JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

JAAS Technical Note

Precise determination of Os isotope ratios in 15–4000 pg range using a sparging method using enhanced-sensitivity multiple Faraday collector-inductively coupled plasma-mass spectrometry;

Jun-Ichi Kimura¹, Tatsuo Nozaki^{1,2}, Ryoko Senda¹, and Katsuhiko Suzuki^{1,2}

We have developed a protocol for Os isotope analysis employing a sparging method coupled with an enhanced-sensitivity multiple Faraday collector-inductively coupled plasma-mass spectrometry (MFC-ICP-MS) technique. The enhanced-sensitivity ICP interface with $10^{12} \Omega$ high-gain amplifiers allowed for the stable and precise isotopic ratio analysis of Os by sparging in a very wide concentration range of 15–4000 pg. The analytical reproducibility of Johnson Matthey chemical (JMC) Os standards at 50, 100, 200, 400, and 2000 pg Os were 0.8, 0.5, 0.2, 0.1, and 0.02% within two standard deviations (2SD), respectively. The low Os (50-200 pg) results compared with those obtained by sparging multiple-ion counter (MIC)-ICP-MS and high Os (400-2000 pg) results rivalled those of desolvating nebulisation MFC-ICP-MS and negative thermal ionisation mass spectrometry (N-TIMS). The analysed geological standards consisting of JCh-1 (chert; ~15 pg, n = 3), JMS-2 (marine sediment; ~150 pg, n = 5), UB-N (lherzoritic peridotite; ~4 ng, n = 4), and JP-1 (harzburgitic peridotite; ~3 ng, n = 5) showed ${}^{187}\text{Os}/{}^{188}\text{Os} = 0.657 \pm 0.065, 0.842 \pm 0.053, 0.12752 \pm 0.00016$, and 0.12071 ± 0.00069 (errors are in 2SD), respectively; these results are comparable with those obtained by MIC-ICP-MS and N-TIMS. The results showed that the sparging method coupled with enhanced-sensitivity MFC-ICP-MS is a strong tool for determining Os

isotope ratios in natural samples over a wide range of Os concentrations. Simple sample digestion and low procedural blanks using Carius tube digestion alone without any further element separation provides an additional advantage for Os isotope analysis by the method. (256 words; 4340 words in total) ¹ Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan. ². Submarine Resources Research Project (SRRP), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan. E-mail: jkimura@jamstec.go.jp; Fax: +81-46-867-9625; Tel.: +81-46-867-9765 † Electronic supplementary information (ESI) available. See DOI:10.1039/c2jaxxxxx

7

1. Introduction

The sparging method employed for Os isotopic ratio analysis by inductively coupled plasma-mass spectrometry (ICP-MS) is a highly versatile technique owing to its ease of sample preparation.¹⁻⁵ Many sample types, including solutions and rock powders, can be digested in an inverse aqua regia solution heated at ~220-240 °C in a Carius pressure vessel tube, allowing for Os oxidation to OsO₄. Oxidised Os is then vaporised by Ar-gas bubbling (sparging)^{1, 2, 4} and transferred into the ICP apparatus for mass spectrometric analysis. No chemical separation or purification is needed because of the selective vaporisation of Os from concomitant impurities including Re and W.^{1, 2, 4} A low total analytical blank is achievable owing to the need for less acid reagent and fewer chemical steps for sample preparation.¹⁻⁴ Instrumental memory effects in ICP-MS are almost nil at a few counts per second (cps),³ in contrast to very strong Os memories at 0.01-0.03% Os sample signals⁶ in normal nebulisation⁷ or desolvating nebulisation ICP-MS,⁶ in which glassware surfaces and desolvating membrane filters are memory sources.

Sparging ICP-MS analyses of Os isotope ratios using a single-ion counter $(IC)^1$ or multiple ICs (MICs)³ have been successfully applied to natural samples with low Os contents (15–200 pg) at a precision of 2–0.5% within two-standard deviations (2SD). For a higher precision analysis, early sparging analyses used multiple Faraday collector (MFC)-ICP-MS;^{2, 4} the necessary sample amount for a high precision analysis using this method was 10–50 ng for a precision of 0.38^2 – $0.02\%^4$ (2SD). A large amount of sample (10-50 ng) was necessary for a precision comparable to negative thermal ionisation mass spectrometry (N-TIMS)^{2, 4} or enhanced-sensitivity solution MFC-ICP-MS using desolvating nebulisation,⁶ both of which required ng quantities of Os for a precision of

Journal of Analytical Atomic Spectrometry Accepted Manuscript

64 0.02% (2SD).

Recent developments in MFC-ICP-MS have improved instrumental sensitivities five-fold by using high-transmission sampler-skimmer cones with a high vacuum at the ICP interface.^{8, 9} Use of high-gain amplifiers¹⁰ has also improved both analytical precision and reproducibility in low-signal samples.⁹⁻¹² We have applied the enhanced-sensitivity interface and high-gain amplifiers with $10^{12} \Omega$ resistors toward sparging MFC-ICP-MS, and examined the applicability of this method using Johnson Matthey chemical (JMC) Os standard solutions containing 50-2000 pg Os. The results indicated a comparable precision with that of sparging MIC-MC-ICP-MS for 50-200 pg samples and N-TIMS for 400–2000 pg samples. We also report the results obtained from analysis of a chert (JCh-1 (Geological Survey of Japan (GSJ)), containing ~15 pg Os^{3, 13}), marine sediment (JMS-2 (GSJ), ~145 pg^{3, 14}), and two peridotite geological standard samples (UB-N (Association Nationale de la Recherche Technique (ANRT)), ~4 ng;¹⁵⁻¹⁸ JP-1 (GSJ), ~3 ng¹⁹⁻²²), demonstrating that the sparging MFC-ICP-MS method described herein is applicable to almost all natural rock samples containing 15-4000 pg Os.

81 2. Experimental

2.1. Reagents

Ultrapure water (electrical resistivity > 18.2 MΩ cm) produced with a Milli-Q system from Millipore (Massachusetts, USA) was used for sample preparation. HNO₃ (68% m/m) and HCl (20 m/m), used to prepare the inverse aqua regia reagent, were TAMAPURE AA-10 grade from Tama Chemicals Co., Ltd. (Kanagawa, Japan).

2.2. Samples

Diluted Os standard solutions obtained from Johnson Matthey (London, United Kingdom) as chemical standards (JMC; Alfa Aesar 1000 ICP Os standard solution) were used for the experiments. Rock reference materials consisting of two sedimentary and one peridotite sample provided by the Geological Survey of Japan (GSJ) (JCh-1, chert; JMS-2, deep-sea pelagic sediments; JP-1, harzburgite) and a peridotite rock reference material (UB-N) provided by the United State Geological Survey (USGS) were analysed for Os concentration and isotope ratios.

2.3. Sample preparation

The sample preparation method is the same described by Nozaki et al. (2012),³ which is briefly described below. Powders of the rock reference materials (1-3 g) were weighed, spiked with ¹⁹⁰Os, and digested in 4 mL of inverse aqua regia solution in a sealed Carius tube at 220 °C for 24 h (sediments) or at 240 °C for 72 h (peridotites), dependent on material and sample size^{3, 20}. After cooling, the Carius tube was frozen in a dry ice-ethanol slush and carefully opened; the solution was then transferred into a 20 mL Teflon perfluoroalkoxy polymer resin (PFA) vessel. After centrifugation to remove residues, the solution was transferred to a 30 mL Teflon PFA vessel and diluted with 15 mL of ultrapure water; this solution was used for sparging MFC-ICP-MS analysis. Os concentration was also determined by the isotope dilution (ID) method combined with Carius tube digestion²³ and sparging.^{1, 3, 4}

JMC standard solutions containing 6 ng of total Os were also oxidised in 4 mL of inverse aqua regia solution in a sealed Carius tube under the same conditions as those employed for the rock reference materials, and were split into several solutions containing 50–2000 pg of total Os in of inverse aqua regia solution. After dilution by 7 mL of inverse aqua regia solution in a 20 or 30 mL Teflon PFA vessel, the samples were 112 used for sparging MFC-ICP-MS analysis.³

2.4. Sparging MFC-ICP-MS analysis

Os isotope ratios were measured by MFC-ICP-MS (NEPTUNE; Thermo Fisher, Bremen, Germany) combined with preliminary sparging. The 20 or 30 mL Teflon PFA vessel was inserted into the sample Ar gas line of the MFC-ICP-MS instrument.³ Ar gas was bubbled into and then extracted from the sample solution through a Teflon PFA transfer cap with two transfer ports attached to 1/8 inch Teflon PFA tubing.¹ An empty 20 or 30 mL Teflon PFA vial with a transfer cap was placed between the sample vial and ICP quartz glass torch to trap any liquid droplets that may have escaped from the sample vial during sparging.²

The MFC-ICP-MS interface was modified by the addition of a high-efficiency rotary pump,^{9, 24} and high-transmission JET sampler and X-skimmer cones⁸ were used along with the guard electrode (GE) turned on (electrically connected) to achieve the best instrument sensitivity (~3000 V ppm⁻¹ Pb in solution mode using an Aridus desolvating nebuliser).^{8,9} Oxide molecular yield under this condition was monitored by the ${}^{192}\text{Os}/{}^{192}\text{Os}{}^{16}\text{O}$ ratio, which was < 5%; no mass-independent isotopic fractionation²⁵, ²⁶ was identified as indicated by the reproducible ¹⁸⁷Os/¹⁸⁸Os isotope ratios of the JMC standard (187 Os/ 188 Os = 0.10688 ± 0.00006 (2SD) for 0.10684–0.10695;^{4, 6} see Section **3.1** below).

131 Configurations of the Faraday collectors (FCs) and Faraday amplifiers used are 132 given in **Table 1** along with other instrumental settings. The high-gain amplifiers using 133 a $10^{12} \Omega$ resistor were assigned to all Os isotopes apart from the spiked ¹⁹⁰Os sample, 134 which used a $10^{11} \Omega$ resistor amplifier. ¹⁸⁴W and ¹⁸⁵Re were also monitored by FCs with 135 $10^{11} \Omega$ amplifiers (**Table 1**). The isotope ratios of ¹⁸⁶Os/¹⁸⁸Os, ¹⁸⁷Os/¹⁸⁸Os, ¹⁸⁹Os/¹⁸⁸Os,

¹⁹⁰Os/¹⁸⁸Os, and ¹⁹²Os/¹⁸⁸Os, and Os concentrations were measured by the isotope dilution method (see **†E.S.I. Data Table 1**). The instrumental mass fractionation of Os was corrected for by normalising ¹⁹²Os/¹⁸⁸Os = 3.08271^{27} with an exponential law. Slow responses of the Faraday amplifiers^{28, 29} were reported for transient signals, but we did not see any problems with the gradual signal decay in Os sparging analyses.

The Os signals were observed to decay to about 30% of their initial intensities after \sim 15 min of sparging (**Fig. 1f**). Accordingly, adjustment of acquisition time is necessary to obtain the best statistics in isotope ratios, as the signal intensities cannot be adjusted during sparging unlike TIMS, which allows for measurement of ion yield by increasing the temperature of the ionisation filament. We also tested for changes in signal intensities, averages, and two-standard error of the mean (2SE = $2\sigma/\sqrt{n}$: two-standard deviation divided by square route of n, where n is scan number) values over 100 scans of ~8 s data-acquisition increments (Fig. 1). The 2SE values improved by 60 scans and almost stabilised after 60 scans for all concentration levels (see Fig. 1a-e). The average values also stabilised after 60 scans, but gradually approached the reference value even after 60 scans. We therefore chose 100 scans for all analytical runs throughout this study, based on these observations.

3. Results and discussion

3.1. JMC Os standard solutions at 50–2000 pg

3.1.1. Precision of ¹⁸⁷Os/¹⁸⁸Os isotope ratio analysis

157 The sparging method coupled with enhanced-sensitivity MFC-ICP-MS was first tested 158 by analysing the JMC standard solutions at 50, 100, 200, 400, and 2000 pg. The 159 summary of analysis is given in **Table 2** and all analytical results are given in **†E.S.I.**

Data Table 1.

161 The typical two-standard error of the mean of JMC solutions containing 50, 100, 162 200, 400, and 2000 pg Os were 0.8, 0.5, 0.2, 0.1, and 0.02% (2SE%), respectively (**Fig.**

2). Based on the data, 2SE% of this sparging method can be estimated by

 $2SE\% = 39.4994 \times C_{Os}^{-0.97365},$

where C_{Os} is amount of Os in sample in pg. By using this equation, a 20 pg sample can be measured at 2.1% (2SE%) and 5 ng sample at 0.01% (2SE%). These numbers are comparable with those obtained by desolvating nebulisation MFC-ICP-MS analyses of 1.7% (2SE%) at 20 pg and 0.01% (2SE%) at 5 ng.⁶

169 It is noteworthy that a 2SE% of < 0.8% was achievable for the ¹⁸⁷Os/¹⁸⁸Os ratio at 170 an ¹⁸⁷Os 0.00016 V signal intensity (**†E.S.I. Data Table 1**). This improvement is 171 obviously attributed to the combination of the enhanced-sensitivity ICP interface and 172 high-gain amplifiers.

3.1.2. Intermediate precision of ¹⁸⁷Os/¹⁸⁸Os isotope ratio analysis

We analysed JMC standard 3 days over six months. The instrumental sensitivity on day one was inferior, about two times lower than the others due likely to a worn-out skimmer cone. Analyses on the other two days showed reasonable sensitivities. Even so, isotope ratios were indistinguishable between the first day and the others (Fig. 3 and **Table 2**). The grand average of JMC was 187 Os/ 188 Os = 0.10688 ± 0.00006 (2SD) for the 2 ng sample, which is in accordance with the obtained N-TIMS values of $^{187}Os/^{188}Os =$ 0.10684 ± 0.00002 (IFREE/JAMSTEC; **Table 2**) and 0.10695 ± 0.00002 ,⁴ desolvating nebulisation MFC-ICP-MS values of ${}^{187}\text{Os}/{}^{188}\text{Os} = 0.10686 \pm 0.00001$ (5 ng),⁶ and sparging MFC-ICP-MS values of 187 Os/ 188 Os = 0.10694 ± 0.00002 (50 ng)⁴ (**Table 2**). Considering the low sample consumption of 2 ng by our method, the precision and

reproducibility are comparable with those of desolvating nebulisation MFC-ICP-MS using 5 ng sample amounts (see Section 3.1.1. above). The above-described improvement is reasonable since the enhanced-sensitivity ICP interface improved sensitivity ~3–5 times that of normal (N)-sample–X-skimmer cones. This sensitivity enhancement is comparable with or slightly inferior to that of the Aridus desolvating nebuliser, which exhibits a 5–7-fold improvement in sensitivity.⁶ Additional use of high-gain amplifiers helped to improve counting statistics for low signals at ¹⁸⁷Os = 6.2 mV (average of 100 scans) from 2 ng Os samples (**Table 2**). This improvement was also obvious by comparison to the initial sparging MFC-ICP-MS results, which required 50 ng JMC samples for the precision/reproducibility found in this study (see **Table 2**).⁴ The sparging method presented here is free from Os memory,¹⁻³ in contrast to nebulisation MFC-ICP-MS methods in which severe memory effects must be corrected for.⁶ N-TIMS is also free from memory; however, a comparable reproducibility with N-TIMS⁴ (see Table 2) was achieved without chemical isolation of Os after Carius tube digestion, which is requisite of N-TIMS.^{2, 3} The sparging method with

enhanced-sensitivity MFC-ICP-MS used here is truly advantageous for a simple, rapid, precise, and reproducible Os isotopic analysis technique. Long-term stability of this method is assured by the low oxide yield of Os at the enhanced-sensitivity ICP interface, unlike Nd,^{25, 26, 30} and the stable MFC-high-gain amplifier system, both of which were shown to guarantee stable isotope ratio analyses and internal mass-bias corrections over six months (†E.S.I. Data Table 1).

3.2. Sedimentary rock reference materials

To demonstrate the application of sparging MFC-ICP-MS, we analysed Os concentrations and ¹⁸⁷Os/¹⁸⁸Os isotope ratios of standard reference sediment samples.
JCh-1 chert and JMS-2 marine sediment were analysed for ~15 pg and ~150 pg levels,
respectively.

The Os concentration of JCh-1 was 5.03 ± 0.40 ppt (n = 3, 2SD error), a 7.9% (2SD) error with 0.4–0.8% (2SE) precision in each run. Those of JMS-2 were 289 ± 20 ppt (n= 5, 2SD), a 6.9% (2SD) error with ~0.07% (2SE) precision in each run (**Table 3**). The Os concentrations were in good agreement with 5.71 ± 0.97 ppt by N-TIMS¹³ and 5.45 ± 0.51 ppt by MIC-ICP-MS³ for JCh-1, and 292 ± 13 ppt by N-TIMS¹⁴ and 264 ± 46 ppt by MIC-ICP-MS³ for JMS-2.

The ¹⁸⁷O/¹⁸⁸Os ratios of JCh-1 samples were ¹⁸⁷O/¹⁸⁸Os = 0.657 \pm 0.065 (*n* = 3), a 9.8% (2SD) error with 1.7–2.2% (2SE) in-run precision, and those for JMS-2 samples were ¹⁸⁷O/¹⁸⁸Os = 0.842 \pm 0.053 (*n* = 5), a 6.3% (2SD) error with 0.12–0.14% (2SE) in-run precision (**Fig. 4**, **Table 3**). These values were also in good agreement with JCh-1 values of ¹⁸⁷O/¹⁸⁸Os = 0.606 \pm 0.044 by N-TIMS¹⁴ and 0.599 \pm 0.051 by MIC-ICP-MS,³ and JMS-2 values of ¹⁸⁷O/¹⁸⁸Os = 0.823 \pm 0.035 by N-TIMS¹⁴ and 0.787 \pm 0.036 by MIC-ICP-MS.³

Although analysed signals for ¹⁸⁷Os were ~0.14 mV for JCh-1 and ~2.76 mV for JMS-2 (overall average of 100 scans, not shown), both analytical precisions and analysed values compared quite well with those by MIC-ICP-MS and N-TIMS using ion counter(s). Such precisions and reproducibilities are sufficient for the measurement of sediments toward applications in earth science. The use of MFC is advantageous to both single IC, which requires frequent gain and dead-time calibrations, and MIC, which requires a standard bracketing measurement protocol.³

3.3. Peridotite rock reference materials

We also analysed Os concentrations using isotope dilution method^{3, 20} and ¹⁸⁷Os/¹⁸⁸Os isotope ratios of UB-N and JP-1 peridotites at ~3 ng and ~4 ng levels. The Os concentrations of UB-N were 3.62 ± 0.26 ppb (n = 4), a 7.2% (2SD%) with 0.3–0.8% (2SE) in-run precision. Those of JP-1 were 3.37 ± 0.22 ppb (n = 5), a 6.5% (2SD%) with ~0.03% (2SE%) in-run precision (**Table 3**). The Os concentrations were in good agreement, with 3.51 ± 0.26 ppb,¹⁵ 3.85 ± 0.62 ppb,¹⁷ and 3.53 ± 0.50 ppb¹⁸ by N-TIMS for UB-N and 2.58 ± 0.40 ppb by N-TIMS²⁰ for JP-1.

The ¹⁸⁷O/¹⁸⁸Os ratios were ¹⁸⁷O/¹⁸⁸Os = 0.12752 ± 0.00016 (n = 4), a 0.1% (2SD%) with 0.03–0.07% (2SE%) in-run precision for UB-N, and ¹⁸⁷O/¹⁸⁸Os = 0.12071 ± 0.00069 (n = 5), a 0.6% (2SD%) with 0.03–0.05% (2SE%) in-run precision for JP-1 (**Fig. 4, Table 3**). These were also in good agreement with ¹⁸⁷O/¹⁸⁸Os = 0.12722 ± 0.00076,¹⁵ 0.12737 ± 0.00064,¹⁷ and 0.12722 ± 0.00054¹⁸ by N-TIMS for UB-N, and ¹⁸⁷O/¹⁸⁸Os = 0.12055 ± 0.0007 by N-TIMS²⁰ for JP-1.

Analysed signals for ¹⁸⁷Os were ~4.40 mV for UB-N and ~4.17 mV for JP-1 (both overall averages of 100 scans, not shown); analytical precisions and analysed values reproduced quite well with those obtained by N-TIMS using Faraday collectors.^{15, 18, 20} Such the results are more than sufficient for peridotite analyses in earth science applications. The sparging method described here is advantageous over N-TIMS, which requires the isolation of Os after Carius tube digestion.^{15, 18, 20} The additional chemical steps required for N-TIMS results in an increase in Os blanks and preparation time. Total procedural blanks in the sparging method were 0.60–0.78 pg over 6 months with average of 0.69 pg (Table 3). The sparging MFC-ICP-MS method with enhanced-sensitivity instrumentation used in this study is anticipated to become a new standard technique in geosciences for Os isotope and concentration analyses.

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

4. Conclusions

We investigated a sparging MFC-ICP-MS technique for Os concentration and isotope ratio analyses of JMC standards and natural rock reference materials. The combination of enhanced sensitivity achieved by a high-transmission ICP interface and improved counting statistics by use of high-gain amplifiers allowed for the precise and stable analysis of Os using Faraday collectors. Less than 2% (2SE%) precision and reproducibility were achieved for ~15 pg Os samples, and < 0.03% (2SE%) precision and reproducibility were obtained for ~3 ng Os. These results are comparable with those using MIC-ICP-MS and N-TIMS. The improved instrumentation will allow the application of sparging MFC-ICP-MS to almost all of the rock samples analysed in the geosciences field. The simple and low-blank sample preparation (Carius tube digestion only) constitutes a significant improvement in Os isotope analysis throughput, which is the true benefit of this sparging MFC-ICP-MS technique.

271 Acknowledgments

We thank Dr. C. Bouman of Thermo Fisher Scientific for helpful discussions concerning the properties of MFC-ICP-MS. Discussions with Dr. A. Ishikawa at the University of Tokyo proved useful for the recovery of platinum-group elements during Carius tube digestion. The authors also thank to an anonymous referee and Dr. Bert Muller for their constructive comments, which improved the manuscript.

References

- - 280 1. D. R. Hassler, B. Peucker-Ehrenbrink and G. E. Ravizza, Chemical Geology,

2 3 1		
5	281	2000, 166 , 1-14. DOI: 10.1016/s0009-2541(99)00180-1.
7	282	2. M. Norman, V. Bennett, M. McCulloch and L. Kinsley, <i>Journal of Analytical</i>
))	283	Atomic Spectrometry, 2002, 17, 1394-1397. DOI: 10.1039/b204518d.
0 1	284	3. T. Nozaki, K. Suzuki, G. E. Ravizza, JI. Kimura and Q. Chang, <i>Geostandards</i>
2	285	and Geoanalytical Research, 2012, 36 , 131-148. DOI:
3 4	286	10.1111/j.1751-908X.2011.00125.x.
5	287	4. R. Schoenberg, T. F. Nägler and J. D. Kramers, <i>International Journal of Mass</i>
6 7	288	Spectrometry, 2000, 197 , 85-94. DOI: 10.1016/s1387-3806(99)00215-8.
8	289	5. T. Meisel, J. Moser, N. Fellner, W. Wegscheider and R. Schoenberg, <i>Analyst</i> ,
9 20	290	2001, 126 , 322-328. DOI: 10.1039/b007575m.
21	291	6. A. Makishima and E. Nakamura, <i>Analytical Chemistry</i> , 2006, 78 , 3794-3799.
22 23	292	DOI: 10.1021/ac060183t.
24	293	7. T. Hirata, Journal of Analytical Atomic Spectrometry, 2000, 15 , 1447-1450.
26 26	294	DOI: 10.1039/b006626p.
27	295	8. C. Bouman, M. Deerberg and J. B. Schwieters, <i>Thermo Scientific Application</i>
29	296	Note, 2009, 30187 , 1-4.
30 31	297	9. JI. Kimura, H. Kawabata, Q. Chang, T. Miyazaki and T. Hanyu, <i>Geochemical</i>
32	298	Journal, 2013, 47 , 369-384.
33 34	299	10. M. E. Wieser and J. B. Schwieters, International Journal of Mass Spectrometry,
85	300	2005, 242 , 97-115. DOI: 10.1016/j.ijms.2004.11.029.
86 87	301	11. A. Makishima and E. Nakamura, Journal of Analytical Atomic Spectrometry,
88	302	2010, 25 , 1712-1716. DOI: 10.1039/c0ja00015a.
40	303	12. J. M. Koornneef, C. Bouman, J. B. Schwieters and G. R. Davies, Journal of
1 12	304	Analytical Atomic Spectrometry, 2013, 28, 749-754. DOI: 10.1039/c3ja30326h.
3	305	13. J. Kuroda, R. S. Hori, K. Suzuki, R. G. Darren and N. Ohkouchi, Geology,
4 15	306	2010, 38 , 1095-1098. DOI: 10.1130/G31223.1.
6	307	14. G. Zheng, K. Suzuki, Y. Miyata and H. Shimizu, Geochemical Journal, 2012,
17 18	308	143 , 143-149.
9	309	15. H. Becker, M. F. Horan, R. J. Walker, S. Gao, J. P. Lorand and R. L. Rudnick,
50 51	310	Geochimica et Cosmochimica Acta, 2006, 70, 4528-4550. DOI:
2	311	10.1016/j.gca.2006.06.004.
54 54	312	16. A. Luguet, S. B. Shirey, JP. Lorand, M. F. Horan and R. W. Carlson,
55 56	313	Geochimica et Cosmochimica Acta, 2007, 71 , 3082-3097. DOI:
57 57	314	10.1016/j.gca.2007.04.011.
58 59	315	17. I. S. Puchtel, R. J. Walker, O. B. James and D. A. Kring, Geochimica et
50	316	Cosmochimica Acta, 2008, 72, 3022-3042. DOI: 10.1016/j.gca.2008.04.006.

Journal of Analytical Atomic Spectrometry

1		14
2 3		
4		
5 6	317	18. M. Fischer-Göedde, H. Becker and F. Wombacher, <i>Chemical Geology</i> , 2011,
7	318	280 , 365-383. DOI: 10.1016/j.chemgeo.2010.11.024.
o 9	319	19. K. Shinotsuka and K. Suzuki, Analytica Chimica Acta, 2007, 603, 129-139.
10 11	320	DOI: 10.1016/j.aca.2007.09.042.
12	321	20. K. Suzuki and Y. Tatsumi, <i>Geochemical Journal</i> , 2001, 35 , 207-210.
13 14	322	21. T. Meisel and J. Moser, <i>Chemical Geology</i> , 2004, 208 , 319-338. DOI:
15	323	10.1016/j.chemgeo.2004.04.019.
16 17	324	22. N. Shirai, T. Nishio, X. Li, H. Amakawa and M. Ebihara, <i>Geochemical Journal</i> ,
18 10	325	2003, 37 , 531-536.
20	326	23. S. B. Shirey and R. J. Walker, Analytical Chemistry, 1995, 67, 2136-2141.
21 22	327	DOI: 10.1021/ac00109a036.
23	328	24. JI. Kimura, T. Takahashi and Q. Chang, Journal of Analytical Atomic
24 25	329	Spectrometry, 2013, 28, 945-957. DOI: 10.1039/c3ja30329b.
26	330	25. K. Newman, Journal of Analytical Atomic Spectrometry, 2011, 27, 63-70. DOI:
27 28	331	10.1039/c1ja10222b.
29	332	26. K. Newman, P. A. Freedman, J. Williams, N. S. Belshaw and A. N. Halliday,
30 31	333	Journal of Analytical Atomic Spectrometry, 2009, 24, 742-751. DOI:
32	334	10.1039/b819065h.
33 34	335	27. A. O. Nier, <i>Physical Review</i> , 1937, 52 , 885.
35 36	336	28. T. Iizuka, S. M. Eggins, M. T. McCulloch, L. P. J. Kinsley and G. E. Mortimer,
37	337	Chemical Geology, 2011, 282, 45-57. DOI: 10.1016/j.chemgeo.2011.01.008.
38 39	338	29. T. Hirata, Y. Hayano and T. Ohno, <i>Journal of Analytical Atomic Spectrometry</i> ,
40	339	2003, 18 , 1283-1288.
41 42	340	30. JI. Kimura, Q. Chang and H. Kawabata, Journal of Analytical Atomic
43	341	Spectrometry, 2013, 28, 1522-1529. DOI: 10.1039/c3ja50109d.
44 45	342	
46 47		
48		
49 50		
50 51		
52		

58 59

2 3		
4 5		
6 7	343	Fig. 1 Temporal changes of average and two-standard error of the mean (2SE) values
8 9	344	with decaying Os signals over 100 scans in Os isotope measurement at various Os
10 11 12	345	concentrations from 50–2000 pg. Data from †E.S.I. Data Table 1.
13 14	346	
15 16	347	Fig. 2 Achievable analytical precision at different concentration levels by sparging
17 18 19	348	MFC-ICP-MS. In-run precision is given by 2SE. Data from †E.S.I. Data Table 1.
20 21	349	
22 23	350	Fig. 3 Analytical results of JMC standard solutions. †E.S.I. Data Table 1.
24 25 26	351	
20 27 28	352	Fig. 4 Analytical results of JCh-1, JMS-2, UB-N, and JP-1 geological reference
29 30	353	materials. Data from Table 3.
31 32	354	
33 34 35	355	Table 1 Mass spectrometer setup parameters for sparging MC-ICP-MS.
36 37	356	
38 39 40	357	Table 2 Analytical results of JMC Os standard solution.
41 42	358	
43 44	359	Table 3 Analytical results of JCh-1, JMS-2, UB-N, and JP-1.
45 46	360	
47 48 49	361	†E.S.I. Data Table 1 All analytical results of JMC Os standard solutions at various
50 51	362	concentrations.
52 53	363	
54 55 56	364	Graphical Abstract Precise determination of Os isotope ratios in 15-4000pg Os by
57 58	365	sparging-Multiple Faraday Cup-ICP-MS (14 wards)
59 60	366	

Journal of Analytical Atomic Spectrometry

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

1
2
3
4
5
6
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
33
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
50
56
57
58
59

60

Table 1 Mass spectrometer setup parameters for sparging-MC-ICP-MS.

368									
369	Apparatus	Experimental setting							
370	Sparging chamber	20 or 30 mL PFA Teflon jar with 1/8 inch Teflon tubing							
371	Sparging chamber temperature	~22 °C (room temperature)							
372	Sparging gas flow	~1.2 L/min (Ar)							
373	MC-ICPMS	Neptune (Thermo Fisher) modified							
374	RF-power	1200 W							
375	Guard electrode	on (electronically connected)							
376	Sampling cone	JET-sample cone (Ni)							
377	Skimmer cone	X-skimmer cone (Ni)							
378	Cooling gas (Ar)	13 L/min							
379	Auxiliary gas (Ar)	1.2 L/min							
380	Interface vacuum with E2M80	1.2 mbar							
381	Mass resolution	Low resolution							
382	Acquisition time	~8 s \times 100 scans in one block							
383	Baseline	On peak (300 s) before block							
384	Cup configuration								
385	184 W (10 ¹¹ Ω amplifier)	FC L3 W monitor							
386	¹⁸⁵ Re ($10^{11} \Omega$ amplifier)	FC L2 Remonitor							
387	¹⁸⁶ Os ($10^{12} \Omega$ amplifier)	FC L1							
388	¹⁸⁷ Os ($10^{12} \Omega$ amplifier)	FC Axial							
389	¹⁸⁸ Os ($10^{12} \Omega$ amplifier)	FC H1 Os mass-bias correction							
390	¹⁸⁹ Os ($10^{12} \Omega$ amplifier)	FC H2							
391	¹⁹⁰ Os ($10^{11} \Omega$ amplifier)	FC H3 Os spike							
392	$\frac{192}{\text{Os}}$ (10 ¹² Ω amplifier)	FC H4 Os mass-bias correction							
393	FC: Faraday cup; amplifiers used are	shown in parentheses. Mass bias is corrected for using ¹⁹² Os/ ¹⁸⁸ Os =							
394	3.08271								

367

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

1	
2	
2	
1	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	

Table 2 Analytical results of JMC Os standard solution

	398									
	000	Day	Wt.(pg) ¹⁸⁷ Os (V)	¹⁸⁶ Os/ ¹⁸⁸ Os	2SD	¹⁸⁷ Os/ ¹⁸⁸ Os	2SD	¹⁸⁹ Os/ ¹⁸⁸ Os	2SD
)	399	Day 1 $(n = 5)$	50	0.00009	0.11888	0.01120	0.10530	0.00785	1.22118	0.00399
0	400	Day 3 $(n = 5)$	50	0.00016	0.11946	0.00464	0.10657	0.00161	1.21914	0.00504
1	401	Day 4 $(n = 5)$	50	0.00019	0.12031	0.00154	0.10715	0.00141	1.21975	0.00148
2	402	G.AVG/ 2SD			0.11955	0.00144	0.10634	0.00189	1.22002	0.00209
3	403	Day 1 $(n = 5)$	100	0.00020	0.11971	0.00128	0.10667	0.00192	1.22055	0.00307
4	404	Day 3 $(n = 5)$	100	0.00027	0.12037	0.00267	0.10712	0.00062	1.22081	0.00231
5	405	Day 4 $(n = 5)$	100	0.00036	0.12038	0.00164	0.10690	0.00091	1.21997	0.00195
6	406	G.AVG/ 2SD			0.12015	0.00077	0.10689	0.00045	1.22044	0.00086
17	407	Day 1 $(n = 5)$	200	0.00043	0.11962	0.00067	0.10722	0.00129	1.21958	0.00118
8	408	Day 3 $(n = 5)$	200	0.00053	0.12013	0.00124	0.10696	0.00066	1.21970	0.00078
9	409	Day 4 $(n = 5)$	200	0.00076	0.12034	0.00094	0.10699	0.00064	1.21968	0.00079
20	410	G.AVG/ 2SD			0.12003	0.00074	0.10706	0.00028	1.21965	0.00012
21	411	Day 1 $(n = 5)$	400	0.00072	0.11992	0.00119	0.10683	0.00073	1.21939	0.00307
22	412	Day 2 $(n = 5)$	400	0.00092	0.11969	0.00085	0.10686	0.00073	1.21930	0.00312
23	413	Day 3 $(n = 5)$	400	0.00122	0.11988	0.00030	0.10694	0.00012	1.22000	0.00046
24	414	Day 4 $(n = 5)$	400	0.00156	0.11978	0.00022	0.10688	0.00017	1.21969	0.00042
25	415	G.AVG/ 2SD			0.11982	0.00020	0.10688	0.00010	1.21959	0.00063
26	416	Day 1 $(n = 5)$	2000	0.00447	0.11982	0.00009	0.10692	0.00005	1.21985	0.00023
27	417	Day 3 $(n = 5)$	2000	0.00620	0.11982	0.00012	0.10687	0.00003	1.21983	0.00012
28	418	Day 4 $(n = 5)$	2000	0.00836	0.11983	0.00006	0.10687	0.00001	1.21968	0.00008
29	419	G.AVG/ 2SD			0.11982	0.00001	0.10689	0.00006	1.21979	0.00018
3U	420	IFREE/JAMS7	ГЕС							
51	421	N-TIMS	100000				0.10684	0.00002		
0Z	422	Makishima and	d Nakam	ura (2006); De	solvating net	ulisation 1	MFC-ICP-MS	; errors in	2SE	
24	423	MFC-ICPMS	20		0.12033		0.10715	0.00185	1.22086	
04 25	424	MFC-ICPMS	200		0.11988		0.10662	0.00034	1.21967	
36	425	MFC-ICPMS	1000		0.11986		0.10682	0.00017	1.21976	
27	426	MFC-ICPMS	5000		0.11982		0.10686	0.00001	1.21977	
28	427	MFC-ICPMS	20000		0.11982		0.10686	0.00000	1.21978	
39	428	Schoenberg et	al. (2000); Sparging M	FC-ICP-MS;	errors in 2	2SE			
40	429	MFC-ICPMS	50000		0.11983	0.00002	0.10694	0.00002		
11 1	430	<u>N-TIMS</u>	na		0.11983	0.00001	0.10695	0.00002		

AVG: average; G. AVG.: grand average; 2SD: two-standard deviation; 2SE: two-standard error of the mean (2SE =

 $2\sigma/\sqrt{n}$: two-standard deviation divided by square route of *n*, where *n* is scan number). Note: previous works gave

errors in various criteria, all of which have been re-calculated to 2SD.

Table 3 Analy	vtical results	of ICh-1 II	MS-2 UF	3-N and IP-1
Lubic o / mur	filleur results	01 5 CH 1, 51	102,01	<i>i</i> , and <i>i</i>

7	435		,	*	*			
7 8	436	Day	Sample	Os (ppt)	2SE	¹⁸⁷ Os/ ¹⁸⁸ Os	2SE	2SE%
9	437	Sediment refere	nce material					
10	438	[Day 2]	Blank	4.3	0.1	0.078	0.034	-
11	439	[Day 2]	JCh-1-1	5.10	0.03	0.645	0.011	1.7
12	440	[Day 2]	JCh-1-2	5.19	0.04	0.633	0.014	2.2
13	441	[Day 2]	JCh-1-3	4.81	0.02	0.694	0.014	2.0
14	442	AVG/ 2SD		5.03	0.40	0.657	0.065	9.8
15	443	Nozaki et al. (20	012)	5.45	0.51	0.599	0.051	8.5
16	444	[Day 2]	JMS-2-1	287.6	0.2	0.8469	0.0012	0.14
17	445	[Day 2]	JMS-2-2	277.2	0.2	0.8753	0.0012	0.13
18	446	[Day 2]	JMS-2-3	288.7	0.2	0.8429	0.0012	0.14
19	447	[Day 2]	JMS-2-4	305.4	0.2	0.8009	0.0010	0.12
20	448	[Day 2]	JMS-2-5	289.2	0.2	0.8423	0.0011	0.13
21	449	AVG/ 2SD		289	20	0.842	0.053	6.3
22	450	Nozaki et al. (20	012)	264	46	0.787	0.036	4.6
23	451	Day	Sample	Os (ppt)	2SE	¹⁸⁷ Os/ ¹⁸⁸ Os	2SE	2SE%
24	452	Peridotite refere	ence material					
25	453	[Day 5]	Blank1-2	0.69	0.08	0.155	0.017	-
26	454	[Day 5]	UB-N-1	3976.3	0.8	0.12775	0.00004	0.031
27	455	[Day 5]	UB-N -2	3675.3	0.8	0.12739	0.00004	0.033
28	456	[Day 5]	UB-N -3	3423.8	0.8	0.12743	0.00009	0.073
29	457	[Day 5]	UB-N -5	3418.2	0.3	0.12749	0.00004	0.030
30	458	AVG/ 2SD		3623	264	0.12752	0.00016	0.13
31	459	Meisel et al. (20	(n = 15, 2SD)	3740	520	0.1278	0.0004	0.31
ა∠ ეე	460	Becker et al. (20	(n = 4, 2SD)	3510	260	0.12737	0.00064	0.50
33 24	461	Luguet et al. (20	(n = 6, 2SD)	3660	300	0.1279	0.0010	0.78
04 25	462	Puchtel et al. (20	008) ($n = 4, 2$ SD)	3850	620	0.12722	0.00076	0.60
36	463	Fisher-Gödde et	al. (2011) (<i>n</i> = 19, 2SD)	3530	500	0.12722	0.00054	0.42
37	464	[Day 5]	Blank1-2	0.69	0.08	0.155	0.017	-
38	465	[Day 5]	JP-1-1	3640.4	0.3	0.12024	0.00004	0.030
39	466	[Day 5]	JP-1-2	3557.1	0.3	0.12030	0.00004	0.031
40	467	[Day 5]	JP-1-3	3213.5	0.3	0.12192	0.00004	0.031
41	468	[Day 5]	JP-1-4	3143.6	0.3	0.12046	0.00004	0.030
42	469	[Day 5]	JP-1-5	3272.0	0.4	0.12064	0.00006	0.051
43	470	AVG/ 2SD		3365	220	0.12071	0.00069	0.57
44	471	Suzuki & Tatsu	mi (2001) (<i>n</i> = 2, 2SD)	2580	400	0.12055	0.00070	0.58
45	472	Shinotsuka & S	uzuki (2007) (<i>n</i> = 7, 2SD) 3430	1060	0.120	-	

AVG: average; G. AVG.: grand average; 2SD: two-standard deviation; 2SE: two-standard error of the mean (2SE =

 $2\sigma/\sqrt{n}$: two-standard deviation divided by square route of *n*, where *n* is scan number); 2SE% is given based on 2SE; Note: all errors are reported in 2SD (2SD%) for reference values and averaged values in this study, otherwise are

given by 2SE (2SE%) in single analytical runs.

Fig. 1

Fig. 2

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Graphical abstract

Precise determination of Os isotope ratios in 15-4000pg Os by sparging-Multiple Faraday Cup-ICP-MS

Journal of Analytical Atomic Spectrometry Accepted Manuscript

†E.S.I. Data Table 1 All analytical results of JMC Os standard solution at various concentrations

Day	Conc. (pg)	¹⁸⁷ Os/ V	¹⁸⁸ Os/ V	¹⁹⁰ Os/ V	¹⁹² Os/ V	¹⁸⁶ Os/ ¹⁸⁸ Os	2SE	¹⁸⁷ Os/ ¹⁸⁸ Os	2SE	¹⁸⁹ Os/ ¹⁸⁸ Os	2SE	¹⁹⁰ Os/ ¹⁸⁸ Os	2SE	¹⁹² Os/ ¹⁸⁸ Os	2SE
[Day1]	50	0.00007	0.00068	0.00136	0.00213	0.12435	0.00233	0.10264	0.00352	1.22013	0.00223	1.97856	0.00281	3.12023	0.00724
[Day1]	50	0.00009	0.00088	0.00175	0.00273	0.12195	0.00180	0.10461	0.00261	1.22400	0.00205	1.98825	0.00279	3.11985	0.00548
[Day1]	50	0.00009	0.00079	0.00157	0.00246	0.12211	0.00164	0.11014	0.00287	1.22254	0.00229	1.98191	0.00288	3.10842	0.00599
[Day1]	50	0.00009	0.00087	0.00174	0.00270	0.11475	0.00167	0.10841	0.00238	1.21978	0.00226	1.98519	0.00304	3.09954	0.00802
[Day1]	50	0.00008	0.00082	0.00164	0.00256	0.11122	0.00265	0.10072	0.00317	1.21942	0.00238	1.98512	0.00289	3.10147	0.00630
AVG/2SD						0.11888	0.01120	0.10530	0.00785	1.22118	0.00399	1.98381	0.00738	3.10990	0.01965
[Day3]	50	0.00018	0.00168	0.00337	0.00528	0.12002	0.00102	0.10616	0.00072	1.22125	0.00094	1.98490	0.00178	3.14040	0.00306
[Day3]	50	0.00016	0.00155	0.00309	0.00484	0.12200	0.00094	0.10684	0.00085	1.21986	0.00114	1.98262	0.00184	3.12959	0.00308
[Day3]	50	0.00015	0.00139	0.00278	0.00437	0.12052	0.00121	0.10767	0.00096	1.21989	0.00123	1.97939	0.00190	3.13991	0.00344
[Day3]	50	0.00015	0.00140	0.00280	0.00439	0.11579	0.00163	0.10550	0.00095	1.21992	0.00125	1.98231	0.00214	3.13284	0.00389
[Day3]	50	0.00015	0.00139	0.00278	0.00435	0.11899	0.00122	0.10668	0.00089	1.21476	0.00144	1.97932	0.00198	3.11828	0.00428
AVG/ 2SD						0.11946	0.00464	0.10657	0.00161	1.21914	0.00504	1.98171	0.00474	3.13220	0.01810
[Day4]	50	0.00021	0.00194	0.00388	0.00609	0.11960	0.00093	0.10737	0.00072	1.21946	0.00093	1.98336	0.00132	3.13608	0.00236
[Day4]	50	0.00019	0.00181	0.00362	0.00567	0.12080	0.00111	0.10756	0.00082	1.22021	0.00115	1.98253	0.00143	3.13384	0.00289
[Day4]	50	0.00019	0.00181	0.00362	0.00566	0.12119	0.00089	0.10602	0.00080	1.21884	0.00132	1.98417	0.00166	3.13010	0.00261
[Day4]	50	0.00018	0.00171	0.00342	0.00537	0.12054	0.00110	0.10783	0.00092	1.22075	0.00120	1.98084	0.00153	3.14264	0.00301
[Day4]	50	0.00018	0.00170	0.00340	0.00533	0.11941	0.00127	0.10695	0.00090	1.21948	0.00115	1.98089	0.00163	3.13980	0.00291
AVG/ 2SD		0.00019	0.00179	0.00359	0.00563	0.12031	0.00154	0.10715	0.00141	1.21975	0.00148	1.98236	0.00296	3.13649	0.00984
G.AVG/ 2SD						0.11955	0.00144	0.10634	0.00189	1.22002	0.00209	1.98263	0.00215	3.12620	0.02855
[Day1]	100	0.00020	0.00192	0.00383	0.00596	0.11870	0.00064	0.10610	0.00119	1.22076	0.00108	1.98379	0.00115	3.09939	0.00277
[Day1]	100	0.00020	0.00189	0.00376	0.00586	0.11977	0.00072	0.10710	0.00133	1.22309	0.00107	1.98487	0.00157	3.10333	0.00291
[Day1]	100	0.00019	0.00182	0.00363	0.00565	0.11985	0.00096	0.10582	0.00164	1.21923	0.00108	1.98452	0.00152	3.09738	0.00332
[Day1]	100	0.00020	0.00185	0.00369	0.00575	0.12049	0.00094	0.10816	0.00129	1.22007	0.00119	1.98351	0.00154	3.09913	0.00315
[Day1]	100	0.00019	0.00183	0.00364	0.00566	0.11973	0.00079	0.10618	0.00120	1.21957	0.00096	1.98446	0.00132	3.09512	0.00376
AVG/ 2SD						0.11971	0.00128	0.10667	0.00192	1.22055	0.00307	1.98423	0.00112	3.09887	0.00604
[Day3]	100	0.00027	0.00251	0.00503	0.00789	0.12062	0.00072	0.10717	0.00053	1.22026	0.00077	1.98400	0.00100	3.14152	0.00193
[Day3]	100	0.00028	0.00261	0.00522	0.00818	0.12156	0.00061	0.10725	0.00056	1.22174	0.00080	1.98333	0.00107	3.13672	0.00193
[Day3]	100	0.00026	0.00243	0.00487	0.00764	0.12047	0.00079	0.10754	0.00056	1.22128	0.00077	1.98453	0.00120	3.14317	0.00195
[Day3]	100	0.00027	0.00257	0.00514	0.00805	0.12109	0.00062	0.10688	0.00048	1.21905	0.00058	1.98508	0.00097	3.13660	0.00152
[Day3]	100	0.00026	0.00248	0.00497	0.00779	0.11811	0.00057	0.10675	0.00053	1.22173	0.00070	1.98355	0.00109	3.14005	0.00208
AVG/2SD						0.12037	0.00267	0.10712	0.00062	1.22081	0.00231	1.98410	0.00143	3.13961	0.00583
[Day4]	100	0.00037	0.00346	0.00692	0.01084	0.12103	0.00047	0.10726	0.00044	1.21945	0.00062	1.98407	0.00074	3.13664	0.00144
[Day4]	100	0.00035	0.00331	0.00663	0.01040	0.11915	0.00061	0.10719	0.00045	1.22069	0.00062	1.98426	0.00085	3.13875	0.00128
[Day4]	100	0.00037	0.00344	0.00688	0.01078	0.12098	0.00064	0.10723	0.00040	1.21951	0.00051	1.98335	0.00093	3.13472	0.00118
[Day4]	100	0.00036	0.00342	0.00685	0.01074	0.12082	0.00064	0.10637	0.00040	1.21893	0.00051	1.98254	0.00093	3.13538	0.00118
[Day4]	100	0.00035	0.00331	0.00664	0.01040	0.11991	0.00053	0.10643	0.00045	1.22128	0.00070	1.98550	0.00088	3.14097	0.00174
AVG/ 2SD		0.00036	0.00339	0.00678	0.01063	0.12038	0.00164	0.10690	0.00091	1.21997	0.00195	1.98394	0.00220	3.13729	0.00514
G.AVG/ 2SD						0.12015	0.00077	0.10689	0.00045	1.22044	0.00086	1.98409	0.00029	3.12526	0.04577

Table 1. Continue

Day	Conc. (pg)	¹⁸⁷ Os/ V	¹⁸⁸ Os/ V	¹⁹⁰ Os/ V	¹⁹² Os/ V	¹⁸⁶ Os/ ¹⁸⁸ Os	2SE	¹⁸⁷ Os/ ¹⁸⁸ Os	2SE	¹⁸⁹ Os/ ¹⁸⁸ Os	2SE	¹⁹⁰ Os/ ¹⁸⁸ Os	2SE	¹⁹² Os/ ¹⁸⁸ Os	2SE
[Day1]	200	0.00043	0.00406	0.00807	0.01258	0.11925	0.00046	0.10620	0.00059	1.21938	0.00048	1.98258	0.00069	3.09429	0.00192
[Day1]	200	0.00044	0.00405	0.00806	0.01255	0.11996	0.00042	0.10783	0.00063	1.22009	0.00066	1.98601	0.00061	3.09561	0.00156
[Day1]	200	0.00042	0.00396	0.00788	0.01227	0.11995	0.00037	0.10747	0.00057	1.21949	0.00042	1.98478	0.00066	3.09345	0.00187
[Day1]	200	0.00042	0.00389	0.00772	0.01203	0.11933	0.00040	0.10759	0.00073	1.22020	0.00056	1.98354	0.00065	3.09478	0.00173
[Day1]	200	0.00043	0.00399	0.00793	0.01236	0.11961	0.00040	0.10700	0.00055	1.21875	0.00046	1.98286	0.00061	3.09183	0.00196
AVG/2SD						0.11962	0.00067	0.10722	0.00129	1.21958	0.00118	1.98395	0.00286	3.09399	0.00288
[Day3]	200	0.00053	0.00496	0.00992	0.01555	0.12008	0.00031	0.10671	0.00024	1.21976	0.00047	1.98216	0.00061	3.13491	0.00112
[Day3]	200	0.00053	0.00502	0.01004	0.01575	0.11978	0.00033	0.10672	0.00023	1.21980	0.00039	1.98300	0.00053	3.13554	0.00085
[Day3]	200	0.00053	0.00495	0.00991	0.01553	0.12104	0.00036	0.10676	0.00025	1.21909	0.00039	1.98272	0.00049	3.13572	0.00101
[Day3]	200	0.00051	0.00478	0.00956	0.01499	0.11940	0.00041	0.10745	0.00030	1.22018	0.00034	1.98408	0.00061	3.13819	0.00103
[Day3]	200	0.00055	0.00514	0.01029	0.01614	0.12038	0.00040	0.10714	0.00024	1.21965	0.00031	1.98383	0.00047	3.13748	0.00081
WG/2SD						0.12013	0.00124	0.10696	0.00066	1.21970	0.00078	1.98316	0.00159	3.13636	0.00279
[Day4]	200	0.00080	0.00747	0.01494	0.02344	0.11988	0.00021	0.10720	0.00021	1.21950	0.00027	1.98273	0.00041	3.13652	0.00067
[Day4]	200	0.00075	0.00709	0.01418	0.02223	0.11996	0.00027	0.10665	0.00023	1.21921	0.00031	1.98300	0.00045	3.13552	0.00076
[Day4]	200	0.00072	0.00677	0.01356	0.02125	0.12100	0.00029	0.10701	0.00023	1.22023	0.00033	1.98400	0.00044	3.13921	0.00092
[Day4]	200	0.00073	0.00690	0.01381	0.02165	0.12064	0.00029	0.10671	0.00022	1.21954	0.00037	1.98374	0.00054	3.13746	0.00093
[Day4]	200	0.00079	0.00740	0.01481	0.02322	0.12025	0.00021	0.10740	0.00020	1.21990	0.00027	1.98270	0.00040	3.13685	0.00071
AVG/ 2SD		0.00076	0.00713	0.01426	0.02236	0.12034	0.00094	0.10699	0.00064	1.21968	0.00079	1.98323	0.00120	3.13711	0.00273
G.AVG/ 2SD	1					0.12003	0.00074	0.10706	0.00028	1.21965	0.00012	1.98345	0.00088	3.12249	0.04937
[Day1]	400	0.00093	0.00869	0.01728	0.02691	0.11966	0.00017	0.10670	0.00028	1.22028	0.00026	1.98339	0.00037	3.09516	0.00107
[Day1]	400	0.00091	0.00856	0.01700	0.02645	0.12011	0.00018	0.10674	0.00025	1.21959	0.00025	1.98380	0.00035	3.08904	0.00100
[Day1]	400	0.00090	0.00851	0.01683	0.02619	0.11868	0.00019	0.10607	0.00026	1.21493	0.00052	1.97889	0.00044	3.07148	0.00251
[Day1]	400	0.00090	0.00839	0.01671	0.02606	0.12016	0.00018	0.10703	0.00026	1.22068	0.00029	1.98410	0.00039	3.10777	0.00087
[Day1]	400	0.00091	0.00857	0.01707	0.02662	0.11979	0.00015	0.10649	0.00027	1.21976	0.00024	1.98363	0.00032	3.10474	0.00105
AVG/ 2SD		0.00072	0.00676	0.01346	0.02102	0.11992	0.00119	0.10683	0.00073	1.21939	0.00307	1.98309	0.00292	3.11579	0.04697
[Day2]	400	0.00109	0.01020	0.02036	0.03182	0.11951	0.00015	0.10697	0.00018	1.21960	0.00019	1.98388	0.00034	3.11914	0.00077
[Day2]	400	0.00101	0.00946	0.01887	0.02948	0.11958	0.00016	0.10724	0.00022	1.21878	0.00029	1.98353	0.00033	3.11378	0.00095
[Day2]	400	0.00094	0.00877	0.01749	0.02733	0.11971	0.00017	0.10696	0.00023	1.22049	0.00023	1.98354	0.00036	3.11410	0.00083
[Day2]	400	0.00090	0.00839	0.01671	0.02610	0.11938	0.00020	0.10744	0.00028	1.21897	0.00024	1.98247	0.00036	3.11113	0.00109
[Day2]	400	0.00088	0.00827	0.01647	0.02572	0.12012	0.00018	0.10698	0.00025	1.21982	0.00024	1.98302	0.00042	3.11067	0.00100
AVG/ 2SD		0.00092	0.00860	0.01711	0.02670	0.11969	0.00085	0.10686	0.00073	1.21930	0.00312	1.98303	0.00289	3.10480	0.02848
[Day3]	400	0.00121	0.01138	0.02275	0.03567	0.11994	0.00013	0.10691	0.00012	1.21981	0.00020	1.98290	0.00025	3.13632	0.00049
[Day3]	400	0.00123	0.01152	0.02304	0.03612	0.12003	0.00018	0.10696	0.00012	1.22028	0.00019	1.98320	0.00028	3.13691	0.00050
[Day3]	400	0.00123	0.01155	0.02310	0.03622	0.11998	0.00017	0.10696	0.00010	1.21978	0.00019	1.98315	0.00033	3.13611	0.00052
[Day3]	400	0.00120	0.01129	0.02259	0.03541	0.11968	0.00016	0.10702	0.00012	1.22019	0.00019	1.98335	0.00025	3.13728	0.00045
[Day3]	400	0.00125	0.01175	0.02350	0.03685	0.11975	0.00015	0.10686	0.00011	1.21994	0.00017	1.98336	0.00032	3.13691	0.00043
AVG/ 2SD		0.00122	0.01149	0.02300	0.03605	0.11988	0.00030	0.10694	0.00012	1.22000	0.00046	1.98319	0.00037	3.13671	0.00095
Day4]	400	0.00153	0.01437	0.02873	0.04505	0.11979	0.00010	0.10684	0.00012	1.21933	0.00014	1.98312	0.00027	3.13565	0.00046
Dav41	400	0.00161	0.01517	0.03034	0.04757	0.11972	0.00012	0.10681	0.00010	1.21970	0.00016	1.98321	0.00019	3.13630	0.00041

Table 1. Continue

Day	Conc. (pg)	¹⁸⁷ Os/ V	¹⁸⁸ Os/ V	¹⁹⁰ Os/ V	¹⁹² Os/ V	¹⁸⁶ Os/ ¹⁸⁸ Os	2SE	¹⁸⁷ Os/ ¹⁸⁸ Os	2SE	¹⁸⁹ Os/ ¹⁸⁸ Os	2SE	¹⁹⁰ Os/ ¹⁸⁸ Os	2SE	¹⁹² Os/ ¹⁸⁸ Os	2SE
[Day4]	400	0.00150	0.01409	0.02819	0.04420	0.11970	0.00014	0.10684	0.00009	1.21986	0.00017	1.98343	0.00025	3.13684	0.00040
[Day4]	400	0.00162	0.01524	0.03049	0.04779	0.11997	0.00012	0.10687	0.00010	1.21978	0.00016	1.98343	0.00025	3.13657	0.00041
[Day4]	400	0.00153	0.01436	0.02873	0.04505	0.11975	0.00015	0.10702	0.00010	1.21977	0.00019	1.98318	0.00021	3.13628	0.00047
AVG/2SD		0.00156	0.01464	0.02930	0.04593	0.11978	0.00022	0.10688	0.00017	1.21969	0.00042	1.98327	0.00029	3.13633	0.00088
G.AVG/ 2SI)					0.11985	0.00030	0.10687	0.00011	1.21960	0.00063	1.98314	0.00022	3.12348	0.03147
[Day1]	2000	0.00468	0.04381	0.08717	0.13584	0.11986	0.00003	0.10694	0.00005	1.21974	0.00008	1.98392	0.00010	3.10034	0.00055
[Day1]	2000	0.00455	0.04264	0.08483	0.13218	0.11977	0.00003	0.10689	0.00005	1.21985	0.00008	1.98385	0.00010	3.09967	0.00050
[Day1]	2000	0.00417	0.03909	0.07776	0.12116	0.11983	0.00004	0.10692	0.00006	1.21997	0.00009	1.98398	0.00011	3.09907	0.00047
AVG/2SD						0.11982	0.00009	0.10692	0.00005	1.21985	0.00023	1.98392	0.00013	3.09970	0.00127
[Day3]	2000	0.00610	0.05734	0.11471	0.17985	0.11987	0.00003	0.10688	0.00003	1.21977	0.00006	1.98306	0.00008	3.13643	0.00017
[Day3]	2000	0.00620	0.05829	0.11661	0.18283	0.11974	0.00003	0.10685	0.00002	1.21979	0.00006	1.98318	0.00008	3.13628	0.00014
[Day3]	2000	0.00643	0.06041	0.12084	0.18945	0.11988	0.00003	0.10687	0.00003	1.21991	0.00005	1.98320	0.00008	3.13625	0.00016
[Day3]	2000	0.00613	0.05757	0.11516	0.18056	0.11984	0.00003	0.10688	0.00003	1.21988	0.00005	1.98315	0.00009	3.13664	0.00015
[Day3]	2000	0.00615	0.05784	0.11571	0.18140	0.11979	0.00003	0.10685	0.00003	1.21980	0.00006	1.98314	0.00008	3.13624	0.00016
AVG/ 2SD						0.11982	0.00012	0.10687	0.00003	1.21983	0.00012	1.98315	0.00011	3.13637	0.00034
[Day4]	2000	0.00834	0.07837	0.15675	0.24571	0.11979	0.00003	0.10688	0.00002	1.21971	0.00005	1.98317	0.00008	3.13497	0.00027
[Day4]	2000	0.00856	0.08042	0.16084	0.25210	0.11985	0.00003	0.10687	0.00002	1.21965	0.00005	1.98322	0.00007	3.13388	0.00036
[Day4]	2000	0.00824	0.07745	0.15493	0.24288	0.11986	0.00002	0.10687	0.00002	1.21964	0.00005	1.98324	0.00007	3.13554	0.00021
[Day4]	2000	0.00853	0.08014	0.16028	0.25125	0.11984	0.00002	0.10687	0.00002	1.21967	0.00005	1.98317	0.00008	3.13470	0.00024
[Day4]	2000	0.00813	0.07642	0.15288	0.23968	0.11981	0.00002	0.10687	0.00002	1.21974	0.00006	1.98329	0.00008	3.13632	0.00018
AVG/2SD		0.00836	0.07856	0.15714	0.24632	0.11983	0.00006	0.10687	0.00001	1.21968	0.00008	1.98322	0.00010	3.13508	0.00183
G.AVG/ 2SI)					0.11982	0.00001	0.10689	0.00006	1.21979	0.00018	1.98343	0.00086	3.12372	0.04162
References															
N-TIMS (IF	REE/ JAMSTE	C); errors in 2	2SE					0.10684	0.00002						
Makishima a	and Nakamura (2006); MC-I	CP-MS by Fara	day Cup; error	s in 2SE										
MC-ICPMS	20		-			0.12033		0.10715	0.00185	1.22086					
MC-ICPMS	200					0.11988		0.10662	0.00034	1.21967					
MC-ICPMS	1000					0.11986		0.10682	0.00017	1.21976					
MC-ICPMS	5000					0.11982		0.10686	0.00001	1.21977					
MC-ICPMS	20000					0.11982		0.10686	0.000003	1.21978					
Schoenberg	et al. (2000); Sr	oarging MC-I	CP-MS by Fara	aday Cup; error	s in 2SE										
MC-ICPMS	50000		2	- 17		0.11983	0.00002	0.10694	0.00002						
TIMS	na					0 11983	0.00001	0 10695	0.00002						