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Serine proteases, implicated in important physiological functions, have a high intra-family similarity, 
which leads to unwanted off-target effects of inhibitors with insufficient selectivity. However, the 
availability of sequence and structure data has now made it possible to develop approaches to design 10 

pharmacological agents that can discriminate successfully between their related binding sites. In this 
study, we have quantified the relationship between 12,625 distinct protease inhibitors and their bioactivity 
against 67 targets of the Serine Protease family (20,213 data points) in an integrative manner, using 
proteochemometric modelling (PCM). The benchmarking of 21 different target descriptors motivated the 
usage of specific binding pocket amino acid descriptors, which helped in the identification of active site 15 

residues and selective compound chemotypes affecting compound affinity and selectivity. PCM models 
performed better than alternative approaches (model trained using exclusively compound descriptors on 
all available data, QSAR) employed for comparison with R2/RMSE values of 0.64 ± 0.23/0.66 ± 0.20 vs. 
0.35 ± 0.27/1.05 ± 0.27 log units, respectively. Moreover, the interpretation of the PCM model singled 
out various chemical substructures responsible for bioactivity and selectivity towards particular proteases 20 

(Thrombin, Trypsin and Coagulation Factor 10) in agreement with the literature. For instance, absence of 
primary sulphonamide was identified as responsible for decreased selective activity (by on average 0.27 ± 
0.65 pChEMBL units) on FA10. Among the binding pocket residues, the amino acids (Arginine, Leucine 
and Tyrosine) at positions 35, 39, 60, 93, 140 and 207 were observed as key contributing residues for 
selective affinity on these three targets. 25 

Background 
While the human genome encodes more than 3,000 potential drug 
targets,1 only ~800 of them have been successfully exploited 
pharmacologically due to a number of limitations (for instance, 
less compounds satisfying the Lipinski’s rule-of-five or the 30 

redundancy of targets due to orthologs).2,3 The traditional drug 
discovery process includes target identification and validation. 
Subsequent screening campaigns identify hit compounds, which 
can be optimized to leads and progress into clinical trials.4 In-
silico approaches have proven successful in many phases of this 35 

process.5,6   
It has been recently demonstrated that drugs exert their 
therapeutic effect by modulating more than one target,7 extending 
the notion of the one drug one-target premise.8 While drug 
discovery efforts have been long focussed on single target 40 

selectivity optimization,9 the rapid growth of bioactivity 
databases sparks novel methods to use the data for addressing 
ligand selectivity and polypharmacology.10–12  
 Quantitative Structure Activity Relationship (QSAR) 
modelling relates compound activity on a target to compound 45 

properties through machine learning models. However, a single 

QSAR cannot predict drug specificity and selectivity against a 
panel of targets.13 Current chemogenomic approaches relate 
biomolecular targets and their ligands on the basis of molecular 
similarity, where ‘similar ligands show similar activity’ and 50 

‘similar proteins bind similar ligands’.14 Although these 
techniques enable the extrapolation on either the biological or the 
chemical side, it is not possible to fully extrapolate the bioactivity 
of novel compounds on novel targets. Proteochemometric 
Modelling (PCM) integrates compound and target information 55 

simultaneously in a single machine learning models. These 
combinations of different, yet complementary, sources of 
information sets PCM apart from QSAR and chemogenomics, 
and permits to both inter- and extrapolate the bioactivity of 
(novel) compounds to (novel) targets. 60 

 Technically, the difference between PCM and QSAR is the 
addition of explicit target descriptors. Thus, each ligand-target 
interaction is numerically encoded by the concatenation of ligand 
and target descriptors. Encoding protein information into 
numerical descriptors is an intricate task.15–17 The most common 65 

approaches consist of concatenating amino acid descriptors,15–19 
which can correspond to the residues in a binding site of 
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describing the full protein sequence with e.g. the frequency of 
amino acid pairs, or of exploiting 3-dimensional information 
when available20–22 (e.g. by using physicochemical properties of 
protein cavities).   
 PCM has been applied to a number of target families including 5 

glucocorticoid receptors,23 amine G-protein coupled receptors 
(GPCR),24–26 melanocortin receptors,27 a wide range of Kinases, 
18,28–32 HIV protease and dengue virus NS3 proteases.33–37 These 
models successfully identified the discriminating residues for 
DNA binding,23 mutations contributing to HIV resistance38 and a 10 

correlation between peptide substrate and the protease kinetics.39 
For further information the reader is referred to three recent PCM 
reviews.22,40,41 To date, PCM has been applied on various enzyme 
families including trypsin-like serine proteases and other 
members of protease family (aspartic, cysteine and metallo 15 

proteases),42,43 however, in this study we focused exclusively on 
serine proteases and addressed their selectivity towards inhibitors. 
 Here, our main focus is to model the inhibition of serine 
proteases by small molecules. Firstly, we generate a PCM model 
to predict the affinity of small molecules for the serine protease 20 

family. Secondly, we benchmark 21 protein descriptors, 
comprising both whole sequence and amino acid descriptors. 
Finally, we also aim to identify the structural features of both 
compounds and targets affecting compound affinity toward 
Thrombin (THRB), Trypsin (TRY) and Coagulation Factor 10 25 

(FA10).  

Materials and Methods 
Dataset 

The dataset used to generate the models comprised 12,625 
distinct inhibitors (20,213 data points) assayed against 67 protein 30 

targets (20,213 datapoints, matrix ~30% complete). The complete 
dataset was obtained from the ‘Directory of Useful Decoys-
Enhanced’ (DUD-E),44 Binding Database (Binding DB),45 ZINC 
46 and ChEMBL-17 databases 
(10.6019/CHEMBL.database.17).10,47–49 The number of known 35 

compound activities per target is given in ST1 along with their 
UniProt and PDB IDs.50 pChEMBL (-log10 (activity (nM))) 
values of five types of activity values were used (IC50, Ki, AC50, 
EC50 and Kd). The pChEMBL value (Figure SF1) ranges from 
3.4 to 11.7. According to this distribution, the dataset contains 40 

15,375 active datapoints and 4821 inactive datapoints.  

Assay Identity Descriptor (AID) 

Publicly available IC50, AC50 and EC50 types are heterogeneous 
and assay specific.12,51 Thus, in order to combine datapoints with 
different bioactivity values, we added a binary identifier to the 45 

compound and target descriptors, which specifies the activity 
type (IC50, Ki, AC50, EC50 or Kd) corresponding to each datapoint. 
We term these descriptors as assay identity descriptors (AID). 
Formally, AID is defined as: 
 50 

AID i, j( ) = δ i− j( ) i ∈1,…,Ndatapo int s, j ∈1,…,NAT( )
	
  

where δ is the Kronecker delta function, Ndatapoints is the total 
number of datapoints and NAT is the number of distinct activity 
types. It is a pure identifier containing no other information but 55 

the standard type of bioactivity value. These types of descriptors 
help to improve the additive predictive capability of model 
through inductive transfer of knowledge (IT) between datapoints 
as explained by Brown et al.17 

Chemical Descriptors 60 

Molecules were standardized by applying the following filters: 
“Remove Fragments”, “Neutralize”, “Remove explicit 
hydrogens”, “Clean 2D”, “Clean 3D” and “Tautomerize” using 
JChem standardizer, JChem 6.3.1, 2013, ChemAxon 
(http://www.chemaxon.com). Subsequently, 188 MOE 65 

physicochemical descriptors and 256 bit circular fingerprints 
(radius=2) were calculated using MOE 2012.1052 and RDKit 
(http://www.rdkit.org) respectively.53  

Protein Descriptors 

Sequences were aligned using the Blosum62 matrix in 70 

Clustalw,54,55 whereas the superimposition and structural 
alignment of drug targets was performed using Chimera 1.6.56 
Binding site residues were selected on the basis of a 3D structural 
alignment of the targets. As structural information was not 
available for some of the proteins, sequence alignment of the 75 

cavities in homologous proteins was used instead. Six amino acid 
(alignment dependent) descriptors, namely: Z-scales, FASGAI, 
MS-WHIM, Protein Features, ST Scales and T Scales15,16 were 
calculated for the aligned binding site residues with the function 
AA_descs of the R package camb.57 Descriptor values for 80 

sequence alignment gaps were set to zero. The following full 
protein sequence descriptors (alignment independent descriptors), 
were calculated with Protpy:19 amino acid composition (AAC), 
dipeptide composition (DPC), autocorrelation parameters, Moran 
autocorrelation (MA), Normalised Moreau-Broto autocorrelation 85 

(MBA), Sequence Order Coupling Number (SOCN), Geary 
autocorrelation (GA), Quasi Sequence Order (QSO) and 
composition, transition and distribution (CTD) descriptors. 
Additionally, the Profeat58 descriptor, which is a combination of 
all full protein sequence descriptors mentioned above, was 90 

computed.  
 In order to investigate the predictive power of 3D target 
information,59 the volume of the binding pocket of each target 
was calculated using trj_cavity.60 Trj_cavity is protein cavity 
analysis software, designed to characterise the cavities present in 95 

protein structures extracted from molecular dynamic (MD) 
trajectories. By using an optimised MD protocol, it identifies the 
binding pocket, whose coordinates are given by the user, and 
calculates the static cavity volume. The cavity volume was 
employed as a baseline to compare the predictive signal 100 

alignment dependent and independent descriptors.  

Model Training 

Data pre-processing 
The complete data matrix was indexed by datapoints and columns 
by compound and target descriptors. Datapoints were centred to 105 

zero mean and scaled to unit variance, followed by removal of 
columns for which variance was near to zero with the function 
nearZeroVar from the R package camb57 (frequency cut-
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off=30/1). Model training was performed using Random Forest 
(RF) and were built with the R package caret.61  
Parameter Optimization 
In order to reduce the dimensionality of the input space, the 
Recursive Feature Elimination (RFE) method was applied on 5 

both compound and target descriptors.62,63 Random forest models 
were tuned using number of trees (ntree) equal to 500 and the 
default number of variables at each layer (mtry= number of 
variables/3 in case of regression). Model training was performed 
using the train function of the R package caret.61  10 

Model Validation 
The partitioning of the data set into a training (70% of the data) 
and a test set (30% of the data) was performed using the 
createDataPartition() function of the R package caret.64 Nested 
cross-validation and grid search was used for parameter 15 

optimisation by dividing the training set into five folds (k=5). A 
model was trained on k-1 folds, which was used to predict the 
bioactivities of the remaining fold. This procedure was repeated k 
times for each combination of parameter values. The combination 
of parameter values displaying the lowest average root mean 20 

square error (RMSE) value along the k folds was considered as 
optimal. Then, a model was built on the whole training set using 
these values for the parameters. 
 In order to evaluate the extrapolation capabilities of the model 
to novel serine proteases, we employed Leave-One-Target-Out 25 

(LOTO) validation. In LOTO, all datapoints corresponding to a 
given target/protein were held out of the training set. 
Subsequently, a model was trained on the remaining data, and the 
bioactivities for the hold out set were predicted. This type of 
analysis helped in assessing how well a PCM model predicts the 30 

bioactivities for a set of compounds on a target for which no 
information was presented to the model during the training 
phase.65–67 
 In order to determine the predictive power of the models on the 
test set, two metrics were used: R2 (coefficient of determination) 35 

and the root mean square error (RMSE) of prediction (explained 
in the Supplementary File).68 A model is considered as predictive 
if the R2 value on test set is higher than 0.6 and the RMSE less 
than 1 log units.68  
 40 

Applicability Domain 
The applicability domain (AD) of a model is defined as the extent 
of chemical space, and target in PCM, to which a model can be 
reliably applied.69 There are various approaches to determine the 
AD and these highlight the limitations of the model. For example, 45 

k-nearest neighbours, probability density distribution, bounding 
box, distance measures and kernel methods such as Gaussian 
Processes.70–75 Here we used the k nearest neighbours algorithm 
to determine the AD of the PCM models in the following way. 
The distance of each compound to its five nearest neighbours in 50 

the training set was calculated. Then, the mean similarity of that 
compound to its neighbours was plotted against the compound’s 
absolute error in prediction, which is defined as the absolute 
value of the difference between the predicted and the observed 
bioactivities. Here, the aim is to look for a similarity threshold 55 

above which our PCM model can reliably predict the activity of 
new compounds. To do that, a criterion was set for our PCM 
model, which states that a PCM model is considered to be 
predictive if it has correlation of 0.6 or above and an RMSE less 

than 1 log units.  60 

 
Feature Analysis 
Each bit in the compound descriptors encodes the presence or 
absence of a chemical substructure, whereas the values of the Z-
scales account for physicochemical properties of the amino acids. 65 

The influence of each compound substructure and amino acid 
property on bioactivity was evaluated in the following way.  The 
value of the descriptor was set to zero in all compound or amino 
acid descriptors presenting it. Then, a PCM model was used to 
predict the bioactivity of compounds using the updated 70 

descriptors. 
 This procedure was repeated for all compound and amino acid 
descriptors. The analysis was calculated on the basis of final 
PCM model trained on all bioactivities, however, due to a lack of 
data in the training set, chance correlations could happen in case 75 

of certain features of compounds. Here, the threshold (estimated 
number of datapoints per target) required for a model to reliably 
predict the feature analysis was not analysed as it is out of the 
scope of current study. Instead the average effect of a feature was 
calculated as the difference in the predicted activity of a 80 

compound with and without a given compound substructure or 
amino acid Z-scale, indicating whether its average influence is 
beneficial or deleterious on bioactivity as was done 
previously.67,76 A cut-off value of +/- 0.2 pChEMBL units equal 
to the mean of activity difference distribution was established to 85 

discriminate which compound substructures or amino acid 
properties influence on bioactivity (Figure SF4). This analysis 
was only conducted on THRB, FA10 and TRY, due to the high 
number of datapoints annotated on these targets, which 
guarantees statistical robustness. 90 

Results and Discussion 
Characterization of the Biological Space  

In order to characterise the biological space, we measured the 
average sequence similarity between all 67 targets using binding 
site amino acid descriptors. The similarity ranged from 43% to 95 

58%. Table ST2 contains all binding site amino acids considered. 
The clustering of similar targets in the heat map (Figure 1A) 
using binding site residues can also be observed in the clusters of 
the phylogram (Figure 1B). In total, we observed 11 big clusters, 
corresponding to the following sub-families: Thrombin (THRB), 100 

Coagulation Factor (FA10), Trypsin (TRY), Plasminogen 
(PLMN), Cathepsin-G (CATG), Chymotrypsin (CTR α/β), 
Tryptase (TRYB), Elastase (CEL), Urokinase (UROK), 
Transmembrane protease serine (TMPS) and Kallikrein (KLK). 
Homologs of each subfamily were clustered together in the tree, 105 

however few exceptions were observed for members of the 
following families: FA12, FA11, FA7, Serine protease Hepsin 
(HEPS), Prostasin (PRSS8) and TMPS2. The targets THRB, 
TRY and FA10 clustered together suggesting that they are similar 
enough to enable PCM to inter- and extrapolate compound 110 

bioactivity among them. However, there are binding site 
variations, which might be responsible for the increase or 
decrease of compound binding affinity across these three 
proteases. 
 115 
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  Figure	
  1:	
  Serine	
  Protease	
  binding	
  site.	
  (A)	
  Similarity	
  heat	
  map	
  of	
  
the	
  67	
  Serine	
  Proteases	
  considered	
  in	
  this	
  study,	
  calculated	
  with	
  3	
  Z-­‐
scales.	
  The	
  distance	
  between	
  clusters	
  of	
  each	
  target	
  is	
  also	
  reflected	
  5 

in	
  the	
  tree.	
  (B)	
  The	
  distance	
  matrix	
  between	
  67	
  drug	
  targets	
  was	
  
calculated	
  using	
  tanimoto	
  similarity	
  between	
  protein	
  descriptors	
  and	
  
plotted	
  in	
  form	
  of	
  a	
  phylogram.	
  Each	
  cluster	
  is	
  represented	
  by	
  a	
  sub-­‐
family	
  name	
  and	
  contains	
  the	
  homologs	
  of	
  the	
  family.	
  Few	
  exceptions	
  
can	
  be	
  seen	
  in	
  case	
  of	
  FA12,	
  FA11,	
  FA7,	
  HEPS,	
  PRSS8	
  and	
  TMPS2,	
  10 

which	
  are	
  clustering	
  with	
  different	
  subfamilies	
  than	
  their	
  own.	
  The	
  
targets	
  having	
  3D	
  information	
  stored	
  in	
  PDB	
  are	
  underlined	
  as	
  red	
  

line.	
  

 The combined chemical and biological space, termed here as 
compound-target interaction space, was visualized using both 15 

compound and target descriptors. A PCA analysis (Figure 2) 
showed that each compound-target group is separated from the 
others due to ~41% sequence divergence and compounds’ 
structural diversity. However, the three biggest clusters of 
compound-target pairs in the figure (green: FA10, purple: THRB, 20 

pink: TRY) lie close to each other in PCA space enabling the 
discovery of selective features of these targets. The rest of the 
targets were found as an overlapping cluster on the top left corner 
of the PCA plot, explaining the widened chemical and biological 
space by addition of combined bioactivity data. When the 25 

loadings of each principal component were investigated, it was 
found that maximum variance was explained by the binding 
pocket sequence descriptors in the biological space. PC1 is 
loaded mainly by first and second principal components of the Z-
scales (34% variance), which summarises the lipophilicity (Z1) 30 

and steric bulk properties (Z2) of amino acids, whereas, PC2 
(26% variance) is more related to Z-3 of most varied amino acids 
in the pocket sequence (e.g. position 56, 140, 177 and 231), 
explaining the properties like electrophilicity and 
electronegativity of amino acids.77 PCA also showed that the 35 

orthologs are within the targets space defined by FA10, THRB, 
and TRY. Hence we expected to be able to include them in our 
data set. 

 
Figure	
  2:Chemical	
  and	
  biological	
  space	
  (compound-­‐target	
  40 

interaction	
  space)	
  of	
  protease	
  inhibitor	
  dataset.	
  The	
  PCA	
  analysis	
  
of	
  chemical	
  descriptors	
  and	
  amino	
  acid	
  descriptors	
  shows	
  an	
  overlap	
  
of	
  compounds	
  properties	
  per	
  target	
  in	
  PC1	
  and	
  PC2	
  space.	
  PC1	
  (34%	
  
variance)	
  shows	
  that	
  the	
  target	
  descriptors	
  influence	
  the	
  spread	
  of	
  
data	
  points,	
  clustering	
  the	
  compounds	
  belonging	
  to	
  FA10	
  and	
  TRY	
  45 

closer	
  to	
  each	
  other,	
  with	
  THRB	
  forming	
  an	
  outer	
  cluster	
  (also	
  shown	
  
in	
  phylogram	
  figure	
  1B).	
  PC2	
  explains	
  the	
  distinct	
  clusters	
  of	
  seven	
  
different	
  species	
  (represented	
  with	
  different	
  shapes)	
  used	
  in	
  the	
  
study.	
  The	
  dataset	
  has	
  maximum	
  information	
  of	
  human	
  targets,	
  

however,	
  the	
  additional	
  orthologous	
  information	
  is	
  distinctly	
  visible	
  50 

using	
  binding	
  pocket	
  features.	
  

PCM Model 

Protein Descriptor Selection 

Almost all protein descriptors meet our criterion for a predictive 
model (mentioned in materials section) and allowed the 55 
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generation of models with high predictive power (mean 
R2

test=0.72 ± 0.06, mean RMSEtest=0.77 ± 0.09 log units) (Table 
1). Models trained on alignment dependent descriptors, i.e. 
binding pocket amino acid descriptors, displayed mean R2

test and 
RMSEtest values of 0.67 ± 0.05 and 0.83 ± 0.07 pChEMBL units, 5 

respectively (Table 1). Form these the PCM model built (Table 2) 
on circular fingerprints and binding site descriptors, 3 Z-scales 
was found to be the most predictive (R2

CV=0.946, RMSECV=0.34 
log units; R2

test=0.78, RMSEtest=0.70 pChEMBL units), and was 
thus used for the interpretation of the structural features of both 10 

compounds and targets implicated in binding affinity and 
selectivity (Model Interpretation section). Despite the presence of 
gaps in the binding pocket sequence alignment, we obtained high 
performance when using binding site amino acid descriptors. 
Here Z-scales (3) were selected in spite of better performance of 15 

Z-scales (5) (RMSEtest=0.69 VS 0.70 pChEMBL units) because 
of a number of arguments. Firstly, Z-3 (162 bit vector) utilizes 
less variable space than Z-5 (270 bit vector). Secondly, the 3 
primary Z-scales were derived from the properties of natural 
amino acids, whereas, Z-4 and Z-5 resulted an extended PLS 20 

analysis required to expand the original dataset to 87 amino acids 
(including non-natural). The 4th and 5th are hence more difficult to 
interpret moreover they have been found to add little to 
performance in previous PCM models.15,77 Although there is 
room for improvement in binding site definitions for protease 25 

targets, e.g. by refining the description of the binding sites, these 
data indicate that the explicit introduction of binding site residue 
descriptors provide a signal on par with full sequence descriptors 
but provide better interpretability.  
  Although, the predictive power of MBA and SOCN full 30 

sequence descriptors (Table 1) was comparable with binding 
pocket descriptors (mean R2

test=0.78 ± 0.01, mean RMSEtest=0.68 
± 0.03 log units) (Figure 3), full sequence descriptors do not 
permit a biologically meaningful interpretation of the models; 
hence, 3 Z-scales were used for generation of final PCM model.  35 

 
Figure	
  3:	
  Benchmarking	
  of	
  21	
  protein	
  descriptors.	
  (A)	
  Correlation	
  
coefficient	
  (R2)	
  and	
  RMSE	
  values	
  on	
  the	
  test	
  set	
  calculated	
  with	
  model	
  
trained	
  on	
  11	
  alignment	
  dependent	
  binding	
  pocket	
  descriptors.	
  (B)	
  
Performance	
  analysis	
  of	
  10	
  alignment	
  independent	
  descriptors	
  40 

applied	
  on	
  full	
  protein	
  sequences.	
  The	
  figure	
  provides	
  an	
  overview	
  of	
  
all	
  descriptors	
  employed.	
  The	
  final	
  model,	
  generated	
  using	
  3	
  Z-­‐scales	
  
as	
  protein	
  descriptors,	
  displayed	
  the	
  highest	
  predictive	
  power	
  of	
  the	
  
binding	
  site	
  based	
  descriptors	
  (R2=0.78,	
  RMSE=0.70).	
   	
  

Simple Descriptors 45 

Next, we evaluated whether 1D binding site (cavity) and amino 
acid physiochemical properties descriptors were sufficient to 
generate predictive PCM models. We observed a better model 
performance when using only simple cavity descriptors such as 
binding site volume, AAC and DPC compared to models trained 50 

on Prot_FP, VHSE, MSWHIM, T-Scales and ST-scales (Table 
1). Binding site volume, although expected to convey little target 
information,60 led to satisfactory models according to our model 
validation criteria (see section Model Validation), namely: 
R2=0.74 and RMSE=0.74 pChEMBL units. These results are in 55 

agreement with the study of Bender et al,78 where the authors 
reported that 1D molecular descriptors (e.g. molecular weight or 
atom counts) play a significant role in enhancing the enrichment 
of active compounds in virtual screening.  
 The high performance of models trained on binding site 60 

volume indicates that descriptors accounting for structural 
information of the binding site lead to models displaying slightly 
worse performance than those trained on more sophisticated 
protein information as described above. Thus, we anticipate that 
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using more complex structural cavity descriptors alone, or in 
combination with amino acid or full protein sequence descriptors, 
is likely to increase model performance.  
 

Features Feature 
Type 

R2
test RMSEtest 

Moran Autocorrelation 
(MA) 

FSD 0.78 0.66 

Moreau-Broto 
Autocorrelation (MBA) 

FSD 0.78 0.67 

Z-scales (3) BSD 0.78 0.70 

Quasi-Sequence Order 
(QSO) 

 

FSD 0.78 0.68 

Geary Autocorrelation 
(GA) 

FSD 0.78 0.68 

Z-scales (5) BSD 0.78 0.69 
Sequence Order 

Coupling Numbers 
(SOCN) 

 

FSD 0.78 0.71 

Composition, transition 
and Distribution (CTD)  

FSD 0.77 0.70 

ProFeat FSD 0.77 0.70 
Amino Acid 

Composition (AAC) 
FSD 0.75 0.74 

Dipeptide Composition 
(DPC) 

FSD 0.74 0.73 

Volume BSD 0.74 0.74 
ProtFP PCA (3) BSD 0.68 0.83 

ST-Scales  BSD 0.66 0.86 
VHSE BSD 0.66 0.86 

ProtFP PCA (8) BSD 0.65 0.86 
FASGAI BSD 0.64 0.87 
T-Scales  BSD 0.64 0.87 

ProtFP PCA (5) BSD 0.63 0.88 
ProtFP (Feature) BSD 0.63 0.91 

MSWHIM BSD 0.61 0.91 

Table 1: Performance analysis of the protein descriptors used in 5 

PCM model. The complete dataset containing 20,213 data points on 67 
protease targets were employed in a PCM model using structural 
fingerprints and protein descriptors. All protein descriptors showed an 
approximately similar performance. However, the Z-scales combined 
good performance and interpretability and were used in the final model. 10 

Feature type of each descriptor is added for clarity to the reader, FSD 
indicates the “Full Sequence Descriptor” whereas BSD indicates 
“Binding Site Descriptor”. 

Comparison of PCM with QSAR 

In order to assess whether the explicit inclusion of protein 15 

information improves model performance, we trained models on 
exclusively compound descriptors using the datapoints annotated 
on a given target (individual QSAR models), or all available 
datapoints, termed as global or Family QSAR (Table 2).17 The 
global QSAR model exhibited significantly worse performance 20 

than PCM (RMSEQSAR=1.09, RMSEPCM=0.70 pChEMBL units). 
Similarly, PCM also outperformed per target QSAR models, with 
mean RMSEQSAR and RMSEPCM values on the test set of 1.05 ± 
0.27, and 0.66 ± 0.20 pChEMBL units, respectively. This 
indicates that the explicit inclusion of target information in PCM 25 

improves the prediction of compounds’ bioactivities on this 
dataset. 

Methods Descriptors R2
test RMSEtest 

QSAR 
(validated 
per target) 

Circular FP 0.35 ± 0.27* 1.05 ± 0.27* 

QSAR 
(global) 

Circular FP 0.38 1.09 

PCM 
(validated 
per target) 

Circular 
FP, Z3 

0.64 ± 0.23* 0.66 ± 0.20* 

PCM 
(global) 

Circular 
FP, Z3 

0.78 0.70 

Table 2: Model Performance. Correlation coefficients and RMSE values 
on the test set for PCM and QSAR models with different combination of 
descriptors. PCM models outperformed global and individual QSAR 30 

models. *Mean value of correlation coefficient and predicted errors 
(RMSE) 

Leave One Target Out (LOTO) Validation 

Subsequently, the 67 proteases were grouped into 11 sub-families 
according to their similarity, which was calculated on binding site 35 

amino acid descriptors (Figure 1B). These groups contained both 
orthologs and paralogs when applicable. Figure 4 and Table 3 
report the sub-family averaged Leave One Target Out (LOTO) 
performance. Additionally, individual performance of LOTO 
validation on each target is shown in ST3 in the Supplementary 40 

File. 
 LOTO validation was performed to assess the extrapolation 
ability of PCM on the target space. We obtained a mean 
predictive performance (R2) of 0.42 ± 0.15 for all 67 targets with 
a prediction error (RMSE) of 1.03 ± 0.22 pChEMBL units. A low 45 

predictive performance and high error of validation shows the 
diversity in the target space employed for the current PCM 
model. LOTO models for CTRL, FA10, TMPS and THRB 
displayed poor performance with mean R2/RMSE values of (0.35 
± 0.07/1.37 ± 0.57, 0.35 ± 0.22/1.33 ± 0.55, 0.33 ± 0.29/1.29 ± 50 

0.64 and 0.46 ± 0.37/1.20 ± 0.45 respectively).  This decrease in 
performance was expected, as 35% of the datapoints in the 
dataset are annotated on FA10 and THRB. Hence, removing 
either of them removes a large fraction of the compound-target 
interaction space and thus deteriorates model performance. On 55 

the other extreme, TMPS and CTRL are annotated with 0.85% of 
the datapoints and present an average similarity to the other 
targets considered of ~43% (Figure 1B), which is plausibly the 
reason for the poor performance of their corresponding LOTO 
models. The low performance of the LOTO model for the CTRL 60 

subfamily, with RMSE equal to 1.37  ± 0.57, likely arises from 
the low similarity of the members of this family with respect to 
the other proteases considered here. This can be seen in Figure 
1A, where the CATG subfamily clusters along with HEPS, 
KLKB1 and other diverse member of TMPS. Taken together, 65 

these data indicate that the performance of LOTO models is 
correlated to the presence of similar proteases in the training set 
and wherever a diverse protein target is present with less 
information, the predictability of PCM models decreases with 
increase in prediction error. 70 

 Although all targets show a close resemblance of the binding 
pocket in the structural alignment (Table ST1), there is 
considerable variation at several positions, namely: 35, 37, 40, 
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60, 96, 97, 124, 148, 174, 175, 205, 206, 207, 209, 222, and 227. 
Out of these variations, amino acids at the 35, 39, 60, 93, 140, 
and 207 positions were found to affect the binding affinity 
(Model interpretation section). Given the lower similarity 
between the targets in the training set (average sequence 5 

similarity= ~ 41%) as compared to previous studies where the 
similarity threshold was above 90%, 34,79 both the interpolation 
and extrapolation power of PCM on this data set are notable. 
Thus, PCM appears as a suitable approach to model compound 
bioactivities on the serine protease family.  10 

 Overall, these data suggest that our PCM models display fair 
extrapolation performance for proteases similar to those present 
in the training set.  

 
Figure	
  4:	
  Leave	
  One	
  Target	
  Out	
  (LOTO)	
  Validation.	
  	
  The	
  average	
  15 

LOTO	
  performance	
  was	
  R2=0.43	
  ±	
  0.15.	
  The	
  worst	
  modelled	
  targets	
  
are	
  CTRL	
  (R2/RMSE=0.35	
  ±	
  0.07/1.37	
  ±	
  0.57),	
  FA10	
  (R2/RMSE=0.35	
  
±	
  0.22/1.33	
  ±	
  0.55),	
  TMPS	
  (R2/RMSE=0.33	
  ±	
  0.29/1.29	
  ±	
  0.64)	
  and	
  
THRB	
  (R2/RMSE=0.46	
  ±	
  0.37/1.20	
  ±	
  0.45).	
  The	
  performance	
  for	
  the	
  
rest	
  is	
  comparable.	
  The	
  predictions	
  performed	
  on	
  each	
  target	
  as	
  a	
  test	
  20 

set	
  yielded	
  an	
  error	
  of	
  ~1	
  log	
  units,	
  showing	
  the	
  inefficiency	
  of	
  
predictions	
  by	
  model	
  in	
  case	
  of	
  complete	
  absence	
  of	
  target	
  

information	
  from	
  the	
  training	
  set.	
  

Target Sub family Mean R2
test Mean RMSEtest (log 

units) 
CTRL 0.35 ± 0.07 1.37 ± 0.57 
FA10 0.35 ± 0.22 1.33 ± 0.55 
TMPS 0.33 ± 0.29 1.29 ± 0.64 
THRB 0.46 ± 0.37 1.20 ± 0.45 
TRYB 0.20 ± 0.09 1.09 ± 0.19 
CELA 0.42 ± 0.43 1.06 ± 0.33 
CATG 0.36 ± 0.37 0.94 ± 0.31 
UROK 0.77 ± 0.38 0.92 ± 0.41 
TRY 0.46 ± 0.17 0.90 ± 0.29 
KLK 0.40 ± 0.32 0.78 ± 0.52 

PLMN 0.60 ± 0.29 0.64 ± 0.28 

Table 3: Predictive performance and mean square error of Leave 
One Target Out (LOTO) Validation. LOTO was performed on all 67 25 

targets and then categorised together into 11 different sub-families. 

Applicability Domain 

The results from our applicability domain analysis are shown in 
Figure 5, which reports the compound similarity averaged over 
the 5 nearest neighbours against the RMSE values for the 30 

compounds in the test set. We obtained high RMSE values, up to 
3 pChEMBL units, for compounds displaying a neighbour-
averaged similarity value below 0.92. RMSE values gradually 
decrease, to a minimum value of 0.02 pChEMBL units, as the 
compound neighbour-averaged similarity increases. In practice, a 35 

new compound exhibiting a neighbour-averaged similarity value 
equal or greater than 0.90 is likely to be predicted with good 
accuracy. Nevertheless, we observed some outliers. For instance, 
two compounds (CHEMBL345710, CHEMBL109601) having a 
similarity value of ~0.94 were found to have an exceptionally 40 

high prediction error, namely 3.21 and 3.11 pChEMBL units on 
FA10 and CATG targets. One of these compounds 
(CHEMBL345710) displays pChEMBL values of 4.20, 4.67 and 
6.07 towards FA10, THRB and TRY, whereas the other 
compound (CHEMBL109601) exhibits bioactivity values of 4.08, 45 

6.27, 8.07 and 6.36 pChEMBL units towards CATG, TRY, CEL 
and CMA. Together, these observations indicate that our models 
could not predict the selectivity of these two compounds towards 
FA10 and CATG, as the bioactivities of their closest neighbours 
are considerably higher, namely more than 2 pChEMBL units. 50 

In conclusion, these data indicate that estimating the error for 
individual predictions constitutes a valuable source of 
information in PCM-guided drug discovery campaigns.80     

 
Figure	
  5:	
  Measuring	
  the	
  reliability	
  of	
  model	
  using	
  applicability	
  55 

domain.	
  The	
  figure	
  visualises	
  the	
  absolute	
  predicted	
  error	
  (y-­‐axis)	
  of	
  
test	
  compounds	
  and	
  the	
  similarity	
  to	
  five	
  nearest	
  neighbours	
  (x-­‐axis)	
  
of	
  these	
  test	
  compounds	
  in	
  the	
  training	
  set.	
  The	
  predicted	
  error	
  

decreases	
  to	
  a	
  minimum	
  of	
  0.02	
  log	
  units	
  when	
  the	
  similarities	
  of	
  a	
  
new	
  test	
  compound	
  increases.	
  The	
  two	
  outliers	
  (CHEMBL345710,	
  60 

CHEMBL109601)	
  are	
  also	
  shown	
  with	
  predicted	
  error	
  greater	
  than	
  3	
  
log	
  units.	
  

 We also performed an applicability domain analysis on the 
target space. However, we did not observe a correlation between 
target similarity and error in prediction, likely due to the fact that 65 

most of the proteases are equally similar to each other (average 
sequence similarity=46%; Fig. SF2). However, the addition of 
diverse target space (protein sequences of KLK, TMPS, HEPS) is 
also one of the limitations of poor predictability of model when it 
comes to predict activities. There were not enough datapoints 70 

available against these targets in the training set; also the 
compound space was equally sparse, which resulted in poor 
prediction performance. 

Chemical Interpretation of the models 

This analysis was performed on three targets, namely THRB, 75 

TRY and FA10. Figure 6 reports the influence of compound 
substructures and binding site amino acid properties on 
bioactivity. A tertiary sulphonamide (Figure 6 substructure: a’) 
was singled out to be important for selectivity against FA10. 
Absence of this substructure decreased compound’s predicted 80 
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activity on average by 0.27 ± 0.65 pChEMBL units against FA10, 
whereas it increased bioactivity against THRB and TRY by on 
average 0.36 ± 0.60 and 0.55 ± 0.73 pChEMBL units, 
respectively. Thus, the presence of tertiary sulphonamides 
appears correlated to compound affinity towards FA10 and 5 

uncorrelated to affinity on THRB and TRY. We validated this 
prediction using the 3D crystallographic structures of FA10 and 
THRB. These structures let us confirm that a tertiary 
sulphonamide is implicated in strong hydrogen bonds with the 
backbone residue GLY-219 of FA10 (Figure 7A). The other 10 

important residues of the P1-motif of proteases,81 namely 99, 215 
and 219 appear to be involved in ligand binding through van der 
waals and electrostatic interactions. However, no significant 
interaction was observed between this compound substructure 
and the binding pocket of THRB. This structural analysis 15 

confirms the prediction that tertiary sulphonamides are specific 

for FA10 activity (Figure 7A). 
Figure	
  6:	
  Contribution	
  of	
  compounds’	
  selective	
  structural	
  
features	
  towards	
  binding	
  affinity	
  of	
  three	
  selected	
  targets.	
  
Increase/decrease	
  of	
  predicted	
  binding	
  affinity	
  of	
  a	
  compound	
  by	
  20 

absence	
  of	
  a	
  particular	
  sub-­‐structural	
  fingerprint	
  was	
  mapped	
  
against	
  FA10,	
  THRB	
  and	
  TRY.	
  A	
  positive	
  mean	
  activity	
  difference	
  
means	
  that	
  absence	
  of	
  this	
  feature	
  is	
  advantageous	
  for	
  activity,	
  

Whereas,	
  a	
  negative	
  mean	
  activity	
  difference	
  means	
  that	
  removal	
  of	
  a	
  
particular	
  feature	
  is	
  detrimental	
  for	
  activity.	
  A	
  cut-­‐off	
  of	
  +0.2	
  and	
  -­‐0.2	
  25 

log	
  units	
  was	
  specified	
  to	
  select	
  the	
  features.	
  Feature	
  labelled	
  as	
  a	
  
represents	
  primary	
  sulphonamide,	
  whereas	
  a’	
  represents	
  tertiary	
  
sulphonamide.	
  Similarly	
  b,	
  c	
  and	
  d	
  represent	
  secondary	
  amide,	
  

methylamino-­‐2-­‐butenoic	
  acid	
  and	
  prolinamide	
  respectively.	
  The	
  plot	
  
shows	
  a	
  combined	
  selectivity	
  and	
  activity	
  profile	
  of	
  compound	
  30 

features	
  of	
  three	
  targets.	
  

 Similarly, absence of a primary sulphonamide, (Figure 6 

substructure: a) was observed to increase compound’s predicted 
activity on this target. Comparing the binding modes of 
compounds containing tertiary sulphonamides (Figure 6a’) and 35 

primary sulphonamides (Figure 6a) features led us to another 
interesting investigation. The crystallographic structures of both 
complexes were superimposed and showed that the binding mode 
of the ligands containing tertiary sulphonamides is different from 
that of ligands containing primary sulphonamide, and this 40 

difference leads to fewer interactions. This structural analysis 
confirms the validity of the model interpretation pipeline 
proposed here. 
 Furthermore, we identified that a secondary amide (Figure 6b) 
on average contributes to interactions (hydrogen bonding) with 45 

the backbone residues SER-256 of the THRB receptor (2BDY, 
1EZQ, 1FXY). The feature analysis for this particular compound 
substructure however suggested that its absence could increase 

the compound’s predicted bioactivity on these three targets.
 Absence of methylamino-2-butenoic acid was predicted to be 50 

beneficial for compound activity on average against FA10 but 
detrimental against THRB and TRY (Figure 6c).  However, only 
one compound in our dataset presented this feature, and we could 
not find structural evidence in the literature for the interaction of 
this feature with THRB, TRY or FA10. Thus, the paucity of 55 

experimental data does not permit a complete interpretation of the 
general influence of this feature on the inhibition of these three 
proteases. 
 In addition to these features, we predicted that absence of a 
prolinamide decreased the predicted bioactivity against THRB by 60 

on average 0.10 ± 0.66 pChEMBL units (Figure 6d), whereas the 
inverse picture was predicted for FA10 and TRY. When 
investigating the crystallographic structures available for THRB 
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(PDB IDs: 1AE8 and 3RMM), we found that most of the THRB 
inhibitors containing this feature interact with GLY-216 and 
GLY-219. However, no crystal evidence was found for TRY and 
FA10. Hence, we anticipate that a prolinamide might be a 
selective feature for THRB and is beneficial for activity against 5 

THRB.  

 
Figure	
  7:	
  Ligand	
  interaction	
  of	
  compound	
  containing	
  

sulphonamide	
  feature	
  with	
  binding	
  pockets	
  of	
  FA10	
  (1F0R)82	
  
and	
  THRB	
  (2BDY).83	
  (A)	
  The	
  selective	
  behaviour	
  of	
  the	
  10 

sulphonamide	
  feature	
  (Figure	
  6a’)	
  already	
  predicted	
  by	
  our	
  PCM	
  
model	
  is	
  quite	
  evident	
  by	
  this	
  part	
  of	
  the	
  figure.	
  The	
  interactions	
  
between	
  the	
  ligands	
  and	
  targets	
  in	
  the	
  crystal	
  structure	
  show	
  the	
  
involvement	
  of	
  sulphonamide	
  with	
  binding	
  pocket	
  residues	
  of	
  FA10	
  
protein	
  (GLY-­‐219),	
  however,	
  no	
  interaction	
  is	
  observed	
  in	
  the	
  THRB	
  15 

protein.	
  Interaction	
  figures	
  are	
  generated	
  using	
  Poseview.84	
  (B)	
  The	
  
two	
  features	
  responsible	
  for	
  activity	
  (secondary	
  amide)	
  and	
  

selectivity	
  (tertiary	
  sulphonamide)	
  are	
  shown	
  in	
  THRB	
  and	
  FA10	
  
inhibitors.	
  The	
  compounds’	
  sub-­‐structural	
  features	
  identified	
  by	
  

protease	
  PCM	
  model	
  were	
  validated	
  by	
  analysing	
  the	
  interactions	
  in	
  20 

crystallised	
  protein	
  structures	
  and	
  visualised	
  in	
  A	
  and	
  B	
  of	
  this	
  figure.	
  

Biological interpretation of the models   

Next, we analysed the importance of binding site amino acid 
properties on compound bioactivity (Fig SF3). Residues at 
positions 35, 39, 60, 93, 140, and 207 were predicted to affect 25 

compound bioactivity on average by more than 0.2 pChEMBL 
units. The presence of an arginine and leucine in THRB at 
positions 35, 39 and 60 was predicted to be beneficial for 
bioactivity. However, asparagine, phenylalanine and histidine in 
FA10, and serine, phenylalanine and lysine in TRY at the same 30 

positions, were predicted to decrease compound bioactivity by on 
average 0.4 ± 0.01 pChEMBL units. This effect illustrates the 
relevance of small and charged residues in the binding site for 
compound bioactivity, in opposition to large aromatic residues at 
positions 25, 39 and 60.  35 

 The absence of a positively charged arginine at position 93 

was predicted to be less important for bioactivity in THRB than a 
negatively charged glutamate in FA10. However, the absence of 
any positively charged amino acids (arginine/ lysine) in the 
binding site of TRY leads to an average decrease in activity of 40 

0.07 ± 0.36 pChEMBL units. Furthermore, the presence of lysine 
and tyrosine at positions 140 and 207 respectively, were predicted 
to increase bioactivity in FA10 by on average 0.07 ± 1.06 and 
0.05 ± 1.06 pChEMBL units respectively. However, as the impact 
of these residues on bioactivity towards FA10, THRB and TRY is 45 

even less than the chosen cut-off  (+/- 0.2), no clear conclusion 
can be made. The positively charged amino acid residues could 
favour compound-target interactions and the presence of polar 
residues in the binding pocket of FA10 could be beneficial for 
compound affinity, however, stronger evidences in form of 50 

interaction fingerprints in addition to sequence descriptors may 
help to strengthen these claims.  

Conclusions 
 In the present study, we have introduced PCM for the 
prediction of the potency and the selectivity of 12,625 distinct 55 

protease inhibitors on a panel of 67 mammalian serine proteases. 
We have shown that the inclusion of explicit target information 
improves the prediction of compound bioactivity on serine 
proteases, as PCM models outperformed both individual QSAR 
models and a model trained on exclusively compound descriptors 60 

using all datapoints (Family QSAR). We have benchmarked the 
predictive power of a total of 21 protein descriptors, including 
binding site amino acid and full protein sequence descriptors, as 
well as 1D protein cavity descriptors such as cavity volume and 
amino acid composition descriptors. We conclude that the 65 

binding site amino acid and full protein sequence descriptors 
provide comparable predictive signal. However, the usage of 
binding site amino acid descriptors enabled a biologically 
meaningful interpretation of the models in agreement with the 
scientific literature.  70 

 Similarly, the description of compounds with keyed 
fingerprints has permitted a chemically meaningful interpretation 
of the PCM models. This analysis has singled out compound 
substructures influencing on compound potency and selectivity 
towards particular proteases, such as primary and tertiary 75 

sulphonamides for the selective inhibition of FA10, 
methylamino-2-butenoic acid for the inhibition of THRB and 
TRY, and prolinamide for the selective inhibition of THRB.  
 Overall, the proteochemometric approaches applied on this 
dataset of serine proteases enabled us to interpret the target 80 

information in a meaningful way, which also shows the 
benefits/strength of incorporating protein-related information in 
computational chemogenomics. 
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