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Insight box statement: 

The components of living cells interact with each other forming biological networks. The 

topology of a biological network determines to a large extent its dynamic properties and modes of 

operation. The controllability of a transcriptional regulatory network can be interpreted as the 

ability of the cell to control the expression of genes based on control by some transcription 

factors responding to environmental cues. Here we show that the controllability is a function of 

the topology and the complexity of the system. Internal loops in the network increase the 

controllability, but it may cause instability of the system. Thus, there seems to be a trade-off 

between controllability and stability of regulatory networks.  
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Abstract: 11 

Transcriptional regulation is the most committed type of regulation in living cells where 12 

transcription factors (TFs) control the expression of their target genes and TF expression is 13 

controlled by other TFs forming complex transcriptional regulatory networks that can be 14 

highly interconnected.  15 

Here we analyze the topology and organization of nine transcriptional regulatory networks for 16 

E.coli, yeast, mouse and human, and we evaluate how the structure of these networks 17 

influences two of their key properties, namely controllability and stability. We calculate the 18 

controllability for each network as a measure of the organization and interconnectivity of the 19 

network. We find that the number of driver nodes nD needed to control the whole network is 20 

64% of the TFs in the E.coli transcriptional regulatory network in contrast to only 17% for the 21 

yeast network, 4% for the mouse network and 8% for the human network. The high 22 

controllability (low number of drivers needed to control the system) in yeast, mouse and 23 

human is due to the presence of internal loops in their regulatory networks where the TFs 24 

regulate each other in a circular fashion. We refer to these internal loops as circular control 25 

motifs (CCM). The E.coli transcriptional regulatory network, which does not have any CCMs, 26 

shows a hierarchical structure of the transcriptional regulatory network in contrast to the 27 

eukaryal networks. The presence of CCMs also has influence on the stability of these 28 

networks, as the presence of cycles can be associated with potential unstable steady-states 29 
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where even small changes in binding affinities can cause dramatic rearrangements of the state 30 

of the network. 31 

Introduction 32 

The number of biological network reconstructions for model organisms like S.cerevisiae and 33 

E.coli has increased dramatically during recent years and include many types of networks, e.g. 34 

signaling networks, protein interaction networks1 and metabolic networks2. For the model 35 

organisms S.cerevisiae and E.coli there is a compendium of genome-scale metabolic network 36 

reconstructions (GENREs) and genome-scale metabolic models (GEMs) available, which 37 

have been used and applied for several different purposes3, 4.  Even though these models have 38 

shown excellent capabilities in predicting different phenotypes, they do have limitations and 39 

false predictions is generally due to missing information about regulation of the metabolism 5. 40 

Attempts to incorporate transcriptional regulation of the metabolic genes into FBA 41 

simulations have been done both for E.coli
5, 6 and S.cerevisiae 

7. Transcriptional regulation is 42 

condition dependent in the sense that most transcription factors (TFs) bind and recognize 43 

specific sequence motifs and a majority of TFs appear to regulate transcription only at 44 

specific growth conditions or under specific environmental perturbations8, 9.  By integrating 45 

information about transcriptional regulation to the genome-scale metabolic models we would 46 

improve the ability of the model to predict a phenotype from a given genotype. In order to be 47 

able to incorporate regulatory information in the models we need to understand more about 48 

the organization and structure of transcriptional regulatory networks, as well as how the 49 

network behaves under different conditions. The organization of transcriptional regulatory 50 

networks has also an impact on the genotype to phenotype relationship in complex diseases as 51 

reviewed by Vidal et al.  10 52 

The first step towards understanding the regulation of biological processes on a global (i.e. 53 

genomic) scale is to reconstruct the transcriptional regulatory network (TRN). For 54 

S.cerevisiae, TF-DNA interactions have been characterized by ChIP-chip experiments and 55 

then been used to construct the yeast TRN9, 11, 12. In order to model the transcriptional 56 

regulation different approaches have been taken. The TRN can be represented as a Boolean 57 

model where the TFs are either on or off (1 or 0) based on the activity of other transcription 58 

factors and environmental factors. The Boolean modeling approach is implemented in the 59 

rFBA framework5 where the states of the metabolic genes depend on the states of the 60 

controlling TFs. Another approach is probabilistic regulation of metabolism (PROM)13 where 61 
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the probability of  TF regulation can be estimated for each TF-target gene pair by counting if 62 

the TF and the target gene are expressed in a large number of transcriptome experiments, e.g. 63 

microarrays. The PROM method does not use Boolean logic to describe the probability of TF 64 

binding; instead the probability is continuous between 0 and 1. However it requires setting a 65 

threshold value for a gene to be expressed or not in order to estimate the probabilities of TF 66 

binding.  67 

Human and mouse transcriptional regulation is even more complex than for E.coli and yeast. 68 

The human ENCODE project14 aims to characterize and map functional elements of the 69 

human genome, including cis-regulatory elements and non-coding RNAs etc. Two databases, 70 

Cscan15 and Chip Enrichment Analysis (ChEA)16 have re-analyzed part of the ChIP-seq data 71 

from the ENCODE project and from other publications for human and mouse.  72 

Here we constructed nine different transcriptional regulatory networks from different ChIP-73 

chip and ChIP-seq experiments for E.coli, S.cerevisiae, human and mouse. These networks 74 

were analyzed in terms of organization, topology and network structure in order to get 75 

increased understanding about the transcriptional regulation in these organisms, and how the 76 

TRN architecture differs between different species. In order to do this we analyzed each of the 77 

networks in terms of network controllability17 and stability, and calculated  how many driver 78 

nodes are needed to control the system. For S.cerevisiae we also identified TFs that respond to 79 

environmental cues by analyzing microarray data from several chemostat studies where the 80 

environment was tightly controlled. By controlling the TFs that respond to the environment 81 

and calculate how many other TFs in the network that also can be controlled we obtained an 82 

understanding of the condition-specific behavior of the yeast transcriptional regulatory 83 

network.  84 

Materials and methods 85 

Generating TF-TF regulatory networks 86 

The nine transcriptional regulatory networks used in this study were derived using different 87 

ChIP-chip and ChIP-seq datasets as a starting point. The three S. cerevisiae networks were 88 

derived from the Yeastract database 2011-1018, the Harbison TF-DNA interaction data with 89 

binding p-value < 0.001  and with binding p-value <0.0059. The TRN from Yeastract includes 90 

TF-gene interactions both with direct evidence (ChIP-chip) and indirect evidence (the gene 91 

was transcriptionally changed in a TF knockout). The E.coli transcriptional regulatory 92 
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network was derived from the E.coli Regulon DB version 8.219. For mouse and human TF-93 

gene interactions were collected from the Chip enrichment analysis database (ChEA)16. 94 

Version 1 of the ChEA database was downloaded from http://amp.pharm.mssm.edu/chea in 95 

October 2013. Version 2 of the database was downloaded from 96 

http://amp.pharm.mssm.edu/ChEA2/ in November 2013. For human we also downloaded TF-97 

gene interactions from the Cscan database15. For the controllability analysis we considered 98 

only TF-TF interactions, so all non-TF genes were filtered out. For visualization of the 99 

networks we used Cytoscape version 3.0.1. The hierarchical structures of the networks were 100 

obtained by choosing the Hierarchical layout view in Cytoscape. The simulated scale-free and 101 

random networks were constructed using the igraph R-package20 using the Barabasi-Albert21 102 

and Erdos-Renyi22 models for network growth. The simulated networks all had 100 nodes and 103 

a varying number of edges to simulate networks with different average degree. 104 

Controllability analysis 105 

The concept of controllability of complex networks was introduced by Liu et al. 201117. The 106 

number of driver nodes nD is defined as the minimum number of nodes that need to be 107 

controlled as input to the system to control 100 % of the network. This number is obtained 108 

from the maximum number of matched nodes in the network when solving the controllability 109 

equation. The maximum matching path is defined in  Liu et al. 201117 as the maximum set of 110 

links in the networks that do not share start or end nodes, i.e. one path that can control all 111 

output nodes from all input nodes. Here we used linear programming to retrieve the number 112 

of maximum matching nodes. First, the TF-TF interaction network was converted to an n x m 113 

matrix, A, where the n rows represents TF nodes and the m columns represent TF-TF 114 

interactions (connections). A connection has the value 1 for the TFs that are connected and 0 115 

for the TFs that are not involved in this connection. The following linear program was applied 116 

to obtain the maximum matching path, i.e. the longest non-overlapping path in the network, 117 

connecting the input nodes with the output nodes: 118 

Maximize:	∑ ������  , 119 

Subject to: �� = 
, �� ∈ {0,1} for i=1,2…,m  (1) 120 

Where x1, x2,… xm are the TF-TF interactions (connections) in the network and b is the vector 121 

of input signals which is set to 1 for one of the nodes and 0 for all other nodes in the network. 122 

The maximal number of controlled TFs, nc is calculated as the number of nodes (TFs) that are 123 

included in the maximum matching path. The network was constructed and analyzed using 124 
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the Raven toolbox for Matlab23. We used the Raven function getAllSubGraphs() to calculate 125 

the number of internal loops (circular control motifs) and remove the loops that was not 126 

covered in the maximum matching paths, i.e. loops without any input or output nodes. 127 

Integrated analysis of transcriptome data 128 

The raw data files (CEL-files) for the selected microarray studies24-35 were downloaded from 129 

Gene expression omnibus (GEO) and ArrayExpress using the accession numbers given in the 130 

papers. All 233 microarrays used the Affymetrix yeast 98 platform which made it possible to 131 

normalize all data together. The data were normalized in R using Plier normalization with 132 

only perfect match probes. Metadata for each experiment were collected and used to construct 133 

the regression model described in Equation 1. The regression model was implemented in R 134 

and ANOVA p-values were calculated for each gene and for each of the coefficients β1,…, β5 135 

where the null hypothesis for each gene is that βi=0, and the alternative hypothesis is that βi≠0 136 

for i=1,…,5. The p-values were corrected for multiple testing using Benjamini and Hochbergs 137 

method (FDR).  138 

A hypergeometric enrichment test was applied to identify TFs with over-represented 139 

significantly changed target genes. The TF-gene interactions were taken from the Yeastract 140 

TRN 18. For the factors oxygen availability, nutrient limitation (N-limited vs. C-limited) and 141 

dilution rate (increasing or decreasing) we performed two enrichment tests for each TF, one 142 

for up-regulation of the target genes, and one for down-regulation of the target genes using 143 

adj. p<0.05 as cutoff and logFC>0 for up-regulation and logFC<0 for down-regulation. For 144 

the factors with more than two levels (carbon source and extra compound) we only performed 145 

one test for each TF.  146 

 147 

Results 148 

Controllability of transcriptional regulatory networks 149 

The nine transcriptional regulatory networks (TRNs) that were included in this study are 150 

presented in Table 1, including three S. cerevisiae TRNs9, 18, one E.coli network19,  two mouse 151 

networks16 and three human networks15, 16. Each of these networks were analyzed in terms of 152 

network controllability17 and stability. The networks were constructed using ChIP-chip and 153 

ChIP-seq datasets as a base and they contain only TF-TF interactions (i.e. non-TF genes were 154 
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filtered out). The number of driver nodes nD is also presented in Table 1, with nD being 155 

defined as the minimum number of input nodes in the network that need to be controlled in 156 

order to control 100% of the network17. As an example, by controlling node A in Figure 1a, 157 

we can control all three nodes, while we need to control node A, and C to have control over 158 

100% of the TFs in Figure 1b. The example in Figure 1c contains an internal loop which 159 

means that 100% of the network can be controlled by controlling any of the nodes A, B or C 160 

as input. For a TRN the concept of network controllability corresponds to one or more TFs 161 

responding to environmental changes and these TF regulates other TFs by controlling their 162 

transcription. The number of driver nodes, nD, was determined from the “maximal matching” 163 

graph (see materials and methods). In terms of stability, the system of control in Figure 1a and 164 

Figure 1b will always have asymptotically stable steady states, while the TF system in Figure 165 

1c can have either unstable or stable steady states depending on the parameters and the type of 166 

regulation (activation or repression). For each network we studied how controllability and 167 

stability are related to its topology (random or scale-free) and its average degree, i.e. the 168 

average number of connections each TF has to other TFs in the network. 169 

TRNs show circular control motifs  170 

Error! Reference source not found. shows the number of driver nodes nD as a measure of 171 

controllability of the nine different TRNs. For the Yeastract network only 17 % of the TFs 172 

need to be controlled in order to control all the other TFs. This large controllability is due to a 173 

large internal loop in the network containing 78% of the TFs where all the TFs in the loop are 174 

controlling each other in a circular fashion. We call this internal loop a circular control motif 175 

(CCM) and an example of a CCM can be found in Figure 1c where node A controls node B, 176 

node B controls node C and node C control node A in a circular manner. In terms of 177 

controllability this means that all the TFs in the loop can be controlled regardless which of the 178 

nodes is externally controlled. For the Harbison networks nD is 37% of the TFs for the 179 

p<0.005 network and 48% for the p<0.001 network (these p-values indicate measure the 180 

statistical evidence of the interactions included in the network). We see the same trend in 181 

these networks; a CCM contains around 36% and 19% of the nodes in these two networks, 182 

respectively. For the E.coli network derived from Regulon DB, which has a nD of 64%, we 183 

cannot find any large circular control network motif, and it is only possible to control a 184 

maximum of 6% of the nodes by controlling a single input node. For the mouse networks nD 185 

is 4% and 5% for the Chea v.1 and Chea v.2 networks, respectively, whereas nD is 24%, 8% 186 
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and 54% for the three Human networks. The number of nodes belonging to the CCM for the 187 

different networks is presented in Supplementary table 1.  188 

Controllability of simulated networks 189 

In order to test if the circular control motif (i.e. TFs controlling each other in a circular 190 

manner) in yeast, mouse and human, but not in E.coli, has evolved as a result of higher 191 

connectivity and higher average degree in these networks we simulated random Erdos-Renyi  192 

networks 22 with different average degree and scale-free Barabasi-Albert networks 21 with 193 

various average degree. The controllability for random Erdos-Renyi networks, when 194 

controlling one input node is dependent on the average degree of the network and for the 195 

simulated random networks with average degree 10 or higher we only need to control 1 TF as 196 

input (approx. 1%) to control 100% of the network (Figure 2). However, for the simulated 197 

scale-free networks the controllability is less dependent on the average degree of the network. 198 

The nD for the scale-free network decreases slightly when increasing the average degree but 199 

does not exceed 44% for the simulated networks. In Figure 2 we have also plotted the number 200 

of driver nodes nD as a function of the average network degree for the seven real networks 201 

included in this study. For the three S.cerevisiae networks the trend is that the networks with 202 

higher average degree also have lower nD. The Yeastract network for example has an average 203 

degree of 18.28 and a nD of 17%. The two mouse networks also have high average degrees 204 

and low nD.  205 

Stability analysis of transcriptional regulatory networks 206 

To illustrate the stability of a TRN we will consider a simple network with 3 TFs. For each of 207 

these TFs we let ni denote the number of copies of the i’th transcription factor in the network 208 

and ri denote the rate of production of the TF. Assuming that the i'th TF does not regulate its 209 

own transcription the time evolution of ni can be described by the equation 
���
�� = �� − ���� 210 

where �� is the specific degradation rate of the i’th TF. The rate ri can be seen as a function of 211 

the abundances of all TFs that are regulating the transcription of the i’th TF in the regulatory 212 

network. 213 

The differential matrix of the system can be expressed as	� = ���
���� − ∆ where ���/���� is the 214 

Jacobean matrix for the transcription rates and ∆ is a diagonal matrix with the specific 215 

degradation rates δ. To perform a stability analysis of the system we can calculate the 216 
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eigenvectors and eigenvalues of the differential matrix D, in the neighborhood of a steady 217 

state point. For the example for the network in Figure 1a the topological differential matrix 218 

will be: 219 

� =
!
"#
−�$ ��%

��& 0
0 −�' ��(

��%0 0 −�)*
+,     220 

Note that we have inserted zeros in the matrix for the instances where we do not have an edge 221 

in the regulatory network, e.g. TF C is not directly controlled by TF A so  
��(
��& = 0,	etc. The 222 

Eigenvalues of this matrix is obtained by solving the equation det(D-λ)=0 and thus the 223 

eigenvalues for the network in Figure 1a becomes -� = −�$, -. = −�' , -/ = −�). If we 224 

assume that the degradation rates �$	, �'	and �) will be positive, all eigenvalues for the 225 

system will be negative, independent on the parameters and type of regulation, but clearly 226 

dependent only on the topological structure of the network. The fact that we will always have 227 

negative eigenvalues implicates that the system in example 1A will always be stable. Also for 228 

the example in figure 1B the eigenvalues will be -� = −�$, -. = −�', -/ = −�), and this 229 

network is therefore also stable. For the example in Figure 1c the eigenvalues of the system 230 

will be a function of  
��%
��&, 

��(
��% and  

��&
��( and they can be either positive or negative depending 231 

on the parameters and the type of regulation. If all (real parts of the) eigenvalues are negative, 232 

the system will be stable, but if one or more of the real parts of the eigenvalues are positive, 233 

the system will be unstable. A more general derivation of this concept called topological 234 

stability analysis and another example with three transcription factors is presented in 235 

Electronic supplementary information (ESI) and Supplementary figure S1. This approach can 236 

be applied for a general network to calculate the supports of the eigenvectors (components 237 

with non-zero values) of the Jacobean matrix of the system, as a function only of the topology 238 

and regardless of the system parameters. 239 

Hierarchical structure of the TRNs 240 

The hierarchical structure of both the E.coli and S.cerevisiae transcriptional regulatory 241 

network has previously been reported36, 37. However, Figure 3a and b shows that the TRN for 242 

E.coli is more hierarchical than yeast when it comes to regulation. The E.coli regulation is 243 

controlled by cRP at the top of the hierarchical tree (Figure 3b), whereas for yeast there are 244 
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many TFs on the top hierarchical level (SWI6, MBP1, FKH2, FKH1, ABF1, NRG1, INO4 and 245 

SKN7) (Figure 3a). Another difference between the E.coli and yeast network structure is the 246 

presence of the large circular control motif (CCM) in the yeast network where some of the 247 

TFs in this internal loop are even present in the top hierarchical level (ABF1 and MBP1). 248 

Figure 3c shows the human network (ChEA v.2) ordered in a hierarchical way, where four 249 

TFs are on top of the hierarchical structure (TP63, SOX2, AR, GABP). However, since 87% of 250 

the TFs in this network are part of the CCM this means that by controlling one of the top 251 

nodes, 87% of the network can be controlled. The TFs included in the CCM are marked in 252 

green in Figure 3c. Figure 3d shows the same hierarchical structure for the mouse (ChEA v.2) 253 

network and here is 92% of the TFs are part of the CCM. 254 

 255 

Integrated analysis reveals condition-specific regulation in yeast 256 

In order to identify TFs that respond to specific environmental cues that can represent input 257 

nodes in the network controllability analysis we analyzed transcriptome data from 233 yeast 258 

microarrays collected from 11 separate studies24-35. The experiments were all carried out in 259 

chemostat cultures where the environment could be tightly controlled, i.e. the specific growth 260 

rate, oxygen availability, carbon source etc. The data were analyzed using a regression model 261 

in order to describe the expression of each gene in terms of the effect of the environment. 262 

The environmental factors included in the regression model are presented in Error! 263 

Reference source not found.. We were specifically interested in determination of the TFs 264 

that respond to these environmental factors. To identify condition-specific transcriptional 265 

regulation we considered three different features: i) TFs whose target genes are up- or down-266 

regulated under different conditions, ii) TFs that do not change in expression between 267 

conditions and iii) TFs that are reported in literature to respond to a specific environmental 268 

cue.  269 

For each environmental factor in Error! Reference source not found. we determined the 270 

genes where the environmental factor had a significant effect on the gene expression (adjusted 271 

p-value <0.05). We then performed a hypergeometric enrichment test for each TF in order to 272 

identify the TFs where the expression of the target genes was influenced by the environment. 273 

The target genes for each TF were defined by the TRN from Yeastract.  The results for the 274 
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hypergeometric enrichment test for the factors oxygen availability, nutrient limitation and 275 

dilution rate and carbon source are presented in Supplementary Figure S2 and Table S2. 276 

Figure 4 shows a comparison of feature i) and ii) above, i.e. the ability of the TF to change the 277 

expression of the target genes and the transcriptional change of the TF itself. The genes 278 

marked with red in the four plots are the TFs where the adj. p-value of the TF gene itself > 0.8 279 

and the p-value of the hypergeometric test (transcriptional change of the target genes) < 0.05, 280 

i.e. TFs that don’t change in expression themselves but their target genes are significantly 281 

regulated as a function of the environmental factor. These TFs must be regulated in another 282 

way as a response to the environment, either by activation through signaling or through 283 

interaction with other TFs. In response to oxygen availability these transcription factors are 284 

HAA1 and FKH2, to nutrient limitation MOT3, and to altered specific growth rate (dilution 285 

rate) the TFs are PHO4, FKH2 and MGA1, and in response to changes in carbon source they 286 

are OAF1 and CST6. 287 

We calculated the controllability of the network when controlling the TFs that were identified 288 

to respond to the environment in the TRN from Yeastract. When we control the nodes marked 289 

with red in Figure 4 for each environmental factor it is possible to control between 78-82% of 290 

the network, e.g. when controlling both HAA1 and FKH2 responding to oxygen limitation the 291 

controllability is 81%, 78% for nutrient limitation, 82% for dilution rate and 82% when 292 

controlling OAF1 and CST6 for the carbon source environmental factor. 293 

Discussion 294 

Regulation of cellular processes is complex and may occur on different levels in the cell. Here 295 

we consider transcriptional regulation, which can be thought of as consisting of three different 296 

layers. The first layer is the environment which can be thought of as different environmental 297 

cues, e.g. high or low oxygen levels, carbon or nitrogen limitation etc. The second layer 298 

consists of the transcription factors where some TFs respond to the environment and the TFs 299 

regulate the transcription of other TFs as well as other genes. The third layer consists of genes 300 

which encodes for proteins that carry out different functions in the cell. Here we analyzed the 301 

structure and topology of transcriptional regulatory networks (TRNs) by calculating the 302 

controllability, i.e. how many driver nodes are needed to control the networks. 303 

Understanding the regulation of a cellular system on a global level can have large 304 

implications in for example metabolic engineering where an organism is engineered to 305 
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produce high amounts of a chemical of interest38, 39. If we have information about the 306 

regulation of metabolism this can help to identify bottlenecks in the route to over-production 307 

of the product of interest. Also, knowledge about the organization of transcriptional regulation 308 

will help in understanding of development of complex diseases and other complex traits. 309 

The controllability analysis of the TRNs for E.coli, yeast, human and mouse resulted in 310 

several novel findings. The controllability of the E. coli TRN is low, i.e. we need to control as 311 

much as 64% of the input nodes to be able to control all output nodes, whereas the 312 

controllability for yeast, mouse and human is much higher. The organization of the E.coli 313 

TRN is hierarchical in the sense that most of the TFs do not control any other TFs but are 314 

controlled by one or more TFs and the number of TFs that are involved in one route of 315 

regulation from cRP on the top hierarchical level to the leaves of the tree is maximum 6 as 316 

can be seen in the E.coli hierarchical tree in Figure 3b. For the yeast, mouse and human 317 

networks we identify so called circular control motifs (CCMs) where we can control a large 318 

part of the network just by controlling one input node. The presence of these internal loops in 319 

the networks also means that the hierarchical organization of the network is less prominent 320 

since all nodes in the CCMs can be controlled just by controlling one of the nodes in the loop 321 

as input. For the human and mouse network around 90% of the network are interconnected 322 

and belongs to CCMs. 323 

From analysis of the simulated networks presented in Figure 2 we can see that for a perfect 324 

scale-free network there are no CCMs, even for networks with a high average degree, since 325 

the corresponding network will follow a hierarchical tree where most of the nodes have a 326 

degree of 1 (i.e. controlled by one TF but not controlling any TFs) and there is one or few 327 

nodes that have a high degree (network hubs). The degree distribution of the scale free 328 

network follows a power law distribution, e.g. P(k) ~ k
-α , where the parameter α typically has 329 

a value between 2 and 3. For the random network the degree distribution is uniformly 330 

distributed, i.e. the chance for having a node with a low degree is approximately equal to the 331 

chance of having a node with a high degree. For simulated random networks a high 332 

connectivity (i.e. average degree > 10) means that one can control 100% of the network 333 

through a single input node. 334 

The behavior of the E.coli network seems to follow the behavior of the simulated scale-free 335 

network based on the controllability analysis and the results presented in Figure 2. We also 336 

investigated the degree distribution of the E.coli TRN and the network is scale-free in the 337 
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sense that it is possible to fit a power law distribution to the degree distribution 338 

(Supplementary figure S1). The mouse and human networks seem to be more random in the 339 

way the TFs are interconnected. Also, it is not possible to fit a power law distribution to these 340 

networks, which points to the fact that these networks are not scale-free. In the yeast networks 341 

the number of nodes with one or two neighbors is much less than expected for a scale-free 342 

network, especially for the TRN from Yeastract. The three different yeast networks included 343 

in this study differ in the confidence used to consider if a TF-gene interaction should be 344 

included in the network or not. The Harbison network uses either p<0.001 or p<0.005 for the 345 

binding probability cutoff from the ChIP-chip experiment. The Harbison p<0.001 network is 346 

the most conservative network and also has the lowest average degree. The Yeastract network 347 

is the least conservative yeast network and has the highest number of TF-gene interactions. It 348 

is not possible to compare TRNs from the different organisms (and even the different yeast 349 

TRNs), since the TRNs were constructed in different ways, with different confidence scores 350 

etc. However, still for all the different eukaryal TRNs there is a clear difference in structure 351 

and by using the different TRNs we could investigate the controllability of the network as a 352 

function of the average degree of the network, and hence also as a function of the confidence 353 

of TF binding scores, or how conservative the network construction process has been. The 354 

yeast network seems to behave in between the simulated scale-free and random networks, but 355 

as we increase the average degree (and become less conservative in what is considered as a 356 

TF binding event) the network behaves more random, and the maximum controllability when 357 

controlling one input node increases.  358 

Network controllability has earlier been introduced by Liu et al. 17 where they also analyzed 359 

many different real networks in terms of controllability, including the yeast and E.coli TRNs. 360 

However the networks that were included in this study were different in the way they were 361 

constructed and the number of TF-gene interactions that were included. Here we use network 362 

controllability as a tool to study the topology and organization of the network and we identify 363 

CCMs in the yeast, mouse and human networks, but not in the E.coli network. In terms of 364 

evolution and the ability of the organism to adapt to changes in the environment it is 365 

interesting to see that the eukaryal TRNs included in this study seem to contain CCMs, but the 366 

bacterial TRN does not. Furthermore, based on our analysis it seems like more complex 367 

organisms have more random organization of their transcriptional regulatory network. 368 
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We find the presence of circular motifs in yeast, mouse and human interesting, as this may 369 

improve robustness in the transcriptional regulation when it comes to e.g. adapting to 370 

environmental changes. 371 

In terms of stability a linear network motif will always be stable. A circular network motif, 372 

like the example presented in Figure 1c, on the other hand can be unstable, but also be more 373 

stable depending on the parameters and types of interaction. If two of the interactions in a 374 

triangular motif are positive (i.e. activation) and the third interaction is negative (i.e. 375 

repression) the steady state of the system will be less sensitive to changes in environmental 376 

parameters compared to a linear pathway. However, gene deletions or perturbations might 377 

disturb the system and make the steady state unstable, causing a rearrangement of the system 378 

similar to a non-equilibrium phase change, if an environmental or genetic parameter passes a 379 

certain threshold. A detailed discussion of these phenomena is contained in the supplementary 380 

material. According to our observations, more complex organisms contain more potentially 381 

unstable steady states of their TRN. This can contribute to a higher capability to maintain 382 

homeostasis under environmental changes, but also to sudden rearrangements of the state of 383 

the system as a result of mutations. Using the approach of topological stability analysis 384 

introduced in this paper we can identify the non-zero elements of the Jacobean matrix and 385 

find potentially unstable motifs in the TRN, without knowing the parameters of the system, 386 

but only as a function of the topology.  387 

For the yeast TRN we identified TFs that respond to environmental cues by analyzing a large 388 

amount of microarray data from different controlled environments. The transcriptional 389 

regulation was found to be highly condition-specific and if we could identify condition-390 

specific responses that allowed us to see how the yeast TRN looks under specific conditions 391 

or when changing environment from one state to another. This analysis shows that key TFs 392 

seem to exert a high degree of controllability in response to different environmental cues, i.e. 393 

a few TFs can control a large number of other TFs in the regulatory network.  394 

In conclusion we perform analysis of the topology of TRNs for different species and find that 395 

there is an increasing complexity in terms of connectivity and controllability when moving 396 

from bacteria to yeast and further to mouse and human. Whereas the TRN for E.coli is scale-397 

free the TRNs for eukaryotes seems to be more random, mainly due to the presence of circular 398 

control motifs (CCMs) involving a large number of TFs. These large CCMs enable control of 399 

a large fraction of the TRN through control of many single TFs, which may have been 400 
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important for establishing increased robustness towards different environmental changes. On 401 

the other hand the presence of CCMs can cause instability due to changes in binding affinity 402 

for the TFs in the motif, and this may result in large reprogramming of cellular function, e.g. 403 

resulting in disease development. 404 

Acknowledgements 405 

The authors thank Intawat Nookaew for valuable input regarding construction of the 406 

regulatory networks. Simulations were performed at Chalmers Centre for Computational 407 

Science and Engineering (C3SE). We acknowledge funding from the European Research 408 

Council project INSYSBIO (grant no. 247013), the Novo Nordisk Foundation and the 409 

Department of Energy (grant no. 5710003389).  410 

Author’s contributions 411 

TÖ analyzed the data, constructed the networks, performed the controllability analysis and 412 

simulations and wrote the paper. SB derived the topological stability analysis. SB and JN 413 

supervised the work and edited the paper. All authors read and approved the manuscript. 414 

References 415 

1. P. Bork, L. J. Jensen, C. von Mering, A. K. Ramani, I. Lee and E. M. Marcotte, Current opinion 416 
in structural biology, 2004, 14, 292-299. 417 

2. I. Thiele and B. Ø. Palsson, Nature protocols, 2010, 5, 93-121. 418 
3. T. Österlund, I. Nookaew and J. Nielsen, Biotechnol Adv, 2012, 30, 979-988. 419 
4. D. McCloskey, B. Ø. Palsson and A. M. Feist, Molecular systems biology, 2013, 9. 420 
5. M. W. Covert and B. Ø. Palsson, Journal of Biological Chemistry, 2002, 277, 28058-28064. 421 
6. M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard and B. O. Palsson, Nature, 2004, 429, 422 

92-96. 423 
7. M. Herrgård, B. Lee, V. Portnoy and B. Palsson, Genome research, 2006, 16, 627. 424 
8. G. Chua, M. D. Robinson, Q. Morris and T. R. Hughes, Current opinion in microbiology, 2004, 425 

7, 638-646. 426 
9. C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. 427 

Hannett, J.-B. Tagne, D. B. Reynolds and J. Yoo, Nature, 2004, 431, 99-104. 428 
10. M. Vidal, M. E. Cusick and A.-L. Barabasi, Cell, 2011, 144, 986-998. 429 
11. T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. 430 

Harbison, C. M. Thompson and I. Simon, Science, 2002, 298, 799-804. 431 
12. T. R. Hughes and C. G. de Boer, Genetics, 2013, 195, 9-36. 432 
13. S. Chandrasekaran and N. D. Price, Proceedings of the National Academy of Sciences, 2010, 433 

107, 17845-17850. 434 
14. I. Dunham, E. Birney, B. R. Lajoie, A. Sanyal, X. Dong, M. Greven, X. Lin, J. Wang, T. W. 435 

Whitfield and J. Zhuang, 2012. 436 
15. F. Zambelli, G. M. Prazzoli, G. Pesole and G. Pavesi, Nucleic acids research, 2012, 40, W510-437 

W515. 438 

Page 15 of 21 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



15 
 

16. A. Lachmann, H. Xu, J. Krishnan, S. I. Berger, A. R. Mazloom and A. Ma'ayan, Bioinformatics, 439 
2010, 26, 2438-2444. 440 

17. Y.-Y. Liu, J.-J. Slotine and A.-L. Barabási, Nature, 2011, 473, 167-173. 441 
18. M. C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes, N. P. Mira, M. Alenquer, A. T. 442 

Freitas, A. L. Oliveira and I. Sá-Correia, Nucleic acids research, 2006, 34, D446-D451. 443 
19. S. Gama-Castro, H. Salgado, M. Peralta-Gil, A. Santos-Zavaleta, L. Muñiz-Rascado, H. Solano-444 

Lira, V. Jimenez-Jacinto, V. Weiss, J. S. García-Sotelo and A. López-Fuentes, Nucleic acids 445 
research, 2011, 39, D98-D105. 446 

20. G. Csardi and T. Nepusz, InterJournal, Complex Systems, 2006, 1695. 447 
21. A.-L. Barabási and R. Albert, science, 1999, 286, 509-512. 448 
22. P. Erdős and A. Renyi, Acta Mathematica Hungarica, 1961, 12, 261-267. 449 
23. R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew and J. Nielsen, PLoS computational 450 

biology, 2013, DOI: 10.1371/journal.pcbi.1002980. 451 
24. T. Knijnenburg, J.-M. Daran, M. van den Broek, P. Daran-Lapujade, J. de Winde, J. Pronk, M. 452 

Reinders and L. Wessels, BMC genomics, 2009, 10, 53. 453 
25. C. Cipollina, J. van den Brink, P. Daran-Lapujade, J. T. Pronk, M. Vai and J. H. de Winde, 454 

Microbiology, 2008, 154, 337-346. 455 
26. D. A. Abbott, T. A. Knijnenburg, L. M. de Poorter, M. J. Reinders, J. T. Pronk and A. J. van 456 

Maris, FEMS yeast research, 2007, 7, 819-833. 457 
27. J. Aguilera, T. Petit, J. H. de Winde and J. T. Pronk, FEMS yeast research, 2005, 5, 579-593. 458 
28. R. De Nicola, L. A. Hazelwood, E. A. De Hulster, M. C. Walsh, T. A. Knijnenburg, M. J. Reinders, 459 

G. M. Walker, J. T. Pronk, J. M. Daran and P. Daran-Lapujade, Appl Environ Microbiol, 2007, 460 
73, 7680-7692. 461 

29. V. M. Boer, S. L. Tai, Z. Vuralhan, Y. Arifin, M. C. Walsh, M. D. Piper, J. H. de Winde, J. T. Pronk 462 
and J. M. Daran, FEMS yeast research, 2007, 7, 604-620. 463 

30. T. A. Knijnenburg, J. H. de Winde, J. M. Daran, P. Daran-Lapujade, J. T. Pronk, M. J. Reinders 464 
and L. F. Wessels, BMC Genomics, 2007, 8, 25. 465 

31. S. L. Tai, V. M. Boer, P. Daran-Lapujade, M. C. Walsh, J. H. de Winde, J. M. Daran and J. T. 466 
Pronk, Journal of Biological Chemistry, 2005, 280, 437-447. 467 

32. P. Daran-Lapujade, M. L. Jansen, J. M. Daran, W. van Gulik, J. H. de Winde and J. T. Pronk, The 468 
Journal of biological chemistry, 2004, 279, 9125-9138. 469 

33. P. Daran-Lapujade, S. Rossell, W. M. van Gulik, M. A. Luttik, M. J. de Groot, M. Slijper, A. J. 470 
Heck, J. M. Daran, J. H. de Winde, H. V. Westerhoff, J. T. Pronk and B. M. Bakker, Proc Natl 471 
Acad Sci U S A, 2007, 104, 15753-15758. 472 

34. A. Fazio, M. Jewett, P. Daran-Lapujade, R. Mustacchi, R. Usaite, J. Pronk, C. Workman and J. 473 
Nielsen, BMC genomics, 2008, 9, 341. 474 

35. B. Regenberg, T. Grotkjær, O. Winther, A. Fausbøll, M. Åkesson, C. Bro, L. K. Hansen, S. 475 
Brunak and J. Nielsen, Genome biology, 2006, 7, R107. 476 

36. H. Yu and M. Gerstein, Proceedings of the National Academy of Sciences, 2006, 103, 14724-477 
14731. 478 

37. H.-W. Ma, B. Kumar, U. Ditges, F. Gunzer, J. Buer and A.-P. Zeng, Nucleic acids research, 2004, 479 
32, 6643-6649. 480 

38. E. J. Kerkhoven, P. J. Lahtvee and J. Nielsen, FEMS yeast research, 2014. 481 
39. M. Li and I. Borodina, FEMS yeast research, 2014. 482 

 483 

484 

Page 16 of 21Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



16 
 

Figure legends 485 

Figure 1 – Network controllability and stability. Concept of network controllability. (A) To 486 

control all three nodes, it is enough to control node A in the left network (nD=1). (B) two 487 

driver nodes are needed to control the middle network (nD=2). (C) Since node A, B and C are 488 

connected in a circular control motif (CCM) we can choose any of the three nodes as driver 489 

node and still have 100% control over the network. In terms of stability network (A) and (B) 490 

will always be stable but network (C) can possibly be unstable. 491 

Figure 2 – Controllability when controlling one input node for simulated and real 492 

networks. The x-axis shows the average degree of the network and the y-axis shows the 493 

controllability (relative amount of driver nodes needed to control 100% of the network). 494 

Figure 3 – Hierarchical structure of the transcriptional regulatory networks. (A)  495 

S.cerevisiae Harbison network. (B) E.coli RegulonDB network (C) Human ChEA v.2 network 496 

(D) Mouse ChEA v.2 network  497 

Figure 4 – TFs responding to environment. The x-axis in each plot shows the hyper-498 

geometric p-value for each TF based on the expression of the target genes. A low hyper-499 

geometric p-value indicates that the environmental factor has an effect on the expression of 500 

the target genes. The y-axis in each plot shows the adjusted p-value of the TF gene, a high p-501 

value indicates that the gene is not changed in expression as a function of the environmental 502 

change. The TFs marked with red have a hyper-geometric p-value for the target genes less 503 

than 0.05 and a adjusted p-value for the TF gene greater than 0.8 (A) Oxygen availability. (B) 504 

Nutrient limitation. (C) Dilution rate. (D) Carbon source.  505 

 506 

 507 
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