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Abstract 16	
  
 17	
  
Approximately one third of the world’s population is infected with Mycobacterium 18	
  
tuberculosis.  Limited information about how the immune system fights M. tuberculosis 19	
  
and what constitutes protection from the bacteria impact our ability to develop effective 20	
  
therapies for tuberculosis.  We present an in vivo systems biology approach that 21	
  
integrates data from multiple model systems and over multiple length and time scales into 22	
  
a comprehensive multi-scale and multi-compartment view of the in vivo immune 23	
  
response to M. tuberculosis.  We describe computational models that can be used to study 24	
  
(a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) 25	
  
oral and inhaled antibiotics, and (c) the effect of vaccination.   26	
  
 27	
  
Introduction 28	
  
 29	
  
Tuberculosis (TB), a deadly infectious disease caused by the bacterium Mycobacterium 30	
  
tuberculosis, results in 1-2 million deaths per year worldwide.  In 2013, an estimated 9 31	
  
million new cases were diagnosed[1].  Control of the TB epidemic is limited by a 32	
  
complex and prolonged antibiotic regimen, development of antibiotic resistance, the lack 33	
  
of an effective vaccine and, more generally, by our incomplete understanding of the host-34	
  
pathogen dynamics that underlie the disease, its progression, and treatment[2, 3]. Many 35	
  
of the challenges to the development of therapies for TB are captured by the following 36	
  
as-yet-unanswered questions:   37	
  
 38	
  

(1) What is the immune response to M. tuberculosis infection, and why does it 39	
  
often fail to eliminate the infection?  Figure 1 shows key aspects of the immune 40	
  
response to M. tuberculosis.  M. tuberculosis is a respiratory pathogen that primarily 41	
  
causes infection in the lungs in adult humans and is transmitted via aerosolized 42	
  
droplets of bacteria from an infectious individual. Upon inhalation, bacteria reach the 43	
  
pulmonary alveoli and are phagocytosed by macrophages that line the alveolar space. 44	
  
Although some bacteria may be destroyed by macrophages through antimicrobial 45	
  
mechanisms, M. tuberculosis has evolved ways to evade protective host immune 46	
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mechanisms (e.g. by preventing phagosome fusion with the lysosome), and as a 47	
  
consequence is able to multiply within macrophages[4, 5]. Dendritic cells (DCs), 48	
  
another phagocytic cell type, also internalize M. tuberculosis.  DCs migrate through 49	
  
lymphatics to lung-draining lymph nodes (LNs) to prime an adaptive immune 50	
  
response.  About 2-4 weeks after the initial infection, effector T cells, attracted by 51	
  
chemokines and pro-inflammatory cytokines from the lung site of infection, migrate 52	
  
back to lungs via the blood to mount an M. tuberculosis-specific immune response.  53	
  
The net result of these events is the formation of granulomas, roughly spherical 54	
  
collections of immune and lung cells, bacteria and infected cells.    55	
  
 56	
  
In TB, the battle between host and microbe plays out at the level of the granuloma.  A 57	
  
classic caseous granuloma consists of a central necrotic area surrounded by layers of 58	
  
macrophages and then a smaller cuff of lymphocytes[4, 6].  The lymphocytic cuff 59	
  
primarily contains both CD4+ and CD8+ T cells, but other cell types, including B 60	
  
cells, neutrophils, DCs and fibroblasts are also observed[7, 8].  There are also many 61	
  
molecular mediators of granuloma dynamics, including cytokines interferon-γ (IFN-62	
  
γ), tumor necrosis factor-α (TNF), and interleukin-10 (IL-10) and chemokines  63	
  
CXCL9/10/11, CCL2 and CCL5.  Some, like IFN-γ, have been shown to be necessary 64	
  
to M. tuberculosis infection control, while others remain controversial. None have 65	
  
been shown to be sufficient for infection control.  A central feature of almost all 66	
  
granulomas is a caseous necrotic center (dead immune cells and lung tissue), often 67	
  
trapping large numbers of bacteria that are unable to grow due to hypoxic conditions.  68	
  
 69	
  
The role of a granuloma from a host-centric point of view is to contain infection, 70	
  
destroy bacilli, and limit pathology.  From the bacterial point of view, however, the 71	
  
granuloma may serve as a niche for survival.  If all granulomas present are capable of 72	
  
inhibiting or killing most mycobacteria present, humans develop a clinically latent 73	
  
infection.  However, if a granuloma does not control bacterial growth, infection 74	
  
progresses, granulomas enlarge, and bacteria seed new granulomas; this results in 75	
  
progressive pathology and disease, i.e. active TB[5, 9-13].  Mechanisms that lead to 76	
  
an inability of the immune response to completely eliminate the pathogen are 77	
  
unknown but appear to be both host- and bacteria- related, making it difficult to 78	
  
identify those that would be suitable to manipulate for therapeutic purposes.  Further, 79	
  
the immune response is necessarily limited; an overly-enthusiastic immune response, 80	
  
while possibly eliminating the bacteria, can do considerable damage to host lungs[11, 81	
  
12, 14-16].  Perhaps latent disease is simply a compromise that, for the most part, 82	
  
works.  However, a third of the world’s population is thought to have latent TB, 83	
  
providing a huge reservoir of contagion (contributing to the pool of active disease 84	
  
through reactivation); treating latent TB will be essential to the ultimate eradication of 85	
  
a disease that claims millions of lives each year[1].  86	
  

(2) Why do some individuals develop latent disease while others develop active 87	
  
disease?  Humans and non-human primates infected with M. tuberculosis have 88	
  
multiple granulomas, from a few to ~25 granulomas[10, 12, 17].  The manifestation 89	
  
of the disease in an individual depends on how well the collection of granulomas can 90	
  
control infection.  Following an initial infection with M. tuberculosis, ~10% of 91	
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humans develop primary (active) TB, ~90% develop latent infection, and a few 92	
  
individuals likely clear the disease.  Reactivation TB refers to the situation in which 93	
  
an individual with latent TB later develops active disease either due to reactivation of 94	
  
existing infection or a reinfection event[18]; there is a 10% per lifetime risk that can 95	
  
be greatly increased with immune-compromising events.  It may be that some 96	
  
individuals with latent TB will never, or only rarely, develop reactivation TB, while 97	
  
for others the risk is much greater, i.e. there may be a spectrum of latency[19].  The 98	
  
factors that control these different outcomes are not well-understood. We do know 99	
  
that interfering with the immune system, either pharmacologically by delivering anti-100	
  
TNF therapies (used in the treatment of some autoimmune diseases) or pathologically 101	
  
in the case of HIV-1 co-infection, both increase the risk of reactivation[5, 20-24]. 102	
  

(3) Why is a long time course of antibiotics needed, and why do antibiotics often 103	
  
fail?  Standard therapy for active TB includes an initial combination of 3-4 first-line 104	
  
oral antibiotics for two months followed by another 4-7 months of 2 oral 105	
  
antibiotics[25]. Long treatment periods appear to be required because of the presence 106	
  
of phenotypically drug-tolerant ‘persister’ bacteria, slow bacterial growth rates and 107	
  
high bacterial loads[26-29].  Known obstacles to treatment success (including patient 108	
  
non-compliance, drug toxicity, relapse, and drug resistance) are thought to be, at least 109	
  
in part, a result of the unusually long treatment regimens[1, 2, 30, 31].  The complex 110	
  
nature of the site of infection, namely granulomas, presumably further complicates 111	
  
treatment, as the dense and heterogeneous tissue itself may present an obstacle for 112	
  
antibiotics to reach the site of infection.  Worldwide, TB has an 87% treatment 113	
  
success rate in new cases, leaving more than 1 million new patients without cure in 114	
  
2012 1.  Thus there is a great need for both shorter treatment regimens and new 115	
  
antibiotics[32-34]. 116	
  
 117	
  
(4) Why is there no vaccine against TB?  To date there is still no efficacious 118	
  
vaccine against M. tuberculosis, although ~30 vaccines are in various stages of testing 119	
  
and clinical trials (www.aeras.org/annualreport)[35-39]. These trials are expensive, 120	
  
difficult, and time consuming to perform, and many result in a null outcome. The 121	
  
development of effective vaccines against TB is challenging as the immune responses 122	
  
necessary for prevention of infection are still unknown.  Although many infants are 123	
  
vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection 124	
  
or development of TB after childhood.  Data suggest an effective vaccine must 125	
  
generate memory cells to multiple M. tuberculosis antigens that are expressed at 126	
  
multiple stages during infection[40]. However, there are currently no comprehensive 127	
  
approaches or tools that could significantly advance the development of vaccines.  128	
  
 129	
  
(5) What other approaches for treatment of disease might be explored? 130	
  
Approaches that would augment antibiotic therapy following infection with M. 131	
  
tuberculosis are now under consideration.  Combining immune modulation 132	
  
(“immunomodulation”) with antibiotics is a potential strategy for enhancing treatment 133	
  
of TB[41-43]. Immunomodulation here refers to the addition/subtraction of cells 134	
  
and/or molecules (e.g. cytokines) to enhance the immune response. It stands to reason 135	
  
that boosting the immune system while reducing bacterial load could lead to more 136	
  
rapid control of infection.  Several strategies have been tried in murine models (IFN-γ, 137	
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GM-CSF, TNF, IL-12)[41, 42] and a few in humans (IL-2, GM-CSF, TNF, IFN-γ)[41, 138	
  
43], but results are inconclusive.  Again, the complexity of the immune response 139	
  
makes it difficult to identify which mechanisms are appropriate to modulate to 140	
  
increase control of infection while simultaneously minimizing tissue damage and 141	
  
extensive inflammation.  Appropriate delivery to granulomas and proper timing, drug 142	
  
combinations and dosing are all likely to be key factors in successful therapy. 143	
  
 144	
  

Underlying these five questions is a common theme:  we currently have only limited 145	
  
insight into how the immune system fights M. tuberculosis and what constitutes 146	
  
protection from the bacteria. As a result, it is difficult to know how best to develop 147	
  
treatments and to approach vaccine development for TB.   There are many reasons why 148	
  
these questions have been and remain difficult to address.  Two reasons are particularly 149	
  
relevant for the discussion in this issue on in vivo systems biology.  First, it should be 150	
  
clear from the above that, at a minimum, the lungs, draining LNs, blood, and lymphatic 151	
  
system participate in the host-pathogen dynamics that describe M. tuberculosis infection 152	
  
and its treatment (Figure 1), so it is difficult to study the disease “in a dish”.  Most 153	
  
experimental studies focus on a single biological (length and/or time) scale of interest, 154	
  
e.g. examination of immune cells in the blood or a particular signaling pathway.   Figure 155	
  
2 highlights the different spatiotemporal scales at which host-pathogen dynamics operate. 156	
  
The smallest spatial scale shown, the molecular scale, also represents the fastest time 157	
  
scale.  Receptor/ligand binding and trafficking as well as signal transduction pathways 158	
  
are included at this scale. Examples of assays that generate data for this scale include 159	
  
flow cytometry for receptor expression and fluorescently tagged reporters for gene 160	
  
expression[44-47].  The actions of individual cells, e.g. apoptosis, movement or 161	
  
secretion, are tracked at the cellular scale.  Experiments such as microfluidic chemotaxis 162	
  
assays, TUNEL staining, and ELISA assays measuring cytokine production generate data 163	
  
for this scale[48-51].  The major event occurring at the tissue scale in TB is the formation 164	
  
of granulomas; necrosis and fibrosis are also tissue-level outcomes in TB.  Experiments 165	
  
at this scale examine gross-pathology, histology, bacterial loads, cellular distribution and 166	
  
fibrosis[7, 12, 17, 52].  These tissue-scale events evolve over periods of weeks to years in 167	
  
humans.  The largest spatial scale shown here is the organ scale. Here cells can traffic 168	
  
between the site of infection through blood to draining LNs and back again as well as to 169	
  
other body sites.   Thus to understand the complex in vivo immune response to M. 170	
  
tuberculosis, it will be important to integrate information from experiments performed at 171	
  
multiple scales and on multiple physiological compartments (lung, blood, lymphatics, 172	
  
LNs).  173	
  
 174	
  
Second, the “design space” of both potential experiments and potential therapies is 175	
  
enormous.   For example, the identities, dosing schedules, and concentrations of multiple 176	
  
antibiotics, cytokines and/or other immunomodulators can be varied across a wide 177	
  
range[53]. Animal models have been used for nearly 100 years in the study of TB and 178	
  
have provided much useful data.  However, the animal models that are easiest to work 179	
  
with may not fully capture human disease.  Mice are most commonly used because of the 180	
  
availability of reagents, genetically modified animals, and ease of use.  But there is no 181	
  
true latent infection in mice; they become chronically and progressively infected, and 182	
  
eventually succumb to the disease.  In addition, mouse granulomas are substantially 183	
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different from human granulomas in terms of structure and organization[5, 6].   Other 184	
  
small organisms, e.g. guinea pigs, rabbits and zebrafish, have their own advantages and 185	
  
disadvantages[6, 54-56].  Recently, non-human primates, in particular Cynomolgus 186	
  
macaques, have emerged as the animal model most similar to humans in terms of 187	
  
spectrum of disease outcomes and pathology[6, 12].  The cost, technical, and ethical 188	
  
issues of working with macaques means that the number of animals studied, i.e. the 189	
  
fraction of design space that can be explored, is necessarily small.   It is even more 190	
  
difficult and expensive to evaluate new therapies or vaccines in human clinical trials.  191	
  
Thus there is a crucial need for an approach that can efficiently narrow the design space 192	
  
of potential experiments and be used to identify, test, and optimize new therapies for TB.   193	
  
 194	
  
We are convinced that a systems biology approach that integrates data from multiple 195	
  
model systems and over multiple length and time scales into a comprehensive multi-scale 196	
  
and multi-compartment view of the in vivo immune response to M. tuberculosis is 197	
  
necessary.  This approach will allow us to identify and understand the mechanisms 198	
  
underlying host-pathogen dynamics and to improve on and identify new therapies.  In this 199	
  
paper, we discuss our computational models of M. tuberculosis infection, focusing on the 200	
  
multi-scale and multi-compartment influences that lead to granuloma formation and 201	
  
influence granuloma function – the ability to contain infection, and in the presence of 202	
  
minimal tissue damage and inflammation.  We believe computational models provide 203	
  
valuable tools (among others) to aid in addressing the questions introduced above.   204	
  
 205	
  
Computational models of granuloma formation and function 206	
  
 207	
  
As explained above, and in Figure 2, the “readout” of the lower and higher scale events – 208	
  
signaling pathways, cellular actions, and cellular input from lymph nodes – are 209	
  
granulomas (occurring at the tissue scale) that may contain infection and may be 210	
  
accompanied by significant tissue damage and inflammation.  Thus we have developed 211	
  
computational models of granuloma formation and function that are formulated such that 212	
  
information can be continually exchanged across scales and in both (higher/lower scales) 213	
  
directions[14, 20, 57-62]. 214	
  

As shown in Figure 3, there are three central elements of our approach for following 215	
  
granuloma formation and function[63].  First, we use an agent-based model (ABM) to 216	
  
describe cellular behavior, including recruitment to the lung, changes of state (activation, 217	
  
infection, etc.), and movement (Figure 3A).   Cells (agents) included are macrophages 218	
  
and T cells which can have multiple states (e.g. infected, activated, etc.).  Bacteria are not 219	
  
represented as agents but rather as continuous functions in the extra- or intra-cellular 220	
  
environment.  We track three different bacterial populations in our model: intracellular 221	
  
replicating, extracellular replicating and extracellular non-replicating bacteria. The 222	
  
simulation environment is two-dimensional and represents a 4-16 mm2 cross-section of 223	
  
lung tissue.  Probabilistic interactions between immune cells and with bacterial 224	
  
populations are described by a well-defined set of rules between immune cells and M. 225	
  
tuberculosis in the lung.  Each simulation follows events over several hundred days, 226	
  
building over time to track thousands of individual cells (agents). 227	
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Second, we capture receptor/ligand binding and trafficking and intracellular signaling 228	
  
events with ordinary differential equations (ODEs) that are solved within each agent 229	
  
(Figure 3B)[14, 57, 58, 61, 63].  For instance, the model can capture receptor-ligand 230	
  
binding and trafficking of cytokines, such as tumor necrosis factor-α (TNF) or 231	
  
interleukin-10 (IL-10), using ODEs[14]. The detail required in the model at this scale is 232	
  
determined by the questions being asked. For example, a detailed description of cytokines 233	
  
is necessary when trying to understand how cytokine availability and signaling contribute 234	
  
to infection control.  If focus shifts to elucidating the dynamics of antibiotic treatment in 235	
  
granulomas, a detailed description of cytokines may not be necessary. Thus we use an 236	
  
approach we term tunable resolution, formulating fine-grained (detailed) and coarse-237	
  
grained (less detailed) descriptions of the biological events occurring and toggling 238	
  
between these levels of resolution as needed.[64, 65] Third, we describe the diffusion of 239	
  
particular chemokines, cytokines, and other soluble ligands (e.g. anti-TNF antibodies, 240	
  
antibiotics) by solving the relevant partial differential equations (Figure 3C).   Equations 241	
  
and parameters for these portions of the model are based on extensive biological data.   242	
  
 243	
  
The three model elements are linked, allowing information to be continually exchanged 244	
  
across scales (Figure 3)[63]. Thus, our overall computational model of M. tuberculosis 245	
  
infection and granuloma formation is hybrid (formed from different mathematical 246	
  
formalisms).  It is also multi-scale, incorporating molecular and cellular events explicitly 247	
  
with tissue-scale behavior (granuloma formation) as an emergent feature of the model 248	
  
(Figure 4).   Among other tools, we use uncertainty and sensitivity analyses techniques to 249	
  
understand the relative importance of particular processes to granuloma formation and 250	
  
function[66].  251	
  
 252	
  
Although not discussed in detail here, our granuloma models have been developed, 253	
  
calibrated, and validated using extensive data from mice and primates.   Figure 4A shows 254	
  
an example of model calibration to the number of bacteria (CFU, or colony-forming-255	
  
units) per granuloma in non-human primates[10, 17, 61].  Figures 4B and 4C show 256	
  
snapshots from two simulations using different but physiologically realistic parameter 257	
  
values. We can predict features that map to a wide spectrum of those observed in 258	
  
primates, including granulomas that are able to contain bacteria (Figure 4B), granulomas 259	
  
that show bacterial overgrowth and dissemination (Figure 4C), and granulomas that clear 260	
  
bacteria completely, sometimes with extensive inflammation (not shown).   261	
  
 262	
  
Investigating therapeutic approaches  263	
  
 264	
  
Our computational models of granuloma formation and function can be used to probe 265	
  
interventions that improve the ability of a granuloma to contain, or even eliminate, 266	
  
bacteria while minimizing tissue damage and inflammation.   Several potential 267	
  
interventions with actions at different scales are shown in Figure 2 (interventions 1-6) 268	
  
and are discussed below.  In each case, interventions at one location, or in one type of 269	
  
molecule or cell, impact events at other length and time scales, and we are especially 270	
  
interested in their effect on our main “readout”, granuloma formation and function.  271	
  
Below we describe four examples to highlight ways in which our approach can help the 272	
  
discovery of therapeutic interventions for M. tuberculosis infection. They are organized 273	
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according to their scale to emphasize that there are multiple levels that should be 274	
  
considered when designing interventions opening up new avenues for exploration. 275	
  
 276	
  
1.  Immunomodulation focused on IL-10 and TNF  277	
  
 278	
  
Data from human, animal, and mathematical models have demonstrated that pro-279	
  
inflammatory cytokines, such as TNF, are essential to an efficient antimicrobial response 280	
  
against M. tuberculosis infection[22, 67, 68]. However, many anti-inflammatory 281	
  
cytokines are also present in granulomas[4, 5]. In particular, the regulatory cytokine IL-282	
  
10 is of interest since it functions to inhibit cytokine and chemokine production 283	
  
(specifically TNF)[69-72]. It has recently been proposed that a balance of pro- and anti-284	
  
inflammatory mediators (such as TNF and IL-10) in granulomas is an essential 285	
  
component of an efficient antimicrobial response with limited host-induced tissue 286	
  
damage[5, 73, 74]. Understanding how cytokines contribute to infection control at a 287	
  
single granuloma level has been difficult due to the myriad of cellular sources, 288	
  
differences among animal models, and limitations of detection methods for these 289	
  
mediators. From a therapeutic standpoint, we simply do not know whether manipulation 290	
  
of pro- and anti-inflammatory cytokines in granulomas would be useful in affecting 291	
  
infection outcomes. 292	
  
 293	
  
In order to explore the therapeutic value of modulating cytokine levels, i.e. 294	
  
immunomodulation, we developed a version of our multi-scale computational model that 295	
  
incorporates IL-10 and TNF cytokine dynamics across multiple temporal and spatial 296	
  
scales (Figure 3)[14, 57, 61]. This model describes cytokine secretion, diffusion, 297	
  
degradation, and receptor-ligand binding and trafficking.  We link these mechanisms 298	
  
across scales by allowing dynamics within each scale to influence behavior at other 299	
  
scales. For example, TNF binding and subsequent internalization affect TNF 300	
  
concentrations in the granuloma environment, affecting cellular apoptosis/necrosis. This 301	
  
systems biology-based approach allows us to explore the effect of immunomodulation 302	
  
strategies at the individual granuloma scale by performing virtual IL-10 knockouts, 303	
  
temporal IL-10 knockouts, and perturbing the balance of TNF and IL-10 levels in 304	
  
granulomas. 305	
  
 306	
  
We first performed a virtual IL-10 deletion (referred to as IL-10 K/O) at the initialization 307	
  
of infection by setting IL-10 synthesis rates for all cells (agents) to zero (Figure 2, 308	
  
intervention 4). We observed a significant change (~2-fold increase) in the number of 309	
  
granulomas that achieve sterility (granulomas that kill all bacteria within) in the IL-10 310	
  
K/O simulations as compared to the wild-type (WT) simulations (Figure 5A). The mean 311	
  
bacterial load per granuloma at 200 days post-infection is reduced ~1.75-fold in IL-10 312	
  
KO simulations. However, when sterile granulomas are removed from the analysis of 313	
  
mean bacterial loads per granuloma, there is no significant difference between IL-10 KO 314	
  
simulations and WT simulations (Figure 5A). Thus, the model predicts that reduced 315	
  
bacterial loads in IL-10 KO simulations are due solely to the increased number of 316	
  
granulomas that are successfully able to sterilize bacteria. This suggests that IL-10 is a 317	
  
key regulator of granuloma sterility and that IL-10 focused treatment strategies might be 318	
  
able to improve infection outcome.  319	
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 320	
  
In order to better understand whether IL-10 could be an effective therapeutic strategy, we 321	
  
performed virtual IL-10 deletions at days 25, 50, 75, and 100 post-infection.  We 322	
  
observed an initial increase in the number of sterile granulomas depending on when IL-323	
  
10 was removed from the system (Figure 5B), indicating that an increase in sterile 324	
  
granulomas due to deletion of IL-10 is a phenomenon that primarily occurs during the 325	
  
early immune response to M. tuberculosis. Unfortunately, the early increase in granuloma 326	
  
sterilization is coupled with increases in inflammation and tissue damage (not shown). 327	
  
Taken together, these predictions suggest that any therapeutic value of modulating IL-10 328	
  
levels in granulomas may be present only at early times post-infection.  However, 329	
  
because most patients typically present symptoms weeks to months after initially 330	
  
becoming infected with M. tuberculosis, this strategy is unlikely to be implemented in a 331	
  
clinical setting. It does, however, point to the importance of unbridling the immune 332	
  
response early in TB, which might be accomplished via a vaccine.    333	
  
 334	
  
Similarly, modulating levels of TNF in granulomas could prove useful as a therapeutic 335	
  
strategy. In work with earlier generation granuloma models, we showed that altering TNF 336	
  
levels, TNF receptor internalization capabilities, or rates in the TNF-induced NFkB 337	
  
signaling pathway could alter granuloma outcomes, e.g. containment vs. dissemination of 338	
  
bacteria (Figure 2 – interventions 1-3)[20, 21, 57, 58].  Next, we modulated cellular 339	
  
production rates of both IL-10 and TNF within our granuloma simulations, thus changing 340	
  
the balance of TNF and IL-10 during infection [14, 61]. When the ratio of TNF to IL-10 in 341	
  
a granuloma is less than ~0.1, anti-inflammatory mechanisms dominate the immune 342	
  
response. We observe elevated bacterial loads (Figure 5C) with no granulomas achieving 343	
  
sterilization of bacteria.  At the same time, however, the presence of caseation at the 344	
  
granuloma’s center , a measure of tissue damage, was reduced nearly 10-fold (Figure 345	
  
5D). Conversely, when the ratio of TNF to IL-10 is greater than ~1.0, the immune 346	
  
response to M. tuberculosis infection is dominated by the pro-inflammatory response. In 347	
  
this case, significantly more granulomas are able to successfully sterilize (Figure 5C), but 348	
  
increased antimicrobial activity comes at the cost of increased tissue damage (Figure 5D). 349	
  
If the ratio of TNF to IL-10 is between these two extremes a trade-off exists between 350	
  
granuloma sterilization and tissue damage[14]. Thus controlling the balance of TNF and 351	
  
IL-10 in a granuloma, using exogenous antibodies or cytokines, could be an effective 352	
  
therapeutic strategy to shift granuloma outcomes from bacterial containment to 353	
  
sterilization. However, modulation of TNF and IL-10 must be done in a precise and 354	
  
perhaps a time-limited way to limit excessive inflammation and tissue damage. These 355	
  
results suggest that immunomodulation strategies focusing on balancing pro- and anti-356	
  
inflammatory cytokines such as TNF and IL-10 could have significant therapeutic value, 357	
  
perhaps in combination with antibiotics.   358	
  
 359	
  
2.  Antibiotics 360	
  
 361	
  
Our computational approach can also be used to examine the action of oral antibiotics 362	
  
during M. tuberculosis infection (Figure 2 – intervention 6).  In particular, we wanted to 363	
  
understand the failure of current antibiotic treatments and to provide a tool for assessing 364	
  
how antibiotics or antibiotic dosing regimens might be altered to improve efficacy. To do 365	
  

Page 8 of 37Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



	
   9	
  

this, we took a systems pharmacology approach, incorporating pharmacokinetic (PK) and 366	
  
pharmacodynamics (PD) elements into our computational models of granuloma 367	
  
formation and function (Figure 6)[75].    368	
  
 369	
  
Current first-line antibiotics for TB are isoniazid (INH), rifampin (RIF), pyrazinamide 370	
  
(PZA) and ethambutol (EMB).   Because INH and RIF are typically administered during 371	
  
the entire regimen and are arguably the most well-studied of the group[25], we focus on 372	
  
them here.  We incorporated PK and PD models of orally-dosed INH and RIF into our 373	
  
computational model of granuloma formation[75].  PK are described by a classical two 374	
  
compartment (plasma and body) model with two absorption compartments  (Figure 375	
  
6B)[76].  Antibiotic concentrations in the plasma compartment of the PK model are used 376	
  
to determine the movement of antibiotics into or out of the granuloma simulation grid 377	
  
(Figure 6A). Vascular permeation of antibiotics onto the ABM occurs at grid 378	
  
compartments designated as vascular sources (Figure 3A), and depends on antibiotic 379	
  
concentration gradients between blood and vascular source grid compartments. 380	
  
Antibiotics can diffuse and degrade on the simulation grid and enter host cells – which 381	
  
we refer to as granuloma PK. PD are modeled using a Hill curve [77] and antimicrobial 382	
  
action is determined for each grid compartment and host cell based on the local antibiotic 383	
  
concentrations (Figure 6C). PK and PD parameters were extensively calibrated to 384	
  
experimental in vitro and in vivo data (rabbits and non-human primates) on INH and 385	
  
RIF[75]. 386	
  
 387	
  
Our systems pharmacology approach allows us to probe antibiotic treatment in the 388	
  
context of a granuloma in ways not previously possible, integrating antibiotic activities, 389	
  
immune response dynamics, and spatio-temporal aspects of an evolving granuloma. 390	
  
Furthermore, we can explore host variation in both immune responses and PK, to provide 391	
  
a view of the host factors that contribute to the heterogeneous nature of TB and treatment. 392	
  
The model allows for the following unique analyses: true side-by-side comparison of 393	
  
different treatment regimens and dose sizes in the same granulomas; prediction of time to 394	
  
sterilization; identification of early indicators of treatment outcome; identification of key 395	
  
host mechanisms and antibiotic attributes controlling treatment outcome (in terms of 396	
  
percentage of granulomas sterilized, time to sterilization and final bacterial load in non-397	
  
sterilized granulomas). Therefore this adapted PK/PD granuloma model is an excellent 398	
  
tool for suggesting possible improvements or alterations to current antibiotic treatments, 399	
  
as well as exploring a large number of dosing regimens and antibiotic combinations to 400	
  
narrow the search space for animal studies and clinical trials.  401	
  
 402	
  
We illustrate model outcomes for a representative granuloma treated with daily oral 403	
  
dosing of INH and RIF in Figure 7. We are able to evaluate granuloma PK, including 404	
  
average antibiotic concentrations for the granuloma as well as at specific locations in the 405	
  
granuloma. Average antibiotic concentrations remain below effective concentrations for 406	
  
the majority of dosing intervals inside granulomas (Figure 7A).  Antibiotic concentration 407	
  
gradients form within granulomas, with lower concentrations, and therefore lower 408	
  
cumulative exposure, toward the center (Figure 7C and 7D). Simultaneous exposure to 409	
  
effective concentrations of both antibiotics inside the granuloma is infrequent. We note 410	
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that monotherapy – exposure to effective concentrations of only a single antibiotic – can 411	
  
contribute to the development of or selection for drug resistant mutants[30, 78].  412	
  
 413	
  
Model results also provide insight into the spatial and temporal bacterial response to 414	
  
treatment. The bacterial populations of TB disease are heterogeneous and complex. We 415	
  
represent this heterogeneity by modeling three different bacterial subpopulations: 416	
  
intracellular replicating, extracellular replicating and extracellular non-replicating 417	
  
bacteria. These subpopulations have different susceptibilities to INH and RIF[79, 80] 418	
  
(reflected in differing C50 (Figure 7A), Emax and Hill constant values), and we can track 419	
  
the response of each subpopulation to treatment in the representative granuloma (Figure 420	
  
7B). Suboptimal antibiotic concentrations lead to bacterial growth between doses, likely a 421	
  
major factor contributing to the long treatment periods required for treating TB. As 422	
  
treatment progresses the intracellular and non-replicating extracellular bacterial 423	
  
subpopulations persist, while replicating extracellular populations are eliminated. 424	
  
 425	
  
In addition to a daily dosing regimen, the Centers for Disease Control and Prevention 426	
  
(CDC) also approve alternative dosing regimens of two or three times weekly 25.  427	
  
Analysis of 500 simulated granulomas predicts that this intermittent dosing increases 428	
  
both the time to sterilization (clearance) and the percentages of granulomas not sterilized 429	
  
for INH and RIF treatment alone or in combination[75]. This is contradictory to findings 430	
  
obtained recently using a model based on non-specific antibiotic parameters for treatment 431	
  
of self-limiting infections[81]. However, treatment outcomes are clearly both antibiotic- 432	
  
and pathogen-specific. In our model, pre-treatment infection severity (including bacterial 433	
  
burden, host cell activation and host cell death) and antibiotic exposure are predictive of 434	
  
treatment outcome. Our results suggest that both host and bacterial attributes continue to 435	
  
play important roles during antibiotic treatment. Finally, we note that our results are 436	
  
based on individual granuloma simulations, although the expectation is that granulomas 437	
  
that fail to clear bacteria could lead to active TB.  438	
  
 439	
  
3.  Inhaled Antibiotics  440	
  
 441	
  
As described above, current oral antibiotic regimens of RIF and INH lead to poor 442	
  
antibiotic penetration into granulomas causing sub-optimal exposure. This necessitates 443	
  
lengthy treatment durations causing chronic toxicity and concerns with patient 444	
  
compliance[2, 34].  A proposed alternative strategy to oral delivery of antibiotics for TB 445	
  
is inhaled delivery.  In this delivery mode, fabricated carriers loaded with antibiotics are 446	
  
dosed into the lungs via an aerosol delivery system[82, 83]. Delivery of antibiotics via an 447	
  
inhaled route may overcome many limitations of oral dosing for treatment of TB by 448	
  
providing direct dosing to the infection site, reduced systemic toxicity and clearance, and 449	
  
improved patient compliance with reduced dosing frequency[82-85]. To rationally design 450	
  
inhaled formulations of antibiotics for TB treatment, it is necessary to understand the 451	
  
contributions of PK, PD, and behavior of the carriers (e.g. drug release) at the site of 452	
  
infection. Measuring and understanding these dynamics in clinically relevant models (e.g. 453	
  
non-human primates) is difficult and costly. Thus, systems pharmacology approaches are 454	
  
needed to quickly assess the efficacy and dynamics of inhaled formulations for the 455	
  
treatment of TB. 456	
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 457	
  
We extend our existing computational model of granuloma function and antibiotic 458	
  
treatment discussed above to include inhaled dosing and antibiotic release from a 459	
  
generalized carrier system [75] (Cilfone et al., submitted for publication, 2014). We 460	
  
modify the PK model to allow for dosing via both inhaled and oral routes by adding a 461	
  
non-infected lung compartment and an intracellular macrophage sub-compartment at 462	
  
pseudo-steady state (Figure 6B).  Carriers are modeled as agents and behavior includes 463	
  
carrier movement, macrophage phagocytosis of carriers, dispersal from macrophages, and 464	
  
extra- and intracellular degradation (Figure 6A). In the non-infected lung and intracellular 465	
  
macrophage compartments, a homogenous representation of inhaled carriers is used. 466	
  
Release of antibiotics from carriers occurs in both the intra- and extracellular 467	
  
environment and is described by a diffusion-degradation equation with time varying 468	
  
boundary conditions[86-88]. We utilize the PD model constructed and calibrated in[75].  469	
  
Using this model, we can begin to rationally design inhaled formulations of RIF and INH 470	
  
to be given at reduced dose frequencies (every two-weeks) with equivalent or better 471	
  
sterilizing capabilities as compared to conventional daily oral regimens. We can rapidly 472	
  
compare oral and inhaled doses, allowing us to assess whether existing antibiotics would 473	
  
be a promising candidates for inhaled formulations.  474	
  
 475	
  
We illustrate model predictions showing behavior of an inhaled dose of either RIF or 476	
  
INH given once every two weeks in Figure 8. Based on model sensitivity analysis, we 477	
  
identified possible inhaled formulations of INH and RIF that lead to equivalent or 478	
  
reduced bacterial loads at 7 days post-treatment initiation compared to daily oral 479	
  
formulations. For an inhaled formulation the total two-week dose (inhaled – 1x dose; oral 480	
  
– 14x doses) of INH is 12-fold lower compared to the oral formulation, while the total 481	
  
two-week dose for an inhaled formulation of RIF is the same as in the oral formulation. 482	
  
The model predicts that antibiotic concentrations in granulomas remain more stable over 483	
  
an entire dosing window (2-weeks) with inhaled formulations (Figure 8A) than with daily 484	
  
oral doses (Figure 7A).  In the case of INH, average granuloma concentrations are 485	
  
sustained above C50 values for intra- and extracellular M. tuberculosis populations for the 486	
  
entire dosing window (Figure 8A). However, in the case of RIF, the inhaled formulation 487	
  
only eclipses the C50 of extracellular M. tuberculosis immediately after dosing and never 488	
  
surpasses the C50 for intracellular or non-replicating M. tuberculosis (Figure 8A). The 489	
  
average granuloma concentration of RIF slowly decreases, indicating that inhaled 490	
  
formulations cannot maintain effective concentrations of RIF over the two-week dosing 491	
  
window.  492	
  
 493	
  
We can also examine predicted treatment efficacy at the individual granuloma level for 494	
  
both drugs, comparing inhaled and oral formulations given once every two weeks and 495	
  
daily, respectively.  There is no significant difference in successfully treated granulomas 496	
  
between the inhaled and oral formulations of RIF (Figure 8B). However, the inhaled 497	
  
formulation of INH sterilizes granulomas earlier than the oral formulation (Figure 8B).  498	
  
Treatment efficacy of inhaled formulations of RIF and INH, in comparison with their 499	
  
daily oral counterparts, is controlled by antibiotic concentrations mentioned above and 500	
  
the cumulative exposure in granulomas in a dosing window. A single inhaled dose of 501	
  
INH, given every two-weeks, leads to increased cumulative exposure in the granuloma 502	
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compared to daily oral dosing (Figure 8C). A single inhaled dose of RIF, given every 503	
  
two-weeks, and daily oral dosing of RIF lead to similar cumulative exposure (Figure 8C). 504	
  
 505	
  
An inhaled formulation of RIF may not be practical because effective concentrations of 506	
  
RIF cannot be maintained for an entire dosing window, there are early increases in 507	
  
peripheral toxicity (defined as cumulative exposure in the peripheral compartment), and 508	
  
the required two-week total dose would have to exceed ~90% w/w in a polymeric carrier 509	
  
formulation (Cilfone et al., submitted for publication, 2014). However, RIF is one of 510	
  
many rifamycin antibiotics with differing PD [89]and PK properties.  To further illustrate 511	
  
the potential capabilities of our approach, we tested how PD properties of RIF and other 512	
  
rifamycin antibiotics could be altered to improve the feasibility of an inhaled formulation. 513	
  
For instance, if a RIF derivative could be synthesized with different C50 characteristics 514	
  
would the efficacy of an inhaled formulation change? Using the same inhaled formulation 515	
  
of RIF as in Figure 8A-C, we varied the C50 values for the three modeled bacterial 516	
  
populations. As C50 values increase, the mean time to sterilize a granuloma remains 517	
  
constant or increases slightly (Figure 8D). When C50 values are decreased by ~ 50%, the 518	
  
mean time to sterilization decreases dramatically from ~80-100 days of treatment to ~30-519	
  
50 days of treatment (Figure 8D). Therefore, a RIF-derivative with different PD 520	
  
properties could make an inhaled formulation a practical possibility.   521	
  
 522	
  
We summarize the findings from our computational models with regard to oral and 523	
  
inhaled delivery of the first-line antibiotics INH and RIF in Figure 9.  When designing 524	
  
treatment regimens and delivery systems, it is important to consider all relevant 525	
  
dynamics.  INH and RIF distribute differently within the host and are eliminated at 526	
  
different rates, leading to very different dynamics at the host level and the site of 527	
  
infection (granuloma).  For inhaled antibiotic delivery, host-level PK together with the 528	
  
dynamics of the delivery system (slow or fast release from the carrier) lead to their 529	
  
different dynamics at the site of infection.  These influences must be considered together 530	
  
with the granuloma dynamics in designing therapeutics.   531	
  
 532	
  
4.  Vaccines 533	
  
 534	
  
The holy grail in TB therapy is the development of an effective vaccine (Figure 2 – 535	
  
intervention 6).  When antigen is delivered to the body, antigen-presenting cells (APCs) 536	
  
(e.g. dendritic cells) present it in the context of MHC molecules to T cells circulating 537	
  
through LNs.  T cells with specificity for that antigen/MHC complex bind, differentiate 538	
  
and proliferate to produce effector and memory T cells (Figure 1, right side).   Central 539	
  
memory cells recirculate from blood to lymphoid organs, and can persist for years, 540	
  
awaiting activation by a second antigen challenge. Effector memory cells migrate to sites 541	
  
of infection. These cells have a shorter lifespan than central memory cells, but they can 542	
  
perform effector functions immediately after encountering a second antigen challenge. 543	
  
When vaccines are effective, these memory cells are able to protect an individual from 544	
  
disease.  Perhaps not surprisingly, given the complexity of the host-pathogen dynamics, 545	
  
we do not yet understand what characteristics of an immune response correlate with 546	
  
protection against M. tuberculosis.  Considering the high cost and time required to 547	
  
perform animal testing and human trials, computational models developed using a 548	
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systems biology approach can be an important supplement for hypothesis generation to 549	
  
aid TB vaccine design, especially in the early stages.  550	
  
 551	
  
To study how memory cells generated from vaccination could influence the course of M. 552	
  
tuberculosis infection, we incorporated two additional physiological compartments – LNs 553	
  
and blood – into our computational model of the site of infection (lung granuloma).  This 554	
  
3-compartmental physiological model tracks relevant cells and molecules that participate 555	
  
in generation of adaptive immunity and ensuing responses during M. tuberculosis 556	
  
infection (Figure 10).  Building on our previous work[90], we use an ODE model to 557	
  
capture the dynamics of cells within LNs, although we note that to address questions 558	
  
requiring an understanding of spatial dynamics within LNs we have also developed 559	
  
agent-based models[91-93].  ODEs describe the evolution of naïve, precursor, central 560	
  
memory, effector memory, and effector T cells for both CD4+ and CD8+ T cells.  Naïve 561	
  
and central memory cells can be recruited to LNs and are primed or activated at a rate 562	
  
based on the number of antigen-bearing DCs in the LN[94].  Shown in Figure 1 is the 563	
  
lymphatic system, whereby DCs traffic from sites of infection (here, lung) to LNs. To 564	
  
simplify, we assume that antigen-bearing DCs are recruited into LNs at a rate 565	
  
proportional to the number of macrophages that interacted with M. tuberculosis at that 566	
  
time step. We refer to this as the “APC proxy” (Figure 10). After priming, T cells enter a 567	
  
precursor pool, where they begin to proliferate. Cells in this state are not allowed to exit 568	
  
the LN due to the early activation markers they express[95]. Precursor cells eventually 569	
  
differentiate into central or effector T cells, and a portion of the effector T cells become 570	
  
effector memory cells. We also model a blood compartment, allowing immune cells to 571	
  
traffic from the LN to the site of infection where they can participate in the immune 572	
  
response. Blood is a well-mixed compartment, and therefore we use ODEs to represent 573	
  
the dynamics. The lung, LN, and blood compartment models are linked via cell 574	
  
trafficking terms, and physiological scaling is used to correctly account for the 575	
  
appropriate volumes of the compartments.   576	
  
 577	
  
An effective vaccine must trigger the immune response to generate a sufficient number of 578	
  
effector memory and central memory T cells that can act quickly in a recall response, 579	
  
preventing or controlling infection. Although the numbers required for successful 580	
  
protection are not known, our computational model can be used to generate predictions. 581	
  
Others have begun to explore this question as well, using mathematical modeling and 582	
  
bioinformatics approaches (www.epivax.com)[96].  For a simple illustration here, we 583	
  
assume that a vaccine will generate a particular level of M. tuberculosis-specific effector 584	
  
memory and central memory cells.  These cells are assumed to be circulating post-585	
  
vaccination in the blood compartment.  A recall response (via introduction of M. 586	
  
tuberculosis, as in our earlier models) is then simulated to test whether infection with M. 587	
  
tuberculosis is cleared, controlled, or neither. In other words, simulations may suggest 588	
  
what levels of memory cells are required for vaccine efficacy.   589	
  
 590	
  
We can compare “unvaccinated” with “vaccinated” cases to learn more about the 591	
  
protection that memory cells can provide. For the unvaccinated case, infected 592	
  
macrophages, T cells and bacteria progress into a contained granuloma with a relatively 593	
  
stable structure over time (Figure 11A, upper row), as seen with our earlier models (e.g. 594	
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Figure 4B). If there are a sufficient number of memory cells present as a result of 595	
  
vaccination prior to the infection, the granuloma may not form, or may resolve quickly 596	
  
after a short period of growth (Figure 11A, lower row). To test how levels of different 597	
  
types of memory cells affect protection, we varied the initial condition for the numbers of 598	
  
effector memory and central memory classes of both CD4+ and CD8+ T cells that are 599	
  
present in the blood compartment.  We introduce M. tuberculosis infection into the lung 600	
  
during a scenario where the parameters are biased toward a host phenotype that can form 601	
  
a granuloma that can contain infection, and track how the presence of circulating memory 602	
  
cells affects granuloma outcomes. Each setup is replicated 50 times, and the probability 603	
  
that a granuloma clears its bacterial load is counted (Figure 11B). We see that increasing 604	
  
memory CD4+ T cells does not influence the outcome of a granuloma. However, the 605	
  
chance of sterilization (clearance) increases when more memory CD8+ T cells are 606	
  
present, especially when a high proportion of them are effector memory cells.  607	
  
 608	
  
Even with this simple model, we see that an appropriate vaccine for M. tuberculosis 609	
  
could greatly alter the outcome of infection. The goal now is to design a vaccine that 610	
  
generates the necessary levels and ratios of memory cells. In a recent study, using an 611	
  
agent-based LN model, we predicted that the relative abundance of different T cell 612	
  
subsets could be tuned by controlling the quantity and quality of APCs[91]. These 613	
  
computational studies, together with bioinformatics analyses, animal vaccine, and human 614	
  
trials, are necessary to both improve our understanding of what is needed to develop a 615	
  
successful vaccine for TB and to help narrow the design space of possibilities. 616	
  
 617	
  
Discussion 618	
  
 619	
  
Although TB has been around for thousands of years, much is not understood about this 620	
  
complex infection.  TB is a leading cause of death from infectious disease worldwide, 621	
  
second only to HIV-1/AIDS[1]. With a long and complicated antibiotic regimen required 622	
  
for TB treatment, there are a myriad of issues that can lead to treatment failure, including 623	
  
non-compliance, individual variations in antibiotic PK/PD, development of drug 624	
  
resistance, and differences among bacterial phenotypes. In recent years, several groups 625	
  
have taken a systems biology approach to identify critical metabolic and genetic 626	
  
regulatory pathways in the bacterium, with hopes of identifying new drug targets (e.g. 627	
  
[97-100] while others have focused on the alveolar macrophage host[101, 102].  These 628	
  
efforts have advanced our understanding of single cell level interactions and dynamics for 629	
  
both immune cells and pathogens.  630	
  
 631	
  
Our approach here complements that work but focuses on the multi-scale and multi-organ 632	
  
influences that determine infection outcomes in vivo.  The advantage of this approach is 633	
  
that it allows us to understand the impact of a molecular-scale perturbation (e.g. in a rate 634	
  
or molecular concentration) at a granuloma, a tissue-scale readout; similarly the impact of 635	
  
events in the lymph node (e.g. memory cell generation) at a granuloma can be examined. 636	
  
These insights can help us understand how to narrow the design space for therapeutics 637	
  
including vaccines. We can simultaneously incorporate systems pharmacology 638	
  
approaches to describe how well a particular drug will reach and influence the target (e.g. 639	
  
a signaling pathway in a macrophage).     640	
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 641	
  
An in vivo systems biology approach to TB has much to offer to hypothesis generation 642	
  
and therapeutic design.  Computational models can integrate information from 643	
  
experimental work focused on molecular, cellular, and tissue scales.  Iteration between 644	
  
experiments and modeling is essential to building reliable computational models and 645	
  
designing appropriate experiments.   New biological findings can easily be added to the 646	
  
computational model.  For example, we are now including additional cell populations (T 647	
  
cell subsets and neutrophils) that new data suggest are important to granuloma dynamics.  648	
  
In addition to the antibiotic studies described herein, other combinations of first-line and 649	
  
second-line antibiotics can be studied using our drug model platform to allow for rapid 650	
  
screening of a wide and unwieldy drug regimen space. We are also exploring 651	
  
immunomodulation in tandem with antibiotics.   This multiple-hit approach targeting 652	
  
immune responses while simultaneously limiting pathogen growth has great potential for 653	
  
success and could lead to patient-specific treatments, a goal of individualized medicine.   654	
  
 655	
  
Although we have focused here on lung granulomas and the processes that affect them, 656	
  
more work is needed to understand how infection status correlates with the numbers and 657	
  
characteristics of granulomas that are observed in vivo; forthcoming NHP and human 658	
  
data will be useful for this.  Finally, there is an urgent need to identify biomarkers of 659	
  
infection status and progression in TB.  This is particularly true in developing countries 660	
  
where resources are limited and the need to parse whom to treat, and when, is urgent. We 661	
  
currently are exploring using machine learning as biomarker discovery tool for TB. In 662	
  
vivo systems biology can play a major role in these important aspects of TB intervention. 663	
  
 664	
  
  665	
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Figure legends. 680	
  
 681	
  
Figure 1.  Overview of the immune response to M. tuberculosis infection. M. 682	
  
tuberculosis replicates within macrophages.  Some bacteria are killed via non-pathogen 683	
  
specific processes (innate immunity).  Dendritic cells present antigen to naïve T cells in 684	
  
the lymph node, generating effector T cells (CD4+ and CD8+) that travel back to the site 685	
  
of infection to kill bacteria (adaptive immune response).  Granulomas form in lungs as a 686	
  
result of these events.  In non-human primates, granulomas range in size from ~1-6 mm 687	
  
in diameter (median value 2 mm)[10, 12].  Multiple granulomas are present in a single 688	
  
host and likely each one is seeded by a single bacterium[10, 103].   Memory T cells 689	
  
(CD4+ and CD8+) are also generated by processes in the lymph node.   690	
  
 691	
  
Figure 2.  Multi-scale and multi-compartment view of host-pathogen dynamics during 692	
  
M. tuberculosis infection.  Six potential interventions are also shown.   693	
  
 694	
  
Figure 3.  Three elements of our computational approach to granuloma formation and 695	
  
function.  (A) An agent-based model describes cellular actions.  (B) Receptor binding, 696	
  
trafficking and signaling models are described with ODEs.  (C) Molecular diffusion is 697	
  
described by partial differential equations.  These model elements are linked, allowing 698	
  
information to be continually exchanged across scales.   699	
  
 700	
  
Figure 4.  Granuloma model calibration and snapshots.  (A) Comparison of CFU/lesion 701	
  
data from non-human primates (NHP) with computational model predictions (median – 702	
  
solid black line, min/max – dashed black lines). More detail on the model is given in 703	
  
[61].  NHP data from 32 animals collected between 28 and 296 days post-infection has 704	
  
been previously published in[10, 17].  (B) Sample simulation snapshot shows a 705	
  
granuloma that is containing infection at 200 days post-infection.  (C) Sample simulation 706	
  
snapshot with different parameter values than in (B) shows a granuloma that fails to 707	
  
contain infection. Snapshot legend colors: resting macrophages (green), infected 708	
  
macrophages (orange), chronically infected macrophage (red), activated macrophage 709	
  
(dark blue), pro-inflammatory T cell (pink), cytotoxic T cell (purple), regulatory T cell 710	
  
(aqua), extracellular bacteria (brown), and caseation (cross-hatch).  711	
  
 712	
  
Figure 5.  Simulated immunomodulation of IL-10 and TNF in granulomas. (A) Left side: 713	
  
Mean CFU per lesion for WT and IL-10 deletion (IL-10 K/O) lesions at 200 days post-714	
  
infection. Percent of lesions becoming sterile by 200 days is indicated.  Right side: Mean 715	
  
CFU per lesion for WT and IL-10 deletion (IL-10 K/O) lesions that were non-sterile at 716	
  
200 days post-infection. Error bars indicate SD. (B) CFU for WT and IL-10 deletions 717	
  
starting at day 25, 50, 75, or 100 days post-infection. Percent of lesions becoming sterile 718	
  
by 200 days is indicated. Error bars indicate SD.  (C) CFU per lesion and (D) Number of 719	
  
caseated compartments per lesion for granulomas with differing ratios of mean TNF to 720	
  
IL-10 concentrations. The ratio of TNF to IL-10 was modulated by increasing/decreasing 721	
  
rates of TNF and/or IL-10 production from all cell types. Individual circles represent 722	
  
individual lesions. 723	
  
 724	
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Figure 6.   Additions to the computational model of granuloma formation and function 725	
  
that allow for antibiotic dosing.  (A) Granuloma PK of antibiotics described in the agent-726	
  
based model include consideration of vascular permeability, diffusion and uptake by host 727	
  
cells. Inhaled antibiotics further include delivery particle deposition, movement and 728	
  
antibiotic release. (B) Host PK models describe movement of drug through the body and 729	
  
into the lung lesion (granuloma) using ODEs. The model for oral delivery (blue area) is 730	
  
expanded to allow inhaled delivery (blue + green areas). (C) PD are modeled 731	
  
independently of drug delivery method and are location- and bacterial subpopulation-732	
  
specific. Killing rates are calculated using a Hill curve defined by the slope (Hill 733	
  
constant), maximum killing rate (Emax) and concentration where 50% activity is achieved 734	
  
(C50). These parameters are specific for different bacterial subpopulations. [75].   735	
  
 736	
  
Figure 7. Simulated antibiotic treatment of a representative granuloma. The granuloma is 737	
  
allowed to form for 100 days, after which treatment is initiated with daily doses of INH 738	
  
(15 mg/kg) and RIF (20 mg/kg) for an additional 180 days.  These doses give plasma PK 739	
  
similar to that seen in humans[104]. (A) Average INH and RIF concentrations in the 740	
  
granuloma shown in panel C and the corresponding total bacterial load in the granuloma 741	
  
over time. C50 values (see Figure 6) for INH and RIF are indicated by dashed lines for 742	
  
each bacterial subpopulation (blue – INH; red – RIF).  (B) Bacterial subpopulations in the 743	
  
granuloma over time during 180 days of treatment. (C) Snapshot of the granuloma on day 744	
  
100, before treatment starts. (D) Cumulative exposure of the granuloma in panel C to RIF 745	
  
(top left) and INH (bottom right) over the first week of treatment, showing spatial 746	
  
distribution. Color bars are scaled between 0 and the EC80 (exposure where 80% of max 747	
  
efficiency is achieved) for each antibiotic.  748	
  
 749	
  
Figure 8.  Simulated antibiotic treatment of granulomas using inhaled formulations. 750	
  
Granulomas are allowed to form for 100 days, after which 200 days of treatment is 751	
  
simulated with inhaled formulations of INH and RIF dosed every two-weeks. (A) Mean 752	
  
INH (blue) and RIF (red) concentrations in the granuloma for the first 14-day dosing 753	
  
window. C50 values (see Figure 6) for INH and RIF are indicated by dashed lines for 754	
  
each bacterial subpopulation (blue – INH, red – RIF). (B) Percent of granulomas 755	
  
sterilized at indicated times after the initiation of treatment – INH (blue) and RIF (red). 756	
  
Inhaled formulations (solid lines) dosed every two-weeks are compared to daily oral 757	
  
dosing strategies (dashed lines). Granulomas still present at 300 days post-infection are 758	
  
considered failed treatments. (C) Mean INH (blue) and RIF (red) cumulative exposure in 759	
  
the granuloma for the first 14-day dosing window. Inhaled formulations dosed every two-760	
  
weeks are compared to daily oral dosing strategies. (D) Mean time to granuloma 761	
  
sterilization when the C50 values (intracellular, extracellular, and non-replicating 762	
  
populations) of RIF are increased/decreased. RIF C50 values are given as a percentage of 763	
  
the original value.  (A-C) * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. INH – 764	
  
Inhaled (N = 81), Oral (N = 87). RIF – Inhaled (N = 83), Oral (N = 87). 765	
  
 766	
  
Figure 9.  Antibiotic dynamics within granulomas are simultaneously influenced by host 767	
  
PK, granuloma PK, dosing regimens, and delivery route.  Relative rates for INH and RIF 768	
  
are shown above (INH) or below (RIF) arrows. The transit compartment represents 769	
  
absorption in the gut and transit to systemic circulation. Oral and inhaled dosing regimens 770	
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and inhaled carrier release kinetics need to be designed with host PK and granuloma PK 771	
  
in mind. For INH, slow distribution to other organs, slow clearance, and low permeability 772	
  
allow for slow inhaled carrier release kinetics (all relative to RIF).  For RIF, rapid 773	
  
distribution to other organs, rapid clearance, and high permeability must be compensated 774	
  
for by fast inhaled carrier release kinetics.    775	
  
 776	
  
Figure 10 777	
  
Three-compartment model framework for simulating the influence of memory cells 778	
  
(which can be generated by vaccines) on granuloma formation and function. The lung 779	
  
(site of infection) is represented with our agent-based model (GranSim) as described in 780	
  
previous sections, and two ODE models capture LN and blood dynamics. T cells that are 781	
  
tracked in LNs include: CD4+ and CD8+ T cells, and each of these can be further 782	
  
classified into: N (Naïve), CM (Central Memory), EM (Effector Memory), P(precursor 783	
  
cells), E (Effector).  APCs such as DCs circulate from the lung to the LN to prime the 784	
  
adaptive immune response. The CM, EM, E and N classes can travel between LN and 785	
  
blood compartments as indicated by arrows.  Only E and EM (total effector class) can 786	
  
travel to the infection site in the lung. Both M. tuberculosis-specific and non-specific T 787	
  
cells are accounted for in our model.  For our in-silico experiments, we changed the 788	
  
initial conditions of equations describing the number of different memory cells in the 789	
  
blood to represent the memory cells that we assume have been generated after 790	
  
vaccination (shown in box). The cell and bacterial time courses and granuloma spatial 791	
  
outcomes in the lung are tracked to assess the level of protection derived from the 792	
  
simulated vaccine.  793	
  
 794	
  
Figure 11 795	
  
Simulated effects of immune memory on granuloma outcomes.  (A) Snapshots of 796	
  
granuloma progression over time with or without memory cells generated from 797	
  
vaccination. When no memory cells are present at the beginning (top row), the site with 798	
  
an initial infected macrophage develops into a granuloma and maintains the structure 799	
  
through the 200 days of simulation. With sufficient memory cells circulating (bottom 800	
  
row), a granuloma appears briefly but quickly resolves as the infection ends in bacterial 801	
  
clearance (sterilization).  (B) Infection is simulated with different combinations of initial 802	
  
conditions for each type of memory cell (central, effector, CD4+ and CD8+ T cells). Four 803	
  
groups of simulations are run, each with a fixed low (20 µL-1) or high (100 µL-1) 804	
  
concentration for total CD4+ or CD8+ T memory cells. Within each group, the ratio of 805	
  
central memory (CM) to effector memory (EM) are set to 9:1, 1:1, or 1:9. Each scenario 806	
  
is simulated 50 times, and the outcomes of each granuloma are assessed. Shown in the 807	
  
color are the proportions of simulations that ended in a granuloma that cleared all 808	
  
bacteria.   809	
  
  810	
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Figure 4.   
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Figure 5.   
 
 

 
 

  

0.1 1
0

20

40

60

[TNF] / [IL-10]

C
as

ea
tio

n
(#

 / L
es

io
n)

WT
0

200

400

600

C
FU

 / L
es

io
n

(2
00

 D
ay

s 
Po

st
-In

fe
ct

io
n)

Start of IL-10 Depletion
(Days Post-Infection)

25 50 75 1000

12% 48% 84% 54% 30% 24%
Percentage of Sterile Lesions

****

****

****

***
**

WT IL-10 K/O WT IL-10 K/O
0

100

200

300

400

500

C
FU

 / L
es

io
n

(2
00

 D
ay

s 
Po

st
-In

fe
ct

io
n)

29% 56%
%of Sterile Lesions

*** ns

0.1 1
Sterile

101

102

103

104

[TNF] / [IL-10]

C
FU

 / L
es

io
n

(2
00

 D
ay

s 
Po

st
-In

fe
ct

io
n)

A

D

B

C

Non-Sterile Lesions

Page 31 of 37 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



Figure 6.  
 

 
 

  

Page 32 of 37Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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