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Abstract 

Comparing to current target-based screening approach, it is increasingly evident that 

active lead compounds based on disease-related phenotype are more likely translated 

to clinical trials in drug development. That is because human diseases are in essence 

the outcome of the abnormal function of multiple genes, especially complex diseases. 

Therefore, as an conventional technology in the early phase active lead compounds 

discovery, computational methods that could connect molecular interaction and 

disease-related phenotype to evaluate the efficacy of compounds are in urgent need. In 

this work, a computational approach by integrating molecular docking and pathway 

network analysis (network efficiency and network flux) was developed to evaluate the 
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efficacy of a compound against LPS-induced Prostaglandin E2 (PGE2) production. 

The predicted results were then validated in vitro, and the correlation with 

experimental results was analyzed by linear regression. In addition, molecular 

dynamics (MD) simulations were performed to explore the molecular mechanism of 

the most potent compounds. There were 12 hits out of 28 predicted ingredients 

separated from Reduning Injection (RDN). The predicted results had a good 

agreement with the experimental inhibitory potency (IC50) (correlation coefficient = 

0.80). The most potent compounds could target several proteins to regulate the 

pathway network. This might partly interpret the molecular mechanism of RDN on 

fever. Meanwhile, the good correlation of the computational model with wet 

experiments might bridge the gap between molecule-target interactions and 

phenotypic response, especially for multi-target compounds. Thus, it would be helpful 

for active lead compounds discovery and the understanding of the multiple targets and 

synergic essence of traditional Chinese medicine (TCM). 

Keywords 

Pathway network; Reduning Injection; network efficiency; network flux; 

LPS-induced PGE2 production; 

1  Introduction 

During the last 20 years, the approved drugs did not increase significantly, although 

more cost and new technologies (such as combinatorial chemistry, high-throughput 

screening, -omics)
1
 were applied to discover more candidate molecules and new 

targets in drug development. It should be to some extent attributed to the current 
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drug-development paradigm, and the “one drug-one target” paradigm made it difficult 

to translate the in vitro activity to a desire clinical effect owing to ignoring the 

systematic information
2
. Whereas, as a renewed drug discovery strategies, phenotypic 

screens are applied to measure the desired biological effect of a molecule on cells, 

tissues or whole organisms even if the molecular mechanism and protein targets are 

unclear. Moreover, the phenotypic approache was confirmed to translated the active 

lead compounds to the approved drugs more effectively
3
. Thus, it was gradually paid 

close attention by pharmaceutical industry and academic research centers
4
.  

As an essential method to identify lead compounds, computational techniques 

played an important role in observing interactions between small molecules and 

proteins, and reduced amount of experimental works
5
. Along with the development of 

systems pharmacology and network analysis, some computational approaches at the 

systems level were explored to improve the successful rate of the drug development. 

Pathways were the underlying biology of diseases
6
, and could connect individual 

molecular components to disease-related phenotypes by functional protein networks
7
. 

Thus, biological pathways were generally considered to be partially phenotypic
8, 9

. 

According to the above concepts
10-12

, a compoutational model integrating biological 

pathway and network analysis was developed to evaluate the efficacy. It might also be 

applied to discover lead compounds and interpret the molecular mechanism. 

It has long been known that Prostaglandin E2 (PGE2) was the principal 

inflammation mediator, which participated in several pathological processes such as 

fever, sickness behaviors, and inflammatory pain
13-15

. Moreover, the febrile response 
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is accompanid by the significant increase of both peripheal and central of PGE2
13, 16

. 

Reduning Injection (RDN) was a Chinese medicine prescription which was composed 

of Lonicerae Japonicae Flos, Gardeniae Fructus and Artemisiae Annuae Herba. It has 

been widely used in China to alleviate or treat the symptoms of upper respiratory tract 

infections (URTIs), especially the fever days and severity
17-19

. Thus, a pathway 

network of LPS-induced PGE2 production was constructed, and was applied to 

identify active compounds and to explore the potential molecular mechanism on fever. 

The results showed that the computational approach integrating pathway network and 

molecular docking, could effectively translate the predicted compounds of virtual 

screening to wet experiments. Meanwhile, it might also bridge the gap between 

molecular details and disease-related phenotypes, and provide an alternative way to 

discover lead compounds in early-phase drug discovery. 

2  Methods 

2.1  Pathway network construction 

A pathway network of LPS induced PGE2 production (Figure 1) was constructed by 

integrating reported literatures
20-27

 and pathway databases (such as Reactome
28

 and 

KEGG
29

), which contained 30 nodes and 38 edges (arrows). In the directed network, 

Nodes were proteins or small molecules, and arrows corresponded to connectivity 

relationships among cellular elements. The direction of the arrows implied that the 

latter (node) was regulated by the former. 

2.2  Molecular docking 

In the pathway network, there were fourteen proteins (Table 1) which had reported 
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structures. Their complex structures (crystal or NMR) were obtained from RCSB 

Protein Data Bank (http://www.pdb.org/) for molecular docking. For the protein 

structures, water molecules and ligands were removed, the polar hydrogens were 

added and Kollman united atom partial charges were assigned by the Hydrogen 

module in AutoDock Tools (ADT). The docking was then performed by AutoDock 

4.0.1 program in DOVIS 2.0 suite
30, 31

. The energy grid maps of docking simulation 

were established by a 10×10×10 Å cube and centered on the occupied space of the 

original ligand with a spacing of 0.375 Å between the grid points. The following 

ligand conformations in the active site were sampled by the Larmarckian genetic 

algorithm. The parameters were listed as follows: population size was set to 150, 

maximum number of energy evaluations to 2.5×10
7
. Twenty independent docking 

runs were performed for each ligand, and the results were clustered according to the 

root mean square deviation tolerance of 2.0 Å. Other parameters were default. The 

original ligands or known inhibitors were chosen to determine the affinity of a 

compound to the corresponding protein target. The ligand library for molecular 

docking contained 90 natural products separated from RDN
32, 33

. 

Table 1. Fourteen target proteins of the pathway network of LPS-induced PGE2 

production for molecular docking 

Protein Protein name UniProt PDB Ligand 

TLR4 Toll-like receptor 4 O00206 4G8A 4G8A 

PGES Prostaglandin E synthase O14684 3DWW 3DWW 

TAK1 
Mitogen-activated protein 

kinase kinase kinase 
O43318 2YIY 2YIY 

AP-1 Transcription factor AP-1 P05412 1FOS Curcumin(keto)
a
 

IκBα Nuclear factor-kappa-B P19838 3GUT Caffeic acid 
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p105 subunit phenethyl ester 
a
 

ERK1 
Mitogen-activated protein 

kinase 3 
P27361 2ZOQ 2ZOQ 

COX-2 
Prostaglandin G/H synthase 

2 
P35354 

b
 3LN1 3LN1 

JNK c-Jun N-terminal kinase P45983 3PZE 3PZE 

MKK4 
mitogen-activated protein 

kinase kinase 4 
P45985 3ALN 3ALN 

MKK6 
mitogen-activated protein 

kinase kinase 6 
P52564 3FME 3FME 

p38 
Mitogen-activated protein 

kinase 12 
P53778 1CM8 1CM8 

MEK1 
mitogen-activated protein 

kinase kinase 1 
Q02750 3DY7 3DY7 

TRAF6:RIP1 

Receptor-interacting 

serine/threonine-protein 

kinase 1 

Q13546 4ITJ 4ITJ 

TRAF6 
TNF receptor-associated 

factor 6 
Q9Y4K3 1LB5 

TRAF6-binding 

peptide 

a
 the original ligands of the two proteins were two known inhibitors according to the 

reported literatures
34, 35

, and their two-dimensional structures were listed supplement 

Figure S1. 

b
 the crystal structure of mouse COX-2 (UniProt ID: Q05769) based on blast analysis 

of the sequence with human COX-2 (UniProt ID: P35354) were selected for 

molecular docking, and the rest were human origins. 

2.3  Calculation of network efficiency and network flux 

The influence of a compound on a network depended on the docking scores between 

the compound and corresponding protein targets. We assumed that a compound with 

higher docking score would have more strongly inhibitory activity on a protein target. 

For every target, the ligand with highest binding energy was defined as the reference, 

and could inhibit the protein target by 99.5%. The initial value of the edges in the 
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network was set as 1. Thus, the reference ligand made the value of the edges that 

came out of the protein target up to 200. For other ligands, the values of all direct 

downstream edges of the target were calculated by the following expression: 

𝐸𝑉 = 10
(𝑆𝑐𝑜𝑟𝑒

𝑙𝑖𝑔𝑎����
/𝑠𝑐𝑜𝑟𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)×2.30…………… . . (1) 

Where scorereference and scoreligand represented the docking score of the reference 

ligand and other compounds, respectively, and EV was the edge value of the arrow 

that came out of the target in the network.  

When a network was attacked by a compound, its influence on the network was 

quantified by network efficiency (NE) which was the sum of the reciprocals of the 

shortest path length between all pairs of nodes
36

. Therefore, the metric was also 

applied to evaluate the efficacy of multi-target drugs
11, 12, 37

. 

𝑁𝐸 = ∑
1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐺

…………………………………… . (2) 

Where dij was the shortest path between nodes i and j of the network. If it was a 

directed and weighted network, dij was the shortest directed path with a minimum 

weight. To give a relative value, the quantity of NE was divided by NE of a fully 

connected state (NEmax, all EVs were set to 1), and the percentage of NE decrease 

(NEd) for an attack was defined as follow: 

𝑁𝐸𝑑(%) =
𝑁𝐸𝑚𝑎𝑥 − 𝑁𝐸𝑎𝑡𝑡𝑎𝑐𝑘

𝑁𝐸𝑚𝑎𝑥
× 100……………(3) 

Where NEattack was NE of G for an attack. 

Generally, the downstream protein would be more important according to 

information flow model in a pathway network
38, 39

, which was not reflected by NE. 

Therefore, network flux (NF) was introduced to weight NE
12

, and NF was calculated 
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by the following equation:  

𝑁𝐹 = ∑
1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐺,𝑗=𝑒𝑥𝑖𝑡

……………………………… . (4) 

Where the node j represented the exit of graph G, and dij was the shortest path from 

nodes i to nodes j. And the percentage of NF decrease (NFd) of the network for an 

attack was calculated by the following equation: 

𝑁𝐹𝑑(%) =
𝑁𝐹𝑚𝑎𝑥 − 𝑁𝐹𝑎𝑡𝑡𝑎𝑐𝑘

𝑁𝐹𝑚𝑎𝑥
…………………… . . (5) 

Where NFmax represented NF of a fully connected state (all EVs was 1), and NFattack 

was NF of G when it was attacked. 

Finally, combination of NE and NF (NEF), a metric of the influence on a network 

for an attack, was defined as the square root of the product between NEd and NFd.  

𝑁𝐸𝐹(%) = √𝑁𝐸𝑑 × 𝑁𝐹𝑑…………………………(6) 

NE and NF were calculated according to the redefined edge values by a program 

written in C++ language using Dijkstra Algorithm when a compound attacked a 

netowrk
12

. The interference of the compound on the pathway network was then 

characterized by NEF, and the higher the index was, the more strong it had inhibitory 

activity on PGE2. 

2.4  Experimental validation 

The inhibitory activities of these compounds against PGE2 production were 

determined by Prostaglandin E2 EIA kit (Enzo Life Sciences, Farmingdale, NY, USA) 

in vitro. First, murine macrophage RAW264.7 cells (Cell Culture Center of the 

Chinese Academy of Medical Sciences, Beijing, China) were cultured in high-glucose 

Dulbecco‟s Modified Eagle‟s medium (DMEM, Gibco, Carlsbad, USA) supplemented 
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with penicillin (100 U/ml), streptomycin (100 µg/ml) and 10% (v/v) fetal bovine 

serum (FBS, Sijiqing, Deqing, Hangzhou, China) at 37°C containing 5% CO2. 

Second, the influence of these compounds on cell viabilities were determined by 3-(4, 

5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) methods. In 

96-well plates, 4×10
4
/well Cells were seeded for 24h, and then incubated by various 

concentrations of these compounds for another 24h. Then, 10 µl of MTT working 

solution (5 mg/ml) was added to each well, and the cells were incubated for another 

4h at 37°C. After adding to 150 µl of DMSO, the absorbance at 490nm was measured 

using SpectraMax M2e Microplate Reader (Molecular Devices, Menlo Park, USA). 

Third, the cells were plated in 24-well culture plates (1×10
5 

/ml) for 24h at 37°C, and 

were then treated with various concentrations of these compounds or positive drug 

(Celecoxib) for 1h, followed by 16~18h stimulation with LPS (1µg/ml). Finally, the 

supernatants were diluted 5 times with FBS-free DMEM and the levels of PGE2 were 

determined according to the manufacturer‟s protocol. The inhibitory potency (IC50) of 

the compound was calculated by GraphPad Prism 5.0 (Table 2). 

2.5  MD simulations 

MD simulations in this work were performed by using the AMBER 11 simulation 

package, as decribed previously
40

. In brief, every compound-target complex was 

solvated in a truncated octahedral water box of TIP3P before energetically minimized 

using 2500 steps of Steepest Descent and 2500 steps of Conjugate Gradient method. 

The system was then heated gradually from 0 to 310 K without constraint for 60 ps, 

and equilibrated for another 60 ps in 310 K. The simulation was performed for 10 ns 
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in the NVT ensemble with snapshots save at every 1.0 ps. The time step was set to 2 

fs. Particle Mesh Ewald (PME) was employed for electrostatic calculation, and the 

SHAKE method was used to constraint bonds containing hydrogen atoms.  

3  Results and Discussion 

3.1  Pathway network Analysis 

The global topology analysis of the pathway network of LPS-induced PGE2 

production (Figure 1) was performed by NetworkAnalyzer, a plugin of Cytoscape 

2.8.1
41

. The connectivity distribution was P(k)=21.235 × k
 -2.382

 (out-degree 

distribution, r = 0.95), and the average shortest path length was 4.36. This showed that 

the biological network had typical scale-free and small-world properties, and had 

strong network robustness and information transmission
42, 43

. The result also implied 

that the pathway network had the ability to maintain stable phenotypes when it was 

attacked
44, 45

. 

 

Figure 1. Pathway Network of LPS-induced PGE2 production. Diamond and ellipse 

represented proteins and molecules, respectively. Green diamond represented the 

Page 10 of 23Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



11 

 

target proteins for molecular docking. 

3.2  Pathway network-based active compounds screening and validation 

In the pathway network, seven target proteins with high betweenness would play 

more important roles in mediating signal transduction
46, 47

, so they were selected and 

fully knocked out. The results showed that comparing with the fully connected state, 

NE of the whole systems dropped from 11.48 to 3.45. It was similar to the other 

connected state that the 14 docking protein targets were fully knocked (NE was 1.75). 

In constrast to the multi-target state, the pathway network had slight change when one 

protein target with high betweenness was blocked. Therefore, NE was considered to 

effectively measure the damage of pathway network when it was attacked.  

NE could reflect the alternation of a network after an attack, thus it was also 

applied to assess the efficacy of a compound at cellular or organism level
12, 37, 48

. For 

each compound, NE was calculated according to docking scores between the 

compound and 14 protein targets in the pathway network. Of the molecules with high 

NE, 28 compounds (Figure S1) were available to purchase, and the inhibitory 

activities against PGE2 production were determined in RAW264.7 cells. The primary 

assays (500 µM) showed that there were 15 compounds with strong inhibitory 

activities (over 50%). The further assays also verified the inhibitory activities of 12 

compounds with various concentrations (Table 2). In the active compounds, five 

ingredients had strong activities with IC50 less than 40 µM. Luteolin, isorhamnetin 

and caffeic acid almost completely blocked PGE2 production at the concentration of 

62.5 µM. In addition, most compounds had the inhibitory activity over 50% at the 
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concentration of 125 µM (Table 2). The result implied that the hit rate was 42.86%, 

and the approach might improve the success rates from virtual screening at molecular 

level to wet experiments. 

Table 2. Predicted potency and experimental results of each compound against 

LPS-induced PGE2 production 

Compound 
IC50 

(µM) 
Inhibition

a
 

NEd 

(%) 

NFd 

(%) 

NEF 

(%) 

Scopoletin 38.46 0.77 37.01 57.41 46.10 

Luteolin 2.565 ND
b
 50.33 58.00 54.03 

Ferulic acid 128.0 0.51 33.50 78.74 51.36 

Quercetin 51.84 0.64 44.13 56.85 50.09 

Caffeic acid 17.35 0.88 32.63 70.33 47.91 

Neochlorogenic acid 371.6 0.33 34.41 22.60 27.89 

Artemisinin 25.57 0.84 60.27 80.05 69.46 

Geraniol 100.8 0.52 19.81 29.54 24.19 

Isorhamnetin 11.30 ND
b
 41.30 49.68 45.29 

Isochlorogenic acid A 623.3 0.29 7.89 2.05 4.02 

Coumarin 49.14 0.65 34.61 54.86 43.57 

Protocatechuic acid 46.34 0.60 29.65 55.20 40.45 

a
 The inhibition effect was determined in the final concentration of 125 µM. 

b 
ND represents not data due to the influence of the compound with 125µM 

concentration on cell viability. 

As the most successful drug target class in the pharmaceutical industry, the 

interaction between G-protein-coupled receptors (GPCRs) and their extracellular 

ligands has proven to be an attractive point of interference for therapeutic agents
49

. 

PGE2, a metabolite from arachidonic acid (AA), participated in several biological 

process through four distinct GPCRs (EP1, EP2, EP3, and EP4) such as fever, 
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sickness behaviors, mucosal integrity, inflammation and pain
50, 51

. Therefore, the 

blockade of PGE2 synthesis would also effectively regulate the GPCR downstream 

signaling to improve the above symptoms. Among the active compounds against the 

release of PGE2, luteolin, isorhamnetin, quercetin belonged to flavonoids, and the 

comparison of the activities of the three molecules indicated that 3`-OH and 3-OH 

could obviously decrease inhibitory activity. There were five compounds (caffeic 

acid, ferulic acid, neochlorogenic acid, isochlorogenic acid A, protocatechuic acid) 

which belonged to smaller polyphenolic molecules and contained an essential 

structural element (caffeic acid) in common. The contrast of the effect of these 

compounds confirmed that the two hydroxy groups in the 3 and 4 positions of the 

caffeic acid were important to their activities, but the presence of quinic acid 

remarkably reduced the effect. Scopoletin and coumarin, which both contained an 

essential structure of coumarin core, displayed moderate activity against PGE2 

production. This understanding relating the chemical structure of these active 

compounds would facilitate the design of compounds with higher potency against 

PGE2 production, and provide important information for drug discovery from 

flavonoids, polyphenolic compounds and coumarin.  

In order to investigate the quantitative relationship between predicted potency of 

and the experimental inhibitory potency, linear regression was employed to analyze 

the correlation. The result revealed that comparing with NEd (r = 0.60) (Figure 2A), 

the correlation coefficient of NEF with inhibitory rate at the concentration of 125 

µM was increased to 0.77 after integrating the importance of the downstream nodes 
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in the pathway network (Figure 2C). Moreover, there was also a good correlation 

between the experimental inhibitory potency (IC50) and NEd or NEF, and the 

correlation coefficients were 0.62 and 0.80, respectively (Figure 3A and 3C). Thus, it 

was showed that the method could not only effectively distinguish active compounds 

against LPS-induced PGE2 production from complex systems (such as Traditional 

Chinese medicine), but also quantitatively predict the efficacy (IC50) of the 

multi-target compounds by the linear regression equation (Figure 3C). In addition, 

the result also implied that the computational model combining molecular docking, 

biological pathway, and network analysis might simulate drug-induced phenotype 

response at cellular level. 

 

Figure 2. Experimental inhibition activity vs predicated potency: network efficiency 

(A), network flux (B), combination of network efficiency and network flux (C). 

Page 14 of 23Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



15 

 

 

Figure 3. Experimental inhibitory potency (IC50) vs. predicated potency: network 

efficiency (A), network flux (B), combination of network efficiency and network flux 

(C). 

3.3  Comparison with target-based screening 

According to the above results, it seemed reasonable to infer that pathway-guided 

virtual screening could identify active lead compounds, especially multi-target 

molecules. To further explore the computational methods, we compared pathway 

network-based screening with target-based screening. In the pathway of PGE2 

production, it has been widely known that COX-2 and PGES were limiting-rate 

enzymes, and drugs targeted the two protein could directly inhibit PGE2 production
13, 

52
. Their NEF were higher than that of other nodes (32.74% and 22.47%), when the 

two nodes were fully blocked, respectively. The experimental result also confirmed 

that the PGE2 was completely inhibited by the approved drug Celecoxib (a selective 

COX-2 inhibitor) 
14

 at the concentration of 3.3 µM. But  the correlation coefficients 

between experimental potency (IC50) and the predicted potency (docking score or the 
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accurate binding free energy) were very bad (0.19 and 0.69, 0.28 and 0.049) for the 

compounds interacting with COX-2 or PGES (score was no less than 0). The results 

indicated that the computational approach could translate the interactions at molecular 

level to the desired effect, and also efficiently evaluate the activity of multi-target 

compounds. Thus, the method might be helpful to cell-based phenotypic screeing in 

drug discovery. 

3.4  Molecular dynamics (MD) simulations 

MD simulations could more accurately calculate the binding affinities through the 

flexibility of protein and ligand, thus it has been widely applied to simulate the 

interaction between active compound and protein target
53

. In this work, MD was 

performed to investigate the interactions between three active molecules (artemisinin, 

scopoletin and caffeic acid) and the corresponding targets in the pathway network. 

The compounds were subjected to 10 ns MD simulations, and the binding free 

energies of the snapshots of the last 3 ns trajectory were then listed in Table 3. 

Trajectory analysis was showed to have low fluctuation after 7 ns (Figure S2). The 

results showed that the compounds had strong interaction with many protein targets, 

which was confirmed by some reported literatures. For example, scopoletin could 

inhibit the phosphorylation of p38, ERK and JNK in concentration dependent manner, 

and caffeic acid could inhibit the phosphorylation of JNK, MKK4/7 and TAK1
54, 55

. 

The protein targets of mitogen-activated protein kinases (MAPKs) family also played 

an important role in regulating the production of pro-inflammatory cytokines (such as 

PGE2), and some were known as drug targets for new anti-inflammatory drugs 
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development
56

. Thus, it might interpret the molecular mechanism of RDN against 

fever. 

The binding modes for three protein-ligand complex conformations were showed 

in Figure 4. For MKK4 protein (PDB code: 3ALN), scopoletin was surrounded by 

hydrophobic residues Leu154, Ile26 and Val34, and formed hydrogen bonds with 

Met99, Arg28, Lys105 residue in the active site (Figure 4A). The interaction between 

TAK1 (PDB code: 2YIY) and caffeic acid might be hydrophobic, Pi-pi interaction 

between phenyl ring of ligand and hydrophobic residues (such as Val20, Phe146 and 

Leu133), as well as hydrogen bonds between hydroxyl oxygen atom and nitrogen 

atoms in Glu47, Ala77 residues (Figure 4B). Figure 4C showed that artemisinin could 

interact with PGES (PDB code: 3DWW) by hydrophobic-hydrophobic interactions 

between phenyl ring of ligand and the residues of binding cavity (eg. Thr166, His204, 

Leu201). The binding modes of the other top six protein-ligand complex 

conformations were listed in Figure S3.  

Table 3. Binding free energies (△Gbind/kcal.mol
-1

) between active molecules and 14 

target proteins 

Protein PDB Scopoletin Caffeic acid Artemisinin 

TRAF6:RIP1 4ITJ -23.18 -18.12 -30.55 

MKK4 3ALN -22.80 -12.51 -23.09 

MKK6 3VN9 -20.28 -13.55 -22.01 

TAK1 2YIY -20.20 -17.61 -21.07 

JNK 3PZE -19.21 -9.06 -14.97 

COX-2 3LN1 -19.18 -14.39 -24.00 

ERK1 2ZOQ -19.06 -15.43 -20.28 

IκBα 3GUT -18.80 -15.3 -17.77 
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TLR4 4G8A -18.56 -9.11 -29.85 

PGES 3DWW -16.79 -17.83 -27.72 

AP-1 1FOS -17.78 -13.12 -11.25 

p38 1CM8 -13.83 -13.39 -19.49 

MEK1 3DY7 -16.15 -12.86 -14.14 

TRAF6 1LB5 -11.19 -8.72 -17.15 
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Figure 4. The binding modes of (A) complex scopoletin/MKK4 (3ALN), (B) complex 

caffeic acid/TAK1 (2YIY) and (C) complex artemisinin/PGES (3DWW) after 10 ns 

MD simulations. Ligands and some important residues were showed in stick, and 

hydrogen bonds were showed in dashed line (yellow). The RMSDs of their complexes 

were showed in Figure S2. See also Figure S3 for the binding modes of the other 

protein-ligand complexes. 

4  Conclusions 

A recent trend for active lead compounds discovery was to move toward 

systems-oriented approaches such as phenotypic assays and computational methods. 

In this work, first, combination with molecular docking and pathway network analysis 

was applied to interpret the molecular mechanism of RDN against LPS-induced PGE2 

production, which would provide a novel opportunity to illustrate the mechanism of 

traditional Chinese medicine (TCM). Second, the correlation with experimental 

results showed that the approach could offer an efficient way to identify active 

compounds from TCM through network efficiency and network flux, especially 
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multi-target candidate drugs. Finally, comparing with target-based virtual screening,  

it could simulate drug actions in the context of pathway network, and bridge the gap 

between drug-target interaction and the systematic behavior of cells (phenotype). 

Thus, it would be helpful to screen lead compounds in early-phase drug discovery and 

improve the success rates in last stage drug development. In addition, it could be 

applied to explore the molecular mechanism of TCM. 
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