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Natural and synthetic metabolic pathways need to retain stability when faced against random 

changes in gene expression levels and kinetic parameters. In the presence of large parameter 

changes, a robust system should specifically avoid moving to an unstable region, an event that 

would dramatically change system behavior. Here we present an entropy-like index, denoted as 

S, for quantifying the bifurcational robustness of metabolic systems against loss of stability. 

We show that S enables the optimization of a metabolic model with respect to both 

bifurcational robustness and experimental data. We then demonstrate how the coupling of 

Ensemble Modeling and S enables us to discriminate alternative designs of a synthetic pathway 

according to bifurcational robustness. Finally, we show that S enables the identification of a 

key enzyme contributing to the bifurcational robustness of yeast glycolysis. The different 

applications of S demonstrated illustrate the versatile role it can play in constructing better 

metabolic models and designing functional non-native pathways. 

 

 

 

 

 

Introduction 

 The major role of most metabolic systems is to support 

cellular growth, maintenance, or adaptation without losing 

stability despite perturbations in the environment1,2. When the 

environmental or physiological conditions change, gene 

expression levels or kinetic parameters may drift outside their 

typical working ranges and lose stability. The stochastic nature 

of transcriptional and translational mechanisms3 is one such 

source of noise and a robust system would maintain 

homeostasis despite the perturbations. Failure to retain a 

stability may lead to accumulation of toxic metabolites or 

depletion of essential intermediates. This detrimental state 

could cause growth arrest and has been linked to many diseases 

such as diabetes and cancer4. In metabolic engineering, this 

situation leads to loss of production or cell death. 

 Non-linear system behavior changes qualitatively and 

dramatically when parameters cross a bifurcation point and 

exhibits instability or multiplicity of steady states. Thus, a 

necessary but insufficient requirement for stable or damped-

oscillatory metabolic pathway design is to avoid crossing a 

bifurcation point in the presence of random perturbations in 

gene expression levels and environmental conditions that 

change kinetic parameters.  For metabolic systems, a fixed-

point bifurcation may cause the stable steady state (or fixed-

point) to become unstable5-7, or mark the emergence of 

undamped oscillations8,9 or multiple steady states10 . 

 The distance away from an unstable region is defined as the 

bifurcational robustness5, which measures the ability to return 

to a fixed point upon perturbation. Thus, building a theoretical 

foundation of robustness, and in particular defining a simple 

way to quantify it, represents a key challenge in systems 

biology11. For small, local perturbations, stability criteria are 

well defined using linear stability analysis12. For large 

perturbations, one must explore global properties of the system.  

It is important to make the distinction between bifurcational 

robustness, which quantifies the tendency to avoid sudden 

change in dynamic regime due to parameter changes, and local 

sensitivity, which quantifies the changes in performance (flux, 

period of oscillation) as a function of changes in parameters 

within the same dynamic regime.  The latter does not quantify 

the distance away from bifurcation. 

 Natural metabolic pathways are presumed to be at least 

bifurcationally robust against stochastic changes in protein 

expression levels. Thus models of natural metabolic pathways 
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need to be similarly robust.  However, there is no quantitative 

way to characterize bifurcational robustness in the presence of 

random parameter changes. Without a quantitative index, 

optimization of models for bifurcational robustness becomes 

difficult, if not impossible. Therefore, our goal here is to 

develop a quantitative index for bifurcational robustness, and 

show that such an index enables the optimization of the 

bifurcational robustness of metabolic models. The developed 

index is easy to compute and applies to metabolic systems of 

various scale and complexity. Interestingly, the mathematical 

form of our robustness index resembles the definition of 

entropy in thermodynamics and information theory13.  We show 

that this entropy-like index, denoted as S, negatively correlates 

with bifurcational robustness. Metabolic systems with a small S 

are highly robust against bifurcation, and are more likely to 

retain a steady state under random perturbations affecting every 

enzyme than systems with a large S. 

 The utility of S was demonstrated through three examples. 

First, we show that the bifurcational robustness of a native 

pathway model can be significantly improved by applying a 

multi-objective optimization with S as an objective. Second, we 

show that the integration of S with EMRA5 is able to 

discriminate, without any prior knowledge of kinetic 

parameters, the difference in bifurcational robustness between 

two configurations of a non-native metabolic pathway14. 

Possible sources of pathway failure were also identified. 

Finally, by quantifying S in a series of yeast glycolysis models 

incorporating different features, we identified pyruvate 

decarboxylase as a key enzyme determining the robustness of 

yeast glycolysis, a finding consistent with earlier studies15,16. 

Together, our results demonstrate that S may serve as an 

unbiased standard by which the bifurcational robustness is 

judged. 

Results 

Lack of robustness in existing metabolic models 

 In a survey of the robustness of existing metabolic models, 

we simulated natural perturbations and recorded the response of 

thirteen kinetic models of metabolic pathways with fitted 

parameters (Supp. Fig. 1). This in silico experiment was 

designed to mimic the real biological situation where protein 

expression levels, which affect kinetic parameters, vary 

randomly and non-specifically3. Since natural metabolic 

pathways are presumed to be bifurcationally robust in such 

situations, the computational models of these metabolic systems 

need to be similarly robust. To our surprise, the selected models 

displayed varying degrees of robustness against bifurcation. 

Some models are very robust and almost always retain stability 

after perturbation, even though their steady-state flux and 

metabolite concentrations are changed. Others respond poorly 

even to moderate perturbations (Supp. Fig. 1) where the system 

becomes unstable with some metabolites accumulating or 

vanishing, leading to system failure. If one accepts the 

assumption that natural systems are robust against enzyme 

expression perturbations, these models do not reflect this 

assertion.  This unexpected result highlighted the need for the 

optimization of metabolic models with respect to bifurcational 

robustness, which in turn calls for the development of a 

quantitative robustness index. 

 

Searching for a robustness index 

 The natural perturbation of environmental or physiological 

conditions often affects the expression levels of many genes, 

which in turn affect the kinetic parameters of all enzymes. 

Thus, an appropriate description of bifurcational robustness 

should focus on the probability that a metabolic system will not 

cross a bifurcation point and retain a stable steady state when 

every enzyme is randomly perturbed. Although this probability 

of retaining stability, denoted as PSS, is a function of all 

enzymes, a simple approximation can be obtained under the 

assumption that there is no “crosstalk” between enzymes. That 

is, the probability of stability retention under the perturbation of 

a single enzyme is independent of other enzymes. In this 

simplest case, the expression for PSS reduces to 

 ��� � ∏ �����	 , (1) 

where pi denotes the probability that the system will retain 

stability if only enzyme i is subject to variation. 

 

 
Figure 1. The continuation method enables the detection of bifurcation points. 

(A) Starting from a default steady state, the continuation method traces the 

trajectory of XSS (the steady-state value of some metabolite concentration X) as it 

varies according to enzyme activity levels. In this example, the system loses 

stability (no stable fixed point exisits) when the enzyme activity is increased by 

over 2.5-fold or decreased by over 50%. (B) Given the probability density 

function (pdf; orange curve), we can calculate pi (the probability of retaining a 

steady state when i-th enzyme is subject to a random perturbation) as the area 

under the pdf and between the bifurcation points (red and blue dashed lines). 

(C) The bifurcation points of Vmax define the boundaries of single-enzyme 

perturbations. Abbreviations are defined in Supplementary Table 1. 
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 When the environmental perturbation affects only one 

enzyme, the probability that the system will cross a bifurcation 

point, denoted as pi, is determined by the area bounded by the 

bifurcation points and the probability density function (Fig. 1A 

& B; Methods). Fortunately, the bifurcation points can be 

readily determined based on the continuation method described 

previously5. As an example, Figure 1C shows the bifurcation 

points with respect to each enzyme in Teusink et al’s yeast 

glycolysis model17. Clearly, the model can tolerate wide 

variation in some enzymes, such as glucose 6-phosphate 

isomerase (PGI) and phosphoglycerate kinase (PGK), whereas 

a moderate perturbation in other enzymes, such as ATPase, can 

lead to a bifurcation and the loss of stability. 

 
Figure 2. Comparison of the robustness (Probability of retaining stability, Pss) 

determined by in silico experiment and two approximations. (A) The first 

theoretical approximation was PSS ≈ ∏pi. (B) The second theoretical 

approximation was PSS ≈ ∏pi
pi

. In both cases the Monte Carlo approximation of 

PSS was calculated by randomly perturbing every enzyme.
 

 

 For any metabolic model with all parameters specified or 

fitted, we can calculate pi for every enzyme and use the formula 

in Eq. 1 to approximate PSS. Figure 2 shows the performance of 

Eq. 1 in approximating the PSS’s of the 13 metabolic models 

discussed above when compared to the Monte Carlo simulation 

(Methods). Clearly, the approximation yields a similar trend as 

the simulation results, but it tends to underestimate the true 

probability and may not be an appropriate index.  

 In an attempt to remedy the observed underestimation from 

the independence assumption, we applied an exponential 

correction factor to each individual probability: 

 ��� � ∏ ��
��  . (2) 

With an exponential correction, our rationale is to increase the 

value of pi since the effect of crosstalk is more likely to be 

strong when pi becomes smaller. Figure 2B shows the 

performance of this new approximation against the Monte 

Carlo simulation. Compared to the approximation under an 

independence assumption, Eq. 2 yields an improved correlation 

with the simulation results. Since determination of crosstalk 

between every enzyme is technically challenging, if not 

impossible, we believe that Eq. 2 provides a reasonable 

approximation without increasing computational costs. 

Interestingly, the mathematical form of Eq. 2 resembles the 

definition of entropy in thermodynamics and information 

theory13, except that the exponent does not have a negative 

sign. 

 Here we propose an entropy-like robustness index, denoted 

as S, which corresponds to the negative of the logarithm of Eq. 

2: 

 � 
 � ∑ �� log����� . (3) 

Like entropy, S also enjoys the additive property as do 

thermodynamic and information theoretic entropy. That is, the 

system-level robustness S can be regarded as a simple sum of 

the enzyme-level robustness, Si = −pi·log(pi), which is 

determined solely by pi. One difference between S and the 

thermodynamic entropy is that each pi is not mutually 

exclusive.  Other thermodynamic properties or information 

theoretic properties of entropy do not easily carry over to the 

robustness index S.  In robustness, the lower S the more robust 

the system is. 

 To test the performance of S as an index of bifurcational 

robustness, we calculated S for 13 metabolic models and 

compared those values to the Monte Carlo simulation of 

random perturbations (Figure 3). As expected, for the 13 

 

 
Figure 3. S is a proper index of bifurcational robustness for metabolic systems. For the 13 BioModels database models (blue filled circles; Methods), S decreases with 

increasing probability of stability retention (PSS), which is determined by Monte Carlo simulation. 
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models considered, S negatively correlates with bifurcational 

robustness. That is, models with a small S are highly robust 

against bifurcation, and are more likely to retain a steady state 

under random perturbations than models with a large S. In fact, 

the difference in S between robust and non-robust systems 

becomes more apparent when a higher perturbation level is 

tested. These results suggest that S, which can be calculated 

efficiently using the continuation method5, may serve as an 

unbiased standard of bifurcational robustness. In the following 

sections, we will demonstrate how S can be used to: (i) 

optimize the bifurcational robustness of metabolic models with 

fitted parameters; (ii) compare the bifurcational robustness of 

alternative synthetic pathway designs when parameters are 

unknown; and (iii) identify key features determining the 

bifurcational robustness of a metabolic system. 

Parameter optimization using S  

 Given its scalar nature, S can be readily incorporated into 

commonly used optimization algorithms for parameter fitting. 

To demonstrate this functionality, we re-fit the parameters of 

Teusink et al's yeast glycolysis model17 by using S as an 

optimization objective. In this particular case, we applied a 

multi-objective optimization so as to simultaneously (i) 

minimize the discrepancy between available data (metabolite 

concentrations and fluxes) and model predictions, and (ii) 

minimize the model's S value (See Methods). By incorporating 

S in the objective function, this algorithm was indeed able to 

significantly improve the bifurcational robustness of an 

otherwise non-robust model (Figure 4A). More importantly, 

neither metabolite concentrations nor fluxes required anything 

larger than a 2-fold change to accomplish this (Figure 4B). 

These results demonstrate that S enables the optimization of 

bifurcational robustness of a metabolic model and that such 

robustness optimization can be readily integrated into any 

parameter-fitting routine.  

 

 

 
Figure 4. Optimization incorporating S returns a model with significantly improved robustness. (A) Comparison of the bifurcational robustness in the original and 

the optimized model by random perturbation. ( )Stability retained; ( ) Stability lost (B) Percentage change in steady-state metabolite concentrations, steady-state 

fluxes and kinetic parameters between the best model returned by optimization and Teusink et al.’s model. For abbreviations, see Supplementary Tables 1 and 2. 
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Figure 5. Robustness analysis of two configurations of a non-oxidative glycolysis (NOG) using S. (A-B) Two configurations of NOG where black double arrows denote 

reversible reactions and red arrows denote irreversible reactions. (A) In Fpk-NOG, phosphoketolase exhibits enzymatic activity only towards F6P and is denoted Fpk 

(B) In Xpk-NOG, phosphoketolase exhibits enzymatic activity only towards X5P and is denoted Xpk (C) Histogram of Si throughout the ensemble for every enzyme in 

each configuration. (D) The average S for each configuration is calculated as the sum of the average Si of every enzyme. 

 

Robustness index in the design of non-native pathways 

 Besides the optimization of the bifurcational robustness of 

existing models, S can be useful in non-native pathway design 

even when the kinetic parameters are unavailable. To address 

the uncertainty of kinetic parameters, we applied the calculation 

of S to an ensemble of models representing the feasible kinetic 

space18-20. Such an ensemble approach has recently been 

adopted to evaluate the bifurcational robustness of non-native 

pathways and to identify configurations that are more likely to 

be functional5.    

 Here we demonstrate the utility of S in non-native pathway 

design using two configurations of a synthetic non-oxidative 

glycolysis (NOG)14: Fpk-NOG (Fig. 5A) and Xpk-NOG (Fig. 

5B). Fpk-NOG contains a specific homolog of phosphoketolase 

(termed Fpk) that only reacts with fructose 6-phosphate (F6P), 

whereas the phosphoketolase in Xpk-NOG (termed Xpk) only 

reacts with xylulose 5-phosphate (X5P). For each 

configuration, we constructed an ensemble of 10,000 models by 

random sampling (Methods) and calculated the distributions of 

Si. As shown in Fig. 5C, both Fpk-NOG and Xpk-NOG are 

quite sensitive to the changes in the activity of triose phosphate 

isomerase (Tpi) and fructose 1,6-bisphosphatase (Fbp) (Fig. 

5C). Nevertheless, the Fpk-NOG is considerably less robust 

than Xpk-NOG as it is also sensitive to many other enzymes 

(Fig. 5C; left column). This conclusion is also confirmed by 

Fig. 5D, where the average S of each configuration is visualized 

as the stacked contributions of average Si. Although Xpk-NOG 

as a whole has a lower average S than Fpk-NOG, the high 
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average Si of Tpi and Fbp might indicate a potential problem 

during strain construction. As this example illustrates, the 

coupling of Ensemble Modeling with the calculation of S 

allows us to assess the robustness of a pathway design and 

identify possible causes of failure.  

Determining the cause of non-robustness 

 Another possible use of S is in the identification of key 

features contributing to the bifurcational robustness of a 

metabolic system. To demonstrate this utility, we used van 

Heerden et al.’s model of yeast glycolysis21 as an example. This 

model is adapted from the model developed by Teusink et al.17 

with five major changes: 

1. Hexokinase (HK) inhibition by glucose 6-phosphate (G6P) 

2. Consideration of phosphate as a free variable 

3. Activation of pyruvate kinase (PYK) by fructose 1,6-

bisphosphate (FBP) 

4. A 6.1 fold rise in the Vmax of pyruvate decarboxylase (PDC) 

5. Trehalose and glycogen fluxes were considered as functions 

of G6P 

Although these modifications are seemingly minor, the new 

model has a significantly lower S than the original model of 

Teusink et al. (Figure 6, inset). This is particularly interesting 

because other adaptations of Teusink et al.’s model, such as 

Pritchard et al.’s22 and Conant et al.’s23 glycolysis models, do 

not show a similar improvement in bifurcational robustness 

(Supplementary Fig. 1). This result suggests that some 

modifications made by van Heerden et al. are particularly 

important for robustness improvement.  

 To identify the key determinant of robustness in van 

Heerden’s model, we constructed 16 alternative models by 

reversing all possible combinations of the first four major 

changes and calculated their respective S (Figure 6). As 

expected, the case where all four major changes were reversed 

(Figure 6, blue bar) is lost the robustness and exhibits a 43-fold 

increase in S when compared to van Heerden’s model (Figure 

6, orange bar). Interestingly, we found that high �����
 reduced S 

(increased robustness) 25- to 100-fold when compared to 

models with a lower ����� .  Thus, the activity of PDC appears 

to be the most important factor in the robustness of the model. 

In addition, the inhibition of HK by glucose 6-phosphate also 

contributes to the reduction of S and thus increase in 

robustness. 

 The finding that a high �����  is critical for the overall 

robustness of yeast glycolysis is consistent with several 

observations. First, a pyruvate-decarboxylase-negative (Pdc-) 

Saccharomyces cerevisiae mutant lacking all three PDC genes 

(PDC1, PDC5 and PDC6) not only exhibited a three-fold lower 

growth rate in rich medium containing glucose than the 

isogenic wild-type strain, but was also unable to grow in 

minimal medium with glucose as the sole carbon source15. 

Second, the PDC6 gene, whose expression is either very low or 

absent in wild-type S. cerevisiae, was highly induced in the 

presence of excess sugars16, suggesting that extra Pdc activity is 

 

 
Figure 6. S helps identify pyruvate decarboxylase activity as a key parameter for the bifurcational robustness of yeast glycolysis. The inset shows the large difference 

in S between Teusink et al.’s
 18

 (blue bar) and van Heerden et al.’s
21

 glycolysis models. To identify which of the first four major changes incorporated in van Heerden et 

al.’s model accounts for the robustness improvement, we constructed 16 alternative models by reversing every combination of the four changes and calculated each 

model’s S. The orange bar corresponds to the original model, whereas the blue bar corresponds to the extreme case where all four changes were removed.
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beneficial for growth under high-sugar stress conditions. In 

these tests, the changes to trehalose and glycogen production 

kinetics were not reverted because the alternative systems 

would seldom reach a default steady state. These results 

demonstrate the utility of S in identifying key features that are 

essential for the global robustness of a metabolic system. 

Discussion 

 Robustness is an inherent property of biological systems to 

maintain desired function when faced with perturbations in 

environmental or physiological conditions. However, the 

intrinsic nonlinearity of metabolic systems suggests that a 

system can suddenly lose a stable steady state in the presence of 

random perturbations if a bifurcation point is crossed. 

Therefore, a bifurcationally robust system is needed to tolerate 

large changes in gene expression levels or kinetic parameters 

without crossing a bifurcation point. It is necessary to note that 

the robustness against bifurcation is different from local 

sensitivity24-29, which concerns the quantitative change of 

system properties against small perturbations, but is equally 

important. 

 Here we develop an index for bifurcational robustness, 

denoted as S, and show that it negatively correlates with a 

system’s robustness against bifurcation in the presence of 

random parameter (or enzyme) changes. Interestingly, the 

definition of S is mathematically similar to the entropy in 

thermodynamics and information theory13. As a result, S is also 

an extensive property as is the thermodynamic or information 

theoretic entropy. That is, the robustness of a metabolic system 

against random enzyme changes (S) is a sum of the robustness 

with respect to random changes in individual enzymes (Si). This 

additive property gives us a tool for identifying the possible 

obstacles to the in vivo observability of a non-native pathway. 

However, other entropy properties in thermodynamics and 

information theory do not readily apply. 

 We demonstrated the utility of S using three examples. 

First, we show that S enables the optimization of bifurcational 

robustness of a yeast glycolysis model17. Given that 

experimental data used for fitting is generally sparse, adding S 

as an additional optimization objective can further reduce the 

uncertainty of parameter values that are otherwise loosely 

constrained30,31. Indeed, the parameter changes returned by the 

optimization not only improve the bifurcational robustness 

dramatically, but also correspond with the upgrades made to the 

model in a subsequent modelling effort (Supplementary 

Information). This first demonstration sheds light on the 

important role that parameter optimization considering 

robustness can play in building better metabolic models. 

 The calculation of S calls for a model with all parameters 

specified or fitted, which is not always possible. For example, 

non-native pathway design normally starts with a list of 

enzymatic reactions that constitute the pathway, but the key 

parameters (e.g. Vmax’s) are strain and condition dependent and 

usually unknown. To address the uncertainty of kinetic 

parameters, we show that S can be readily integrated with 

Ensemble Modeling for Robustness Analysis5 to enable the 

design of robust non-native pathways. Depending on the goal of 

a metabolic pathway designer, one can either investigate the 

distributions of Si to identify potential sources of pathway 

failure, or simply use S to differentiate robust designs from 

non-robust designs (Fig. 5D). Given the versatility of S, we 

expect its combination with EMRA will bring unique value to 

the design of viable non-native pathways. 

 Finally, we show that S enables the comparison of a series 

of related models based on their bifurcational robustness. Since 

each model incorporates distinct features, a comparison of these 

models should elucidate the feature(s) that improve robustness 

the most. Indeed, by comparing the 16 different models of yeast 

glycolysis21, we found that a high pyruvate decarboxylase 

activity is necessary for the robustness of this pathway. This 

interesting finding not only is supported by physiological 

data15,16, but it may also offer an indirect explanation to the 

large number of PDC genes in the S. cerevisiae genome15. Even 

though the models we used consider only enzyme kinetics and 

regulations at the kinetic level, other regulatory mechanisms, 

such as transcriptional and post-transcriptional regulations, can 

also be included in the model, and the computation can proceed 

identically. 

Methods 

Models of metabolic systems with known parameters 

 To investigate the bifurcational robustness of metabolic 

systems, we examined thirteen ordinary differential equation 

(ODE)-based kinetic models of various metabolic systems from 

the BioModels Database32. We selected these models because: 

(i) they are based on rate expressions exhibiting saturation 

kinetics, which is essential for discussing large perturbations;   

(ii) the model descriptions are sufficient for simulation; and (iii) 

each model reaches a non-trivial steady state (also called the 

default steady state) when simulating with the default 

parameters.  Lumped mass action and power-law models were 

excluded because they represent local behavior and do not 

exhibit saturation kinetics in large perturbations. 

Bifurcation detection with the continuation method 
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(6) 

 Here we use a continuation method6,7,33 as a 

computationally cheap and scalable alternative to study the 

steady-state response to parameter perturbations. In general, 

this method aims to find a connected path of steady-state 

solutions (xSS) as follows: 

 
��dt 
 �����, !� 
 " (4) 

Since F(xSS,p) is always equal to zero, it follows that the total 

derivative of F(xSS,p) with respect to p is also zero: 

 
������, !�d! 
 #$#���

�����% + #$#% 
 " (5) 

Rearranging Eq. 5 then yields Eq. 6: 

 �����% 
 � ' #$#���()	 #$#% 
 " (6) 

which defines the derivatives of steady-state concentrations 

with respect to kinetic parameters and sets the ground for 

parameter continuation. Starting from the set of parameters that 

characterize the reference steady state, the integration of Eq. 6 

can proceed in the direction where a specific parameter (e.g., 

Vmax) is increased or decreased (Fig. 1A). The corresponding 

solution, which traces a trajectory in the xSS-p space, will then 

characterize how the steady state changes according to the 

parameter of interest. It should be noted that Eq. 6 is 

mathematically equivalent to the steady-state first-order 

sensitivity equations. Therefore, as the algorithm (i.e., the 

differential equation solver) proceeds in the parametric domain, 

the (local) sensitivity profile of metabolite concentrations with 

respect to parameters will be updated simultaneously as the 

steady state moves along the xSS-p trajectory. 

 Given that Eq. 6 is ill-defined when the Jacobian matrix 

(∂F/∂xSS) is not invertible, it is important to detect the point 

where the Jacobian matrix becomes singular. This boundary 

point is also known as the bifurcation point6,7. Therefore, the 

bifurcation point defines the parameter range where a system is 

functional with a stable steady state. In practice, the Jacobian 

almost always becomes badly conditioned when the system is 

near a bifurcation point. When this happens, we stop the solver 

and declare such an edge case a bifurcation point. Additionally, 

due to the nature of numerical integration, it is possible to 

“jump” over the exact point of singularity. To account for this, 

we always check if any of the negative eigenvalues of the 

Jacobian matrix becomes positive in case a bifurcation point 

has escaped the detection. 

 

Calculation of S 

 Unless otherwise specified, parameters were assumed to 

vary according to a log-normal distribution with the median 

equal to the parameter’s value at the reference steady state and 

a standard deviation of log(X/Xoriginal) equal to .5. Such 

distribution has a standard deviation of .36, which is 

conservative compared to the variations reported in Newman et 

al.3 where the average ratio of standard deviation in protein 

level to protein level was found to be around 1.   

Parameter optimization utilizing S 

 Given that Teusink et al. model of yeast glycolysis17 has a 

known robustness issue (Supplementary Information), we seek 

to modify the parameters so that the tuned model can satisfy 

experimental data and exhibit high robustness. To accomplish 

this, maximal rate constants (Vm) were subject to optimization 

with the following objective function: 

min-. /0 1�� � ��2341��234� 	 + 0 678 � 782346782348 + 100 ∙ �< 

Here, Vi represents the steady-state flux of reaction i and Xj 

represents the concentration of metabolite j. The superscript org 

refers to the particular values in the Teusink et al. model. In this 

study, a weighting of 100 was used to over-emphasize S. 

Optimization was performed using a simulated annealing 

algorithm in MATLAB (The MathWorks, Inc., USA). We 

allowed parameters to vary within 10-fold of their original 

values, and reported the results with the lowest objective value 

among 20 independent runs. 

Calculation of S for models with unknown parameters 

 To demonstrate the utility of S in quantifying the robustness 

of non-native pathways, we constructed an ensemble of 10,000 

models for each of the two configurations of a non-oxidative 

glycolysis (NOG) pathway as described previously5. Given that 

this is a heterologously expressed pathway, expression levels 

are assumed to have much higher uncertainty. Therefore, the 

probabilities of steady state retention under single-enzyme 

perturbation (pi) were calculated assuming a log-uniform 

distribution between 0.1-fold and 10-fold of the default activity. 

Reverting Changes to van Heerden model 

 The yeast glycolysis model by van Heerden et al.21 is 

derived from the model by Teusink et al.17 with five major 

modifications (cf. Results). (These have been mentioned in the 

text) 

1. Inhibition of hexokinase (HK) by glucose 6-phosphate 

(G6P) 

2. Consideration of phosphate as a free variable 

3. Activation of pyruvate kinase (PYK) by fructose 1,6-

bisphosphate (FBP) 

4. A 6.1 fold increase in the Vmax of pyruvate 

decarboxylase (PDC) 

5. Trehalose and glycogen fluxes became functions of G6P 

To study the degree by which each of these modifications 

improves the bifurcational robustness, we created new models 

by reverting the main traits of these changes. In general, if the 

modifications required changes to the rate laws (such as the 

first three modifications), we adjusted the corresponding 

maximal rate so as to maintain the original steady-state flux. 
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However, such adjustments are not always possible. The fourth 

modification, for example, required an increase of the maximal 

rate of Pdc, meaning that reverting this modification will lead 

to a change in the steady state, in particular the pyruvate 

concentration.  

 In this study, only the first four modifications were reverted. 

We did not revert the fifth modification because it causes very 

erratic behavior where many models don’t even reach a default 

steady state. For the four modifications considered, we reverted 

all possible combinations of these changes. 
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