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Insight, innovation, integration 1 

The identification and validation of effective metrics for protein-protein interaction (PPI) 2 

predictions and mainly an increase in the coverage of the interaction network, our 3 

methodology has the potential to efficiently predict PPI in an organism. This will allow a 4 

comparison of features at networks level and a better knowledge about the target organism, 5 

thereby, driving new biological postulations and new experiments. A validated 6 

computational method to predict PPI, allows the selection of specific interactions of our 7 

interest, reducing costs and increasing success rate in the future experimental results. 8 

Likewise, identifying the contribution of each metric for each individual public database 9 

and removing the inefficient metrics is important to prevent misuse in PPI network 10 

predictions.  11 
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Abstract 34 

Automated and efficient methods that map ortholog interactions from several organisms 35 

and public databases (pDB) are needed to identify new interactions in an organism of 36 

interest (interolog mapping). When computational methods are applied to predict 37 

interactions, it is important that these methods be validated and their efficiency proven. In 38 

this study, we compare six Blast+ metrics over three dataset to identify the best metric for 39 

protein-protein interaction predictions. Using Blast+ to align the protein pairs, the ortholog 40 

interactions from DIP were mapped to String, Intact and Psibase pDBs. For each interaction 41 
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mapped to each pDBs, we retrieved the alignment score, e-value, bitscore, similarity, 42 

identity and coverage. We evaluated these Blast+ values, and combinations thereof, with 43 

the Receiver Operating Characteristic (ROC) curves and computed the Area Under Curve 44 

(AUC). To validate these predictions, we used a subset of the Database of Interacting 45 

Proteins (DIP) composed of experimental interactions curated by the International 46 

Molecular Exchange (IMEx). The cut-off point for each metric/pDB was computed aiming 47 

to identify the best on that separates the true and false predicted interactions. In contrast to 48 

other methods that only compute the first Blast hit, we considered the first 20 hits, thus 49 

increasing the number of predicted interaction pairs. In addition, we identified the 50 

contribution of each individual pDB, as well as their combined contribution to the 51 

prediction. The best metric had an AUC of 0.96 for a single pDB and AUC of 0.93 for 52 

combined pDBs. Compared to other studies, with a cut-off point of 0.70 representing a 53 

specificity of 0.95 and sensitivity of 0.90 for individual pDB, our method efficiently 54 

predicts protein-protein interactions. 55 

Keywords: 56 

Computational method, Protein-protein interaction prediction, Interaction network, 57 

Interolog Mapping, Orthologous interactions 58 

1 Introduction 59 

Understanding the dynamic nature of activities that take place inside the cell of a living 60 

organism is necessary at systems biology level. To achieve this, it is necessary to know 61 

how the elements of cells such as the genes, transcripts, proteins and various other cellular 62 

molecules interact each other and with the outer environment to facilitate the biological 63 

functions
1-5

. In this aspect, proteins and their interactions plays an important role and 64 

therefore, understanding of protein-protein interactions (PPI) is an important aspect to 65 

reveal the molecular mechanism of cell at systems level
6, 7

. Analysis of PPI helps in better 66 

understanding of the biology of phylogenetically close and even the distance organisms. 67 

PPI networks form complex systems and when such networks are computationally depicted 68 

in a graphical form; the nodes represent proteins and non-directional lines connecting these 69 

nodes represent the interactions between the proteins
8, 9

. Computationally analyzed PPI  70 

helps in developing new hypotheses about an organism and to design the laboratory 71 

Page 3 of 23 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



experiments driven by the hypotheses
10, 11

. In case of infectious microorganisms, studying 72 

PPI networks offer identification of pathogenic proteins and therefore offers new 73 

opportunities for developing novel drug and vaccines
12-14

. The interactions of proteins 74 

within a cell depend on several biological or physico-chemical factors
15

 and the PPI can be 75 

physical interactions, regulatory associations, genetic interactions, structural interactions, 76 

functional similarity associations among others. Such associations are not mutually 77 

exclusive and may occur simultaneously
8
. Several methods have been developed for 78 

studying PPI that can be categorized as genetic, biochemical, biophysical, high throughput,  79 

and computational approaches
16

. Several methods have been developed for studying PPI 80 

that can be categorized as genetic, biochemical, biophysical, high throughput,  and 81 

computational approaches
16

. The important experimental methods include yeast-two-hybrid 82 

(Y2H)
17

, protein chip, tandem affinity purification followed by mass spectrometry (TAP-83 

MS)
18

, atomic force microscopy (AFM)
4, 8, 9, 19, 20

 and analytical ultracentrifugation (UC)
6
. 84 

Each approach has its advantages and disadvantages and therefore more than one technique 85 

may required to eliminate the false positives
16

. Computational methods can handle entire 86 

proteome interactions but generates false-positives interactions similar to the high 87 

throughput techniques
3, 8, 21

. Computational prediction of PPI and their analysis can be done 88 

using machine learning techniques
11, 22-26

, protein sequence homology or interolog 89 

mapping
27-29

, three-dimensional protein structure analysis
30-33

, docking studies
34

, domains 90 

interactions
35

, text mining
36-39

, protein co-evolution approaches
20, 23, 40

, Mirror tree 91 

method
41

, phylogenetic profile analysis
20

 or a combination of these methods
42

, which have 92 

also been described and reviewed in other works
43-46

. Computational methods, individually 93 

or in combination, have been used to develop and analysis of PPI  interaction networks in 94 

several organisms such as Drosophila melanogaster
28

, Arabidopsis thaliana
29

, Leishmania 95 

brasiliensis, Leishmania major and Leishmania infantum
2, 27

, yeast
17

, Saccharomyces 96 

cerevisiae
47

, Xanthomonas oryzae
48

, Helicobacter pylori
49

 and Human
50

. When the 97 

interaction network is predicted using sequence homology or interolog mapping, it is 98 

assumed that, if a pair of proteins interact in a particular organism, the ortholog proteins in 99 

another organism will interact as a similar pattern
3, 16

 and  is used to identify the 100 

conservation of protein interactions between two organisms when there is high similarity in 101 

the sequence of proteins
51

 and transfer annotations between genomes
52

. But the prediction 102 

efficiency of interolog mapping is not yet satisfactory as compared to other computational 103 

methods
33

. This may be due to the use of only the first Blast hit
53

. Therefore there is scope 104 
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of improving the method for its efficacy and accuracy in predicting and analyzing the PPI. 105 

Here, using publicly available PPI databases (pDB) both individually and collectively and 106 

less stringent criterion for Blast+; we tried to increase the efficacy and sensitivity of 107 

interolog mapping based PPI with minimal false-positive and false-negative interactions. 108 

1.2 Materials and methods 109 

1.2.1 Databases used 110 

In this work, we have used four pDB: Database of Interacting Proteins (DIP)
54

,  String
55

, 111 

Intact
56

, and  Psibase
57

 (Error! Reference source not found.Supplementary material S1).  112 

Since the DIP contains experimental and curated data
58

 for PPIs, it was used as the gold 113 

standard to evaluate our prediction. Aiming to increase the coverage of the interaction 114 

network prediction while also reducing the false negatives and false positives, we mapped 115 

the ortholog interactions and conducted the prediction of those interaction pairs found in 116 

the DIP database by comparing against three other pDBs instead of only one
20

. 117 

1.2.2 Blast+ 118 

The BLASTp program from the Blast+ package
53

 was used to align and map de ortholog 119 

proteins between the databases. All the six alignment values of BLASTp: score, e-value, bit 120 

score, similarity, identity and coverage were considered to compose the metrics that will be 121 

evaluated. Aiming to validate a methodology that is able to classify non-orthologous and 122 

orthologous proteins, we run the Blast+ with the e-value parameter set to 0.1, all other 123 

parameters at their default value. To compare the metrics and how much each pDB 124 

contributes to the prediction of interaction pairs, we ran Blast+ to generate two distinct 125 

datasets: the first contains only the first Blast+ hit (num_alignments 1) and the second 126 

contains the first 20 Blast+ hits (num_alignments 20). 127 

1.2.3 Interolog mapping 128 

To map the ortholog proteins between pDBs using Blast+, we first used the DIP proteome 129 

as the query and the proteomes of the other pDBs (String, Intact and Psibase) as the subject. 130 

We then inverted this process, using the latter pDBs as the query and the DIP proteome as 131 

the subject. For the interaction analysis, only those proteins that had a reciprocal hit (RH), 132 

i.e., when protein "a" from DIP align to protein "A" from the pDB and protein "A" from the 133 
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pDB align to protein "a" from the DIP were considered. Specific datasets and metrics were 134 

generated for each pDB versus DIP combination. For each identified RH, we extracted six 135 

values from the Blast+ alignment results as mentioned before. For each reciprocal hit, the 136 

minimum value of its metric was calculated using the following formula: 137 

RH(a) = min(BlastValue (a→A), BlastValue (a←A)) 138 

Here, “BlastValue” represents each of the six values extracted from the Blast+ alignment 139 

that will be evaluated, "a" represents the protein in our gold standard (DIP), and "A" 140 

represents the pDB protein. The reciprocal hit (RH) is represented by both “a→A”, 141 

indicating that the protein “a” in the DIP was used as the query and was aligned against the 142 

protein “A” in the pDB, and by “a←A”, indicating that the protein “A” in the pDB was 143 

used as the query and was aligned against the protein “a” in the DIP. The following thus 144 

represent an interaction pair: 145 

RH(a), RH(b) 146 

Here, the proteins "a" and "b" are reciprocal hits of proteins "A" and "B", respectively. 147 

Moreover, "A" and "B" are the identifiers of the interaction pairs found in the pDBs and 148 

were used to map the interaction pairs "a" and "b" in our gold standard DIP. The metric 149 

about each predicted interaction pairs were assessed by two distinct manners: using the 150 

average metric value and using the smallest metric value, which were respectively denoted 151 

by the following formulas: 152 

avg(ab) = (RH(a) + RH(b))/2 153 

min(ab) = min(RH(a),RH(b)) 154 

Moreover, each pDB has its own confidence score that was also evaluated both individually 155 

and in combination with the other metrics extracted from the RHs. In addition, we have 156 

evaluated the contribution of each pDB to the interaction pair, for which we combined the 157 

other metrics with the number of times that the interaction pair was predicted in the pDBs 158 

(qt_pDB), giving greater weight to interaction pairs predicted by different pDBs. 159 

1.2.4 Validation and precision prediction 160 

To assess the efficiency of our predictions, in addition to a positive set of interactions, a set 161 

of negative interactions is also necessary. Because the DIP database contains only positive 162 

interactions, the negative interaction pairs were randomly generated from the DIP protein 163 

identifiers through an in-house script at a ratio of five times the number of positive 164 

interactions. This negative dataset is composed of protein interaction pairs that are not 165 
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found in the set of known interactions
59

. We created metrics with each value extracted from 166 

Blast+, with the pDB score, with the number of databases in which the interaction was 167 

predicted (qt_pDB), or by combining these values. These metrics were validated for each 168 

pDB both individually and collectively, seeking to identify which metric variation versus 169 

pDB best represents the set of positive and negative interactions found in our gold standard 170 

(DIP). To validate the metrics and their combinations, we used the Receiver Operating 171 

Characteristic (ROC) curve plots and calculated the Area Under Curve (AUC) for each 172 

metric using the software package ROCR
60

. For metrics with a better AUC value, when 173 

seeking to identify a cut-off point that best represented the positive and negative sets of 174 

predicted interactions, we tested values from zero to one as cut-off points and compute the 175 

sensitivity, specificity and precision by the following formulas: 176 

Sensitivity = TP / (TP + FN) 177 

Specificity = TN / (TN + FP) 178 

Precision = TP / (TP+FP) 179 

The best cut-off point was chosen using the formula 180 

Sensitivity x Specificity 181 

because, aside from being easy to implement, its result is equivalent to the Matthews 182 

Correlation Coefficient (MCC)
41

. The entire method is represented in Supplementary 183 

material S2. 184 

2 Results and discussion 185 

2.1 Comparison of predictions based on different numbers of blast 186 

alignments 187 

One motivation for this study was the hypothesis that, when only the first hit returned by 188 

Blast+ is considered, important results might be disregarded. To test this hypothesis, we 189 

performed the analysis using two datasets: one containing only the first Blast+ hit 190 

(num_alignments 1) and another containing the first 20 Blast+ hits (num_alignments 20). 191 

We compared these two datasets and observed a general 16.95-fold increase in the number 192 

of alignments and a 5.10-fold increase in the number of distinct predicted interaction pairs. 193 

Proportionally, there was a larger increase in the number of alignments than in the number 194 

of interaction pairs. This fact is explained by comparing, especially in the case of the String 195 

pDB, the total number of interaction pairs (25,343,169) with the number of distinct 196 
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interaction pairs (5,382,086), becoming evident the number of repeated interaction pairs 197 

(Table 1). When we used 20 Blast+ alignments, it is natural to expect that, if there are 198 

homolog proteins among the pDBs, these will be aligned against the same sequence in the 199 

DIP, thus mapping the same DIP identifier. Consequently, it reduces the number of distinct 200 

DIP interaction pairs identified in relation to the number of Blast+ alignments. 201 

 202 

Consideration of first 20 Blast+ alignments generates a large number of repeated 203 

interaction pairs. But we were able to increase the number of distinct interaction pairs five 204 

times more with an aim to increase >5 times the network coverage for a more informative 205 

interactions. After significant increase in the number of distinct interaction pairs generated 206 

by Blast+ (num_alignments 20), we investigated the amount of said alignments in relation 207 

to the number of hits that Blast+ returned after each run. It was done to identify how much 208 

distinctiveness is actually contributed by increasing the parameter num_alignments to 20. 209 

From the total 812,907 alignments returned by Blast+ for the three pDBs, 71.8% had 20 210 

hits, indicating that an even higher cut-off value for num_alignments, may be 30 or 40, 211 

could be considered (Supplementary material S3). In addition, we investigated the quality 212 

of these alignments because better alignments have a greater chance of participating in 213 

positive interactions. We then considered only those hits with > 80% identity versus 214 

coverage ratio. Most Blast+ alignments (41.4%) had exactly 20 hits indicating that 215 

num_alignments to a value above 20 might return significant alignments too 216 

(Supplementary material S3). Considering that these Blast+ alignment results are not 217 

homologous proteins, which would map identical identifiers in the DIP, they certainly 218 

Table 1 – Quantification of the alignments and interaction pairs comparing 1 and 20 

blast hits dataset 

 Blast+ output alignment hits Interaction pairs mapped from the pDBs 

pDB 1 hit 20 hits Proportion 1 hit 20 hits 20 hits(*) Proportion(*) 

String 44,660 853,234 19.10 1,651,858 25,343,169 5,382,086 3.25 

Intact 41,846 450,308 10.76 101,439 5,023,022 3,518,501 34.6 

Psibase 9,392 322,272 34.31 112 314,280 47,951 428.13 

Total 95,898 1,625,814 16.95 1,753,409 30,680,471 8,948,538 5.10 

1 hit: corresponds to reciprocal hits from Blast+ running with the parameter 

num_alignments set to 1. 20 hits: corresponds to reciprocal hits from Blast+ running 

with the parameter num_alignments set to 20. Proportion(*): Proportion of the quantity 

of interaction revealed by Blast+ with num_alignments 20 had over num_alignments 1 

(20 hits(*) / 1 hit). Hits were counted in both the a->A and a<-A directions. (*) 

Represents the number of distinct interaction pairs for Blast+ 20 hits. 
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should contribute to the identification of new interaction pairs. Hence, we investigated the 219 

number of distinct identifiers mapped to the DIP that would be returned when the Blast+ 220 

parameter num_alignments is set to values between 1 and 20. For this analysis, we 221 

considered that identifiers found with num_alignments 2 were unique. This was done 222 

successively until num_alignments was set to 20, and only the unique identifiers that were 223 

not found in identifier sets for num_alignments below 20 were considered. As expected, 224 

most distinct DIP identifiers were found when num_alignments was set to 1 (76.65%) and 225 

only 1.4% when num_alignments 20. Of the total 23,680 distinct identifiers present in the 226 

DIP, 23,280 were found with the Blast+ parameter num_alignments set to 20, achieving a 227 

total identifier coverage of 98%. Comparing the use of num_alignment set to 1 and 20, 228 

there was an increase of approximately 23% in the number of distinct identifiers 229 

(Supplementary material S3). Although it is small, this increase may contribute to increase 230 

the number of predicted interacting pairs therefore may increase the network coverage. 231 

2.2 Analysis of interaction pairs 232 

In our gold standard database DIP, there are positive and negative interaction pairs. The 233 

positive set consists of experimental interactions curated by the IMEX consortium
58

, 234 

whereas the negative set was randomly generated at a proportion of five times the number 235 

of positive interactions. In the DIP, all predicted interaction pairs can not be mapped. 236 

Therefore, it is impossible to assess whether these predicted interactions are true or false. 237 

To avoid the doubtful inference, we considered only those interaction pairs predicted in the 238 

pDBs that were also mapped in the DIP to analyze our metrics. Given the difference in the 239 

number of Blast+ hits when comparing the two datasets generated with num_alignments set 240 

to 1 and 20, we studied the pattern of each metric in the interactions generated by each 241 

dataset. To do this, we predicted the PPI pairs, generated ROC curves and computed the 242 

respective AUC values for both the datasets: num_alignments 1 (Table 2) and 243 

num_alignments 20 (Table 3). For both the datasets, we used the metric avg(ab) to compute 244 

the six proposed blast values; score, bitscore, conserved, identity, expected and pdb_score, 245 

in addition to a combination of two other metrics. For the first dataset, the score, bitscore, 246 

conserved, identity and expected blast values displayed a random behavior with an AUC 247 

close to 0.50. Therefore, it was not possible to distinguish between positive and negative 248 

interactions. In contrast, the pDB_score metric showed considerable improvement for the 249 

String (AUC 0.70) and Intact (AUC 0.72) pDBs individually. However,  when these pDBs 250 
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were combined the AUC value became 0.69. We then tested the Combined I metric (pDB 251 

score * qt_pDB), which showed considerable improvement for the pDB combination (0.80) 252 

and for the String pDB (AUC 0.82), whereas the result was poorer for the Intact pDB 253 

(0.58). After observing the behavior of the metrics, we combined the best metric of each 254 

individual pDB (pDB score*qt_pDB for String and pDB score*3 for Intact) to compose the 255 

Combined II metric. This approach yielded the best result for each pDB individually (AUC 256 

of 0.82 for String and 0.72 for Intact) as well as the best result for the combined pDBs 257 

(AUC 0.90). We evaluated all metrics for the Psibase pDB in an identical manner, but only 258 

a small number of positive interactions were mapped without a set of negative interactions 259 

as required to generate an ROC curve (Table 2). In all ROC curves, “All pDB” corresponds 260 

to the union of the data from all the other pDBs which, in theory, would be expected to 261 

contain a value close to the average AUC of the individual pDBs. However, in some cases, 262 

the AUC value was below the average. This suggested that joining the data from distinct 263 

pDBs and assessing them using the same metric will not always improve prediction and 264 

that this condition should be carefully tested. We can improve predictions by combining 265 

these metrics (Table 2 - Combined I). Still, if the best metrics of each individual pDB are 266 

normalized, they may collectively produce better results than if they are individually 267 

analyzed (Table 2 - Combined II). 268 

 269 

AUC Metric pDB Intact pDB String pDB Psibase All pDB 

Score 0.44 0.52 ? 0.51 

Bitscore 0.44 0.52 ? 0.51 

Conserved 0.46 0.49 ? 0.49 

Identity 0.46 0.49 ? 0.49 

Expected 0.47 0.50 ? 0.50 

pDB_score 0.72 0.70 ? 0.69 

Combined I 0.58 0.82 ? 0.80 

Combined II 0.72 0.82 ? 0.90 

 270 

Other combinations of values may generate better metrics for predicting interactions in 271 

these datasets (num_alignments 1). Our priority, however, was to perform larger analyses 272 

for the dataset generated with the Blast+ parameter num_alignments set to 20 (Table 3). 273 

Table 2 – AUC values relating to metrics from dataset created with Blast+ parameter 

num_alignments set to 1 and average interaction pair metric value (avg(ab)). 

All pDB: contains the combined data of Intact, String and Psibase pDBs. The values ? 

of pDB Psibase column could not be computed. The ROC curves related to the AUC 

values are detailed in  Supplementary material S4. 
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This parameter value is justified by the increased number of predicted interaction pairs, the 274 

improvement in the ROC curves and the AUC values together making this dataset more 275 

biologically relevant for analysis. Because it contains more interaction pairs, it was possible 276 

to generate the plots for the Psibase pDB, even though the AUC values for this pDB were 277 

not good. For the String and Psibase pDBs, the AUC values showed considerable 278 

improvement for all metrics. The Conserved and Identity metrics yielded the best AUC 279 

values for each individual pDB, especially for Intact, with AUC of 0.95 and 0.96, 280 

respectively. The Identity metric was used to compose the Combined II metric, which 281 

yielded the best AUC value for this dataset, both for the individual pDBs and for their 282 

combination (AUC 0.92 - Table 3). To improve the AUC values obtained with avg(ab) 283 

metrics (Table 3), we also computed the min(ab) metrics to the interaction pair (Table 4). 284 

The comparison of the plots generated for the ROC curves shows that both the metrics 285 

obtained from the average value for the interaction pair (Table 3) and those obtained from 286 

the minimum value (Table 4) yielded good results, indicating that, these two metrics are 287 

similar in predicting interaction networks. A considerable improvement is observed for the 288 

Psibase pDB when the metric is computed using the minimum value of each interaction 289 

pair. In both datasets analyzed in this study, the AUC value for the Combined II metric 290 

(0.92 - Table 4) obtained by joining all pDBs was very close to that was found in another 291 

study
27

, where an AUC equal to 0.94 was obtained. 292 

 293 

AUC Metric pDB Intact pDB String pDB Psibase All pDB 

Score 0.83 0.60 0.58 0.68 

Bitscore 0.83 0.60 0.58 0.68 

Conserved 0.95 0.73 0.67 0.80 

Identity 0.96 0.74 0.68 0.81 

Expected 0.88 0.61 0.60 0.71 

pDB_score 0.57 0.72 0.50 0.65 

Combined I 0.79 0.84 0.50 0.80 

Combined II 0.96 0.91 0.72 0.92 

 294 

By analyzing the pDBs individually, we identified their individual contribution to the 295 

composition of the general AUC value of all pDBs. The largest contribution was from the 296 

Intact pDB (0.96), followed by the String (0.90) and Psibase pDBs (0.79) (Table 4 - 297 

Table 3 – AUC values relating to metrics from dataset created with Blast+ parameter 

num_alignments set to 20 and average interaction pair metric value (avg(ab)). 

All pDB: contains the combined data of Intact, String and Psibase pDBs. The ROC 

curves related to the AUC values are detailed in  Supplementary material S5. 
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Combined II). Each pDB gave a different AUC for each metric, contributing in different 298 

ways to the composition of the general AUC value. Distinct pDB combinations can also 299 

contribute differently to prediction, a fact observed when analyzing the ROC curve 300 

generated using only, both the String and Intact pDB. Without the Psibase pDB, the ROC 301 

curve yielded a better general AUC (0.93 - Figure 2 - Combined II).  302 

 303 

AUC Metric pDB Intact pDB String pDB Psibase All pDB 

Score 0.88 0.61 0.73 0.71 

Bitscore 0.88 0.61 0.73 0.71 

Conserved 0.95 0.74 0.74 0.80 

Identity 0.96 0.74 0.77 0.81 

Expected 0.89 0.61 0.73 0.71 

pDB_score 0.57 0.72 0.50 0.65 

Combined I 0.79 0.84 0.50 0.80 

Combined II 0.96 0.90 0.79 0.92 

 304 

Independently from using the average (avg(ab)) or minimum (min(ab)) value in the metrics, 305 

the individual values extracted from Blast+ that were most effective in predicting 306 

interaction pairs were Coverage and Identity. When an interaction pair is predicted by more 307 

than one pDB, the chances of this interaction being true are higher. We used this premise to 308 

improve the ROC curves of the String and Psibase pDBs by giving greater weight to 309 

interactions that were predicted in more than one pDB (qt_pDB in Combined II). For the 310 

Psibase pDB, this change did not improve the curve; however, it significantly improved for 311 

the combination of all pDBs (0.92) and for the String+Intact pDB combination (0.93). 312 

Individually, the Intact pDB had the best AUC value (0.96) (Figure 2 – Supplementary 313 

material S6). 314 

For the best ROC curves, we assessed several cut-off points to choose the one having the 315 

best relationship between sensitivity and specificity. We tested cut-off points for the 316 

Combined II metric in relation to the Intact pDB on its own (Figure 3) and for the union of 317 

the String and Intact pDBs (Figure 4). For both the tested sets, the sensitivity and 318 

specificity were inversely correlated, which made it difficult to choose the best suited cut-319 

off point. We also tested the sensitivity to specificity ratio, a measure that is equivalent to 320 

Table 4 – AUC values relating to metrics from dataset created with Blast+ parameter 

num_alignments set to 20 and minimum interaction pair metric value (min(ab)). 

All pDB: contains the combined data of Intact, String and Psibase pDB. The ROC 

curves related to the AUC values are detailed in Supplementary material S6. 

Page 12 of 23Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



the Matthews Correlation Coefficient (MCC), which has been used to predict interaction 321 

networks
41

. For both the Intact pDB dataset and the String+Intact combination, the best cut-322 

off point of the Combined II metric was at 0.70, representing the highest sensitivity to 323 

specificity ratio (Figure 3 and Figure 4). The cut-off point at 0.70 corresponded to a 324 

sensitivity of 0.90 and a specificity of 0.95 for the Intact pDB and to a sensitivity of 0.83 325 

and specificity of 0.95 for the String+Intact pDB (Table 5). This cut-off point was more 326 

specific than sensitive, which, in practice, means that less interaction pairs would be 327 

selected (0.90-0.83). However, the generated results have a higher probability of being true 328 

(0.95). 329 

 330 

Data AUC Cut-Off Sensitivity Specificity Sens. * Spec. Precision 

Intact 0.96 0.70 0.90 0.95 0.86 0.99 

String+Intact 0.93 0.70 0.83 0.95 0.79 0.99 

 331 

The Combined II metric consists of the identity and coverage values extracted from Blast+. 332 

The cut-off point is a ratio of these two values, e.g., equivalent to a coverage of 0.837 and 333 

an identity of 0.837 or a combinations of these values for which the product is 0.70. This 334 

cut-off point was higher than those were recommended (0.30 for identity and 0.80 for 335 

coverage) to avoid the identification of false positives using the method of homolog 336 

interaction mapping 
16

. The value corresponding to the score of each pDB itself (pDB 337 

score) used in the Combined I metric (Table 4) considerably improved the individual 338 

prediction for the String pDB. Thus, the pDB score could be used in combination with 339 

other values extracted from Blast+ to further improve the ROC curve of the String pDB 340 

individually or together with other pDBs. The use of the pDB score, even if justified by 341 

improvements in the ROC curve, would lead us to use different metrics for each pDB in the 342 

same ROC curve. Because this practice is not reported in the literature, we adopted a 343 

conservative posture and did not add this value for the String pDB. Each pDB sets its own 344 

criteria to classify the interactions as true, and as a consequence, the use of different metrics 345 

for each pDB may normalize these criteria and improve the prediction of interaction 346 

networks when several pDBs are used. In addition to the values extracted from the Blast+ 347 

alignments and the pDB score, the way we use the negative interaction set of the gold 348 

Table 5 – Summary of Roc curve obtained by applying the Combined II metric 

The following formulas were used to compute the values in this table: Sensitivity = TP 

/ (TP + FN); Specificity = TN / (TN + FP); Precision: TP / (TP+FP).  
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standard to evaluate metrics can also influence the final results (Supplementary material S7 349 

– The negative dataset). 350 

2.3 Comparison to similar studies 351 

Several other methods and metrics have been developed and have shown themselves viable 352 

when applied to the prediction of interaction networks (Table 6). A comparison of the 353 

metrics found in other studies with the presented herein, considering the different methods, 354 

techniques and datasets used by each, has shown our method to be effective: it obtained an 355 

AUC of 0.93 for the String+Intact pDB combination and an AUC of 0.96 for the Intact 356 

pDB individually. The prediction of interactions using the interolog mapping method was 357 

shown to be viable for application, due to both the results presented in this study and the 358 

comparison to other studies (Table 6). 359 

 360 

Method AUC Value Reference 

Structure Not informed 
33

 

Support Vector Machine (SVM) 0.69 
24

 

Support Vector Machine (SVM) Not informed 
26

 

Text-Mining (*) 0.91 
37

 

Interolog Mapping 0.71 
28

 

Mirrortree 0.73 
41

 

Interolog Mapping (**) 0.94 
27

 

Interolog Mapping (***) 0.96 and 0.93 This study 

 361 

Finally, we used to evaluate our work a data set consisting of 70.630 experimental and 362 

cured interactions as the gold standard
54, 58

. Considering the different metrics used to 363 

measure the efficiency of the prediction methods and the cut-off point of 0.70, we obtained 364 

a precision of 0.99 for both metrics, a value higher than the precision of 0.74 obtained with 365 

a method based on text mining
38

. In addition, comparing the results from our methodology 366 

obtained here with the methodology using Support Vector Machine (SVM) and 1.500 367 

protein interactions, though the specificity (0.98) and precision (0.8) values are 368 

approximate in both works, the sensitivity value (0.15 and 0.28)
26

 was much lower than the 369 

Table 6 - Comparison of the AUC value of our methodology against other methods 

* Organism-specific method that makes predictions only for annotated genes 

** Using only a single first hit of the Blast
61

 program and only 702 interactions as 

positive gold standard dataset. 

*** Using the first 20 Blast+ 
53

 hits for prediction 
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obtained value in this study (0.83 and 0.90, Table 5). These results, thus, reinforce the 370 

efficiency of our metrics and the good ratio between sensitivity and specificity. 371 

3 Conclusions 372 

This is the first study that uses the first 20 Blast+ hits to compare the combinations of 373 

values extracted from alignments for the prediction of PPIs using ortholog interaction 374 

mapping and, in addition, evaluates these values for each pDB individually and in 375 

combination. Based on our observations in this study, we concluded that each pDB 376 

contributes differently to the prediction of interactions, and when used in combinations, the 377 

results must be carefully analyzed because adding another pDB does not necessarily 378 

improve prediction. This study contributes to the scientific community the good AUC 379 

values obtained from the pDB Intact (0.96) and pDB Intact + String (0.93). Most 380 

importantly, it also contributes to the possibility of increasing the coverage of a predicted  381 

interaction network for an organism by using the first 20 Blast+ hits instead of only the 382 

single first hit, thus maintaining a decent performance. In addition, despite identifying the 383 

metrics that yield good AUC values, we also identified the metrics that are not adequate for 384 

predicting PPI using the interolog-mapping method. The blast values such as e-value, score 385 

and bit score are good metrics for indicating the best alignments for one query protein 386 

against a group, but they fail to generally differ true and false homology for all query 387 

proteins of a group. In this way, it becomes difficult to identify a cut-off point to 388 

distinguish true homologous proteins. This phenomenon is explained by the bias that these 389 

metrics are due to the size of the subject database (e-value) or even due to the length of the 390 

amino acid sequence (score and bit score). After all, two small proteins with good 391 

alignments receive a lower score than two larger proteins with good alignments. The 392 

combination of the coverage and identity metrics was effective to mapping orthologous 393 

interactions. It joins in a single metric, both the quality (identity) and quantity (coverage) of 394 

an alignment between two proteins. In this case, the database size do not influence these 395 

metrics and, the percentage values act as normalizers for the protein size. With the results 396 

obtained in this study, we intend to use and apply our methodology to predict the pan-397 

interactome of fifteen strains of the gram-positive bacterium Corynebacterium 398 

pseudotuberculosis, a pathogen of great veterinary and economic importance. In addition, 399 

we will use the properties of the predicted interaction network to improve the functional 400 
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annotation of C. pseudotuberculosis genes
7, 52

. Likewise, we hope that the scientific 401 

community will also make use of the in silico methodology that we have validated here, to 402 

predict the interaction networks of their organisms of interest. The approach we have 403 

followed can be reproduced using public-domain computer programs and databases that are 404 

freely available. 405 
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Figure legends 514 

Figure 1 Distribution of Blast+ alignments grouped by number of hits. The alignments 515 

was generated with the Blast+ parameter num_alignments set to 20. All pDB: 516 

is the sum of String, Psibase and Intact. (*) Alignments in which the coverage 517 

to identity ratio is above 80%. 518 

Figure 2 Combined II ROC curve. ROC curve corresponding to the metrics generated 519 

with the Blast+ parameter num_alignments set to 20 and minimum interaction 520 

pair metric value (min(ab)). 521 

Figure 3 Sensitivity and specificity analysis for the Combined II metric ROC curve of 522 

the Intact pDB. 523 

Figure 4 Sensitivity and specificity analysis for the Combined II metric ROC curve of 524 

the String+Intact pDB. 525 
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Distribution of Blast+ alignments grouped by number of hits. The alignments was generated with the Blast+ 
parameter num_alignments set to 20. All pDB: is the sum of String, Psibase and Intact. (*) Alignments in 

which the coverage to identity ratio is above 80%.  
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Combined II ROC curve. ROC curve corresponding to the metrics generated with the Blast+ parameter 

num_alignments set to 20 and minimum interaction pair metric value (min(ab)).  

51x50mm (600 x 600 DPI)  

 

 

Page 21 of 23 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Sensitivity and specificity analysis for the Combined II metric ROC curve of the Intact pDB.  
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Sensitivity and specificity analysis for the Combined II metric ROC curve of the String+Intact pDB.  
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