth-to-diameter ablation. The formation of large particles is usually linked to surface melting and hydrodynamic sputtering³², or Gaussian distribution of photon density within the laser beam, the latter of which is unlikely since the laser used in this work is fluence homogenized. The measured $(Eu/Eu^*)_{raw}$ ($(Eu/Eu^*)_{raw} = {}^{153}Eu / sqrt ({}^{147}Sm^{*157}Gd)$, external standard calibration not applied) in BHVO-2G increases with spot size, or the proportion of large particles (Fig. 11), suggesting that the Sm-Eu-Gd fractionation is sensitive to particle size distribution. Despite more counts delivered by larger spots, the progressively more spiky signals resulted in the increasing error bars (2 σ_m) from 125 to 175 µm (Fig. 11).

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/ 50	
20	
59	
60	

290	These observations lead to us to link REE fractionation and condensation temperature.
291	Low depth-to-diameter ratio ablation generates more large particles. The difference in
292	condensation temperature results in non-stoichiometric ion yields if ionization of particles
293	is non-quantitative in the ICP. It remains unclear whether or not REEs are also
294	fractionated at the ablation site, as the chemical composition of the aerosol may also be
295	particle size dependent. However, if this is true, given that volatile elements tend to be
296	enriched in small particles ⁵ , the intensities of the less refractory LREEs should be less
297	sensitive to carrier gas flow rate, which is not the case (Fig. 8 and 9). Therefore, LIEF, if
298	present, has relatively minor contribution to the fractionation observed here. To further
299	clarify this issue, future work needs to determine REE compositions of particles collected
300	at different size cuts.
201	Figure 12 compares the measured Eu/Eu* values with GeoPerm preferred values in

301 12 compares the measured Eu/Eu* values with GeoRem preferred values in 302 spot (100 μ m) and scanning (100 μ m) mode (calibrated against BHVO-2G). The 100 μ m 303 spot measurements yielded results that agree with the preferred values within 3% while 304 the scanning mode suffered from significant non-spectral matrix effects. The basaltic 305 MPI-DING glasses KL-2G and ML3B-G cannot be well calibrated by the USGS standard 306 BHVO-2G in scanning mode, which is surprising given they are all Hawaiian basalts 307 with similar bulk compositions. Particle size distribution is thus highly sensitive to even 308 subtle difference in physical and chemical properties or surface morphology of different 309 matrices. Shown in Fig. 13 is our long-term measurement of Eu/Eu* in KL-2G and BIR-310 1G reproducible at 3% (2RSD).

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
3/	
25	
30	
36	
37	
38	
39	
40	
<u>41</u>	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
09	
bU	

313	1.	Refractory elements, such as REEs, can be fractionated during LA-ICP-MS
314		analysis. Line scanning and spot analyses using large laser beams (> 100 μ m)
315		promote statistically significant fractionation effects. Such REE fractionation is
316		also sensitive to carrier gas flow rate and is matrix dependent;
317	2.	Low aspect ratio ablation (large spot size and line scanning) and low photon
318		absorption (high sample transparency) result in production of more large particles
319		proportionally;
320	3.	The primary fractionation mechanism invoked is associated with condensation
321		temperature. Low depth-to-diameter aspect ratio ablation generates a significant
322		amount of large particles that may be poorly decomposed and ionized in the ICP.
323		In this case, the less refractory REEs may be preferentially evaporated and
324		ionized. Non-quantitative ionization of particles of various sizes may result in
325		condensation temperature dependent REE fractionation (e.g., LREE-HREE, Sm-
326		Eu-Gd, Tm-Yb-Lu). The extent of fractionation is sensitive to particle size
327		distribution of the aerosol.
328	4.	Controlled laser parameters can minimize the production of large particles and
329		significant REE fractionation, as demonstrated by the Eu/Eu* values in a set of
330		reference materials which agreed with GeoRem preferred values within 3%. A
331		long-term reproducibility of 3% (2 RSD) was achieved for Eu/Eu* in KL-2G and

- 332
- 333
 - 334 Acknowledgements

BIR-1G.

Journal of Analytical Atomic Spectrometry Accepted Manus

1			
2 3 4	335	This v	work was supported by NSF grant EAR-0739006. We thank Richard Ash for
5 6 7	336	assist	ance with LA-ICP-MS analysis. We also appreciate Yu Huang's help on data
7 8 9	337	reduc	tion.
10 11	338		
12 13	339	Refe	erences
14			
16	340	1.	J. S. Becker, C. Pickhardt and HJ. Dietze, Mikrochim Acta, 2000, 135, 71-80.
17	341	2.	S. M. Eggins, L. P. J. Kinsley and J. M. G. Shelley, Applied Surface Science,
18	342		1998, 127–129, 278-286.
19	343	3.	D. B. Aeschliman, S. J. Bajic, D. P. Baldwin and R. S. Houk, Journal of
20	344		Analytical Atomic Spectrometry, 2003, 18, 1008-1014.
21	345	4.	M. Guillong and D. Gunther, Journal of Analytical Atomic Spectrometry, 2002,
22	346		17. 831-837.
23	347	5	H R Kuhn M Guillong and D Gunther. Analytical and bioanalytical chemistry
25	348	01	2004 378 1069-1074
26	349	6	G McKay L Le I Wagstaff and G Crozaz Geochimica et Cosmochimica Acta
27	350	0.	1004 58 2011_2010
28	351	7	C Shearer I Panike and I Karner American Mineralogist 2006 01 1565-1573
29	252	7. Q	M. Wodhwo, Science, 2001, 201, 1527, 1520
30 21	252	0. 0	D. Troil F. Bruce Wetson and N. D. Teilby <i>Caechimica at Cosmochimica Acta</i>
32	254	9.	D. Hall, E. Diuce walson and N. D. Tanby, <i>Geochimica et Cosmochimica Acia</i> , 2012, 07, 70, 97
33	334 255	10	2012, 97, 70-87.
34	333 250	10.	Y. Niu and M. J. O Hara, <i>Litnos</i> , 2009, 112, 1-17.
35	350	11.	K. Lodders, The Astrophysical journal, 2003, 591, 1220.
36	357	12.	D. W. Bauerle, <i>Laser Processing and Chemistry</i> , Springer, 2011.
37	358	13.	C. Liu, X. L. Mao, S. S. Mao, X. Zeng, R. Greif and R. E. Russo, Analytical
38	359		<i>Chemistry</i> , 2003, 76, 379-383.
39 40	360	14.	X. Mao, WT. Chan, M. Caetano, M. A. Shannon and R. E. Russo, <i>Applied</i>
41	361		Surface Science, 1996, 96–98, 126-130.
42	362	15.	X. L. Mao, O. V. Borisov and R. E. Russo, Spectrochimica Acta Part B: Atomic
43	363		<i>Spectroscopy</i> , 1998, 53, 731-739.
44	364	16.	E. F. Cromwell and P. Arrowsmith, Analytical Chemistry, 1995, 67, 131-138.
45	365	17.	M. Guillong, I. Horn and D. Gunther, Journal of Analytical Atomic Spectrometry,
40 47	366		2003, 18, 1224-1230.
48	367	18.	I. Horn, M. Guillong and D. Günther, Applied Surface Science, 2001, 182, 91-
49	368		102.
50	369	19.	M. C. Richardson, A. Zoubir, L. Shah, C. Rivero, C. Lopez, K. A. Richardson, N.
51	370		Ho and R. Vallee, 2004.
52	371	20.	A. J. G. Mank and P. R. D. Mason, Journal of Analytical Atomic Spectrometry,
53 54	372		1999, 14, 1143-1153.
54 55	373	21.	M. A. Shannon, X. L. Mao, A. Fernandez, WT. Chan and R. E. Russo,
56	374		Analytical Chemistry, 1995, 67, 4522-4529.
57			
58			
59			
60			

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

375	22.	S. H. Jeong, O. V. Borisov, J. H. Yoo, X. L. Mao and R. E. Russo, Analytical
376		Chemistry, 1999, 71, 5123-5130.
377	23.	I. Kroslakova and D. Gunther, <i>Journal of Analytical Atomic Spectrometry</i> , 20
378		22, 51-62.
379	24.	O. V. Borisov, X. Mao and R. E. Russo, Spectrochimica Acta Part B: Atomic
380		<i>Spectroscopy</i> , 2000, 55, 1693-1704.
381	25.	J. J. González, A. Fernández, X. Mao and R. E. Russo, <i>Spectrochimica Acta I</i>
382		<i>B: Atomic Spectroscopy</i> , 2004, 59, 369-374.
383	26.	L. Zhu, Y. Liu, Z. Hu, Q. Hu, X. Tong, K. Zong, H. Chen and S. Gao,
384		Geostandards and Geoanalytical Research, 2013, 37, 207-229.
385	27.	Y. Liu, Z. Hu, S. Gao, D. Günther, J. Xu, C. Gao and H. Chen, <i>Chemical</i>
386	• •	<i>Geology</i> , 2008, 257, 34-43.
387	28.	M. Humayun, F. A. Davis and M. M. Hirschmann, <i>Journal of Analytical Ator</i>
388	• •	<i>Spectrometry</i> , 2010, 25, 998-1005.
389	29.	H. E. Taylor, in <i>Inductively Coupled Plasma-Mass Spectrometry</i> , ed. H. E.
390		Taylor, Academic Press, San Diego, 2001, DOI: <u>http://dx.doi.org/10.1016/B9</u>
391	20	<u>012683865-7/50008-9</u> , pp. 125-142.
392	30.	A. Plotnikov, C. Vogt, K. Wetzig and A. Kyriakopoulos, Spectrochimica Acto
393		<i>Part B: Atomic Spectroscopy</i> , 2008, 63, 474-483.
394	31.	F. E. Jenner and H. S. C. O'Neill, <i>Geochemistry</i> , <i>Geophysics</i> , <i>Geosystems</i> , 20
395	22	13, Q03003.
396	32.	R. Hergenroder, Journal of Analytical Atomic Spectrometry, 2006, 21, 517-52
571		
398	Figu	re captions
399		
400	Fig. 1	Measured REE isotopic ratios compared with natural abundance ratios. The
401	numb	er ratios on the x-axis represent 143 Nd/ 146 Nd, 147 Sm/ 149 Sm, 151 Eu/ 153 Eu, 157 Gd/ 15
402	¹⁶² Dy	$/^{163}$ Dy, 167 Er $/^{168}$ Er and 172 Yb $/^{174}$ Yb, respective. The error bars are 2 σ_m .
403		
404	Fig. 2	Relative difference between the measured REE concentrations and GeoRem
	prefe	rred values obtained in spot mode with 5, 10 and 20 Hz repetition rate at 100 μ r
405		size (a-c) and 55, 100 and 150 μ m spot size at 10 Hz repetition rate (d-f).
405 406	spot s	
405 406 407	spot s	

2		
3 4	408	Fig. 3 Relative difference between the measured REE concentrations and GeoRem
5	400	
6	409	preferred values obtained in line scanning mode. Same legends as Fig. 2.
8	410	
9	110	
10	411	Fig. 4 Number proportion of large particles (> 1 μ m) vs. spot size in spot and line
12		
13	412	scanning modes.
14 15	410	
16	413	
17	<i>A</i> 1 <i>A</i>	Fig. 5 Comparison of proportion of large particles produced in spot and line scanning
18 19	717	11g. 5 Comparison of proportion of farge particles produced in spot and the scanning
20	415	modes.
21		
22 23	416	
24		
25	417	Fig. 6 Comparison of proportion of large particles produced by samples of different
26 27	/18	transparency (photon absorption rate). Transparency increases in the order of RHVO 2C
28	410	transparency (photon absorption rate). Transparency increases in the order of BTTVO-20
29	419	< NIST610 < NIST614. The experiments were done in spot mode.
30 31		
32	420	
33		
34 35	421	Fig. 7 Relative difference between the measured REE concentrations and GeoRem
36	122	preferred values obtained in spot mode with 55 um spot size and 20 Hz repetition rate
37	422	preferred values obtained in spot mode with 55 µm spot size and 20 mz repetition rate.
30 39	423	Same legends as Fig. 2.
40		
41	424	
42 43		
44	425	Fig. 8 Raw Eu/Eu* and Yb/Yb* increase with He flow rate. The 2 σ_m error bars on the
45 46	126	sensitivities are about the size of the symbols. Some legends as Fig. 2
40	420	sensitivities are about the size of the symbols. Same legends as Fig. 2.
48	427	
49 50		
51	428	Fig. 9 Intensity change induced by He flow change vs. condensation temperature from
52		
53 54	429	Lodders ¹¹ .
55		
56	430	
57 58		
59		
60		

Journal of Analytical Atomic Spectrometry

ว
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
25
20
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
40
43
44
45
46
10
47
48
49
50
51
51
52
53
54
55
50
20
57
58
59
60
00

431	Fig. 10 Counts per second (cps) normalized to beam diameter squared (D^2) , as a proxy
432	for combined photon flux and ionization efficiency, obtained with 55 to 175 μm spots on
433	BHVO-2G. A linear time drift calibration was applied to each analysis.
434	
435	Fig. 11 Raw Eu/Eu* measured with 55 to 175 μ m spots on BHVO-2G. A linear time drift
436	calibration was applied to each analysis. The error bars are 2 σ_m .
437	
438	Fig. 12 Relative difference between the measured Eu/Eu* and GeoRem preferred values
439	obtained in spot mode with 100 μm spot size and scanning mode with 100 μm spot size.
440	The repetition rate was 10 Hz.
441	
442	Fig. 13 Long-term analyses of Eu/Eu* in KL-2G (top panel) and BIR-1G (bottom panel).
443	The solid lines indicate the mean values for both glasses.
444	

167/168

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Journal of Analytical Atomic Spectrometry

V

Ľ. X

Journal of Analytical Atomic Spectrometry Accepted Manuscr

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Journal of Analytical Atomic Spectrometry Accepted Manuscri

- 25

- 32

-30

-40

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Journal of Analytical Atomic Spectrometry Accepted Manuscript

0.5

0.20

0.70

Т

П

22

25

27

32

56

ł 1.1

53 54

Spot size (µm)

Ī Ŧ

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Journal of Analytical Atomic Spectrometry Accepted Manuscript

