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Dynamic transcription factor activity and networks 

during ErbB2 breast oncogenesis and targeted 

therapy   

M. S. Weissa†,  B. Peñalver Bernabéa†,  S. Shina,  S. Asztalosb,  S. J. Dubburyc,  
M. D. Muia,  A. D. Bellisa,  D. Bluvera,  D. A. Tonettib,  J. Saez-Rodriguezd,  L. J. 
Broadbelta,e,h, J. S. Jerusse, f,h,  L. D. Sheaa,f,g,h 

Tissue development and disease progression are multi-stage processes controlled by an 

evolving set of key regulatory factors, and identifying these factors necessitates a dynamic 

analysis spanning relevant time scales. Current omics approaches depend on incomplete 

biological databases to identify critical cellular processes. Herein, we present TRACER 

(TRanscriptional Activity CEll aRrays), which was employed to quantify the dynamic activity 

of numerous transcription factor (TFs) simultaneously in 3D and networks for TRACER 

(NTRACER), a computational algorithm that allows for cellular rewiring to establish dynamic 

regulatory networks based on activity of TF reporter constructs. We identified major hubs at 

various stages of culture associated with normal and abnormal tissue growth (i.e., ELK-1 and 

E2F1, respectively) and the mechanism of action for a targeted therapeutic, lapatinib, through 

GATA-1, which were confirmed in human ErbB2 positive breast cancer patients and human 

ErbB2 positive breast cancer cell lines that were either sensitive or resistant to lapatinib. 

 

Insight box: We present a new combination of experimental and computational technologies  

to quantify the dynamic activity of numerous TFs through differentiation in 3D culture, as TF  

activity is the integration of intracellular and extracellular signals that powerfully regulate cell  

fate. TRACER allows quantification of key signalling pathway activity over time scales of 

days to weeks that corresponds to complex cell fate decisions, while the computational 

approach is aimed at identifying the critical pathways that modulate cell fate. The potential of 

this experimental/computational combination was demonstrated through identifying TF hubs 

associated with normal and abnormal 3D tissue formation that correlated with clinical breast  

cancer samples, or critical TFs stimulated following drug treatment that identified novel  

mechanisms of action.   

 

Table of contents: A novel experimental and computational approach for real time  

identification of transcription factors regulating cell fate throughout differentiation in 3D  

culture.
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Introduction 

 Many biological processes are dynamic in nature, such as 

tissue regeneration or tumor progression. The active cellular 

processes that control those evolving phenotypes change with 

time. Time-series microarrays, RNA-seq and 

phosphoproteomics are common techniques to follow cellular 

dynamics, but they rely on incomplete biological databases to 

determine the most relevant active processes1,2. Meanwhile, 

transcription factors (TFs) are powerful regulators of cellular 

responses, as well as the liaison between signaling and gene 

expression. TF activity, which results from the integration of 

intracellular and extracellular signals within the signal 

transduction network, can lead to subsequent changes in gene 

expression. Here we present transcriptional activity cell arrays 

(TRACER), a technology that enables the monitoring of the 

dynamic activity of a multitude of TFs in 3D over tissue 

formation time scales in real time.  

 The complexity of intracellular signal transduction networks 

provides the robustness and versatility necessary for the 

regulation of normal cellular processes, yet this complexity also 

makes challenging the identification of critical signals driving 

dysregulated growth in cancer progression. In cancer research, 

biomarkers are being actively pursued to predict patient 

prognosis or to serve as novel therapeutic targets3, of which 

ErbB2 (HER2/Neu) is a leading example4 . ErbB2 is 

overexpressed in 25-30% of breast cancers and is associated 

with aggressive cancer biology5. Several drugs have been 

developed to target ErbB2, such as trastuzumab (Herceptin; 

Genentech) or lapatinib (Tykerb; GlaxosmithKline), but not all 

ErbB2 overexpressing patients respond6, and resistance can 

develop in those that do7. The impact of constitutive ErbB2 

signaling on dynamic activity within the intracellular signal 

transduction network on the time scales of tissue formation has 

not been well characterized. Moreover, an improved 

mechanistic understanding of currently available anti-ErbB2 

agents could be employed to discriminate the agent or 

combination of agents that would be most efficacious based on 

the tumor biology, thereby further refining personalized 

therapeutic strategies. 

 Herein, TRACER8, 9  is applied for the large-scale real-time 

quantification of dynamic TF activity associated with 

constitutive ErbB2 signaling during the development of 

mammary epithelial cells into pre-invasive structures. TF 

activity is obtained through parallel delivery of TF reporter 

(TFr) constructs in an array, with bioluminescence imaging 

employed for dynamic quantification. The array is also 

implemented to investigate the mechanism of action for a 

targeted ErbB2 therapeutic, lapatinib. We generated dynamic 

networks based on activity of the TFrs resulting from 

constitutive ErbB2 activity, which correlate with observed 

phenotypes, and provide insight into the mechanism of action 

of lapatinib, using TRACER data in combination with prior 

biological knowledge, inference methods and optimization 

techniques. The ability to define TF dynamics at a large-scale 

presents a strategy towards identifying key cellular processes 

associated with normal and dysregulated cell growth, as well as 

the mechanisms underlying the effects of therapeutic agents.  

 

Results 

Constitutive ErbB2 activity leads to dysregulated growth 

 

 The cell line MCF10A/ErbB210, referred to as 10A/ErbB2, 

exhibits ErbB2 dimerization and constitutive activity in the 

presence of a dimerizing agent (DA). 10A/ErbB2 cells, 

expressing inducible ErbB2 homodimers, formed large highly 

disorganized structures within basement membrane extract 

(BME) over a period of 10 days in the presence of DA. 

Untreated control and cells treated with EGF resulted in the 

formation of spherical structures, with EGF stimulation 

producing larger spheres. The phenotypic differences in 

structures formed by DA treated and untreated cells became 

more pronounced as time progressed. ß-catenin, a marker for 

epithelial cell-cell junctions, was strongly localized to the basal 

lamina for all structures with some lateral localization within 

cells on the structure perimeters, indicating that the cells have 

not lost their adhesiveness (Fig. 1A-B). 

 We subsequently investigated TFr activity for 10A/ErbB2 

cells growing in BME using an improved viral technology 

based on previously established TRACER11 that enable longer 

experimental times. Cells were parallel transduced with 23 TF 

firefly luciferase (FLuc)-based lentiviral reporter constructs 

(Supplementary Table 1) and a control construct with a TATA-

box for basal FLuc expression (TA). 10A/ErbB2 cells 

expressing reporter constructs were seeded in BME in parallel, 

with bioluminescence imaging used to quantify TFr activities at 

multiple time points. Light measured in wells containing 

transduced cells was consistently above background levels 

observed in control wells with blank BME, persisted 

throughout the experimental time course, and normalized TFr 

activity was highly consistent between samples and 

experiments (Supplementary Fig. 1). Clear differences were 

observed in TFr activities between the treatments. Constitutive 

ErbB2 dimerization induced by DA increased the activity of 

more constructs relative to EGF treatment (Fig. 1C, 

Supplementary Table 2). Interestingly, constitutive ErbB2 

signaling revealed activation of multiple TFrs at the later time 

points, such as E2F1, SP1, SRE, STAT and YY1 reporters. In 

contrast, EGF stimulation induced a more transient response 

that largely resolved after 3 days in culture. 

 TFr activity was analyzed for consistency with available 

transcriptomic data from MCF10A cells grown in BME that 

were untreated or treated with EGF at 1.5, 3, 5, 7, 9 days12. We 

computationally determined the most likely active TFs that 

regulated the differentially expressed genes (fold change FC ≥3 

and p-value ≤ 0.001) by predicting TF binding sites in the 

promoter regions of those genes using available position 

weighted matrices (PWM) from TRANSFAC13. TFr activities 

measured by TRACER and those predicted by transcriptomics 

show that TRACER had a medium high sensitivity, 0.75, 

indicating that TRACER correctly identified activated TFs 
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predicted from the gene expression profiles in the microarray 

data. The specificity of TRACER was similar, 0.72 

(Supplementary Fig.2). Specifically, predictions of TF activity 

from the microarray data for MCF10A cells treated with EGF 

confirmed the activity of ELK1, IRF1, NFAT, NFKB, STAT1 

and STAT4 when 10A/ErbB2 cells are treated with EGF. While 

TRACER was highly consistent with microarray data, some 

results differed, which is not unexpected for large-scale data. 

The microarray data did not predict activation of CRE, HIF or 

SP1 in EGF stimulated MCF10A cells (Supplementary Fig.2). 

The activity of those non-predicted reporters may reflect 

binding of alternative TFs with currently unavailable PWMs or 

just being the result of the false negative predictions of the 

computational method employed. 

 A dynamic TFr regulatory network was subsequently 

developed in order to identify potential causal relationships 

between the TFr that were activated or deactivated upon 

treatment of 10A/ErbB2 cells with EGF or DA. Network 

topology was determined using NTRACER, by applying 

multiple inference methods (partial least square regression 

(PLSR), mutual information and Bayesian networks) to the TFr 

activity data obtained from the 3D TRACER, combined with 

literature curated protein-protein, protein-DNA and indirect 

interactions between the different stimuli and the TFs obtained 

from TRANSFAC14, IPA (Ingenuity® Systems, 

www.ingenuity.com) and GeneGO (MetaCore from Thomson 

Reuters). The resulting network contained 675 TFs and more 

than 1000 connections. An initial network topology was 

obtained by combining the inferred network with the simplified 

prior knowledge network (PKN), whose nodes represent 

treatments given to the cells (i.e., DA or EGF) and the 

significant TFrs. The inferred network and PKN overlapped for 

13% of the total number of the interactions, indicating that 

TRACER identified novel interactions that have not been 

captured by other experimental techniques. Of note, the 

interactions determined by the ensemble of inference methods 

(53% of the total number of connections) may not be direct, but 

indirect TF-TF interactions, such as phosphorylation or 

dephosphorylation of proteins responsible to the activation or 

deactivation of TFs, which are not included in the PKN. 

Finally, the network topology allowed for inhibitory 

mechanisms (InhM) that are not easily described by TF-TF 

interactions alone, such as receptor endocytosis or degradation, 

apoptosis or standard dephosphorylation of the activation site 

for the TF that led to a decline in TF activity. 

 The active edges between nodes at various time points were 

identified using a modification of CellNOptR15, which 

minimizes the difference between the experimental data and the 

output of the logic model using a genetic algorithm. Data were 

modeled as a three-level Boolean paradigm, where TFrs and 

treatments are the nodes and the edges or gates indicate the 

relationship between them, (i.e., activating or inhibiting). 

Consensus networks yielded distinct dynamic patterns of 

activity within the TFr network upon treatment of 10A/ErbB2 

cells with either DA or EGF (Fig. 2) and revealed two types of 

key reporters. First, reporters that are directly affected by the 

external stimuli, in the case of DA and EGF included the nodes 

AP1 (Fig. 2A) and ELK-1 (Fig. 2G) for instance. These nodes 

represent the initial connections between the external stimulus 

and the intracellular activity. The second type of reporter 

included those that serve as hubs, which have large numbers of 

connections to other nodes in the network, and thus disseminate 

the signal throughout the network. These hubs may differ 

between time points, and thus they are dynamic. For 

stimulation with DA, AP1 is a hub between 5 to 7 days of 

culture indicated by 7 out-going connections (Fig. 2D). 

Between days 7 and 10, AP1 has 2 out-going connections, 

similar to SRF (Fig 2E). Taken together, the hubs identified 

during ErbB2 dimerization and after EGF treatment were 

distinct, and the timing at which these TFrs served as hubs 

similarly varied.  

 Construction of the dynamic networks made it easy to 

visualize that ErbB2 dimerization yielded maximal levels of 

TFr activities towards the end of the culture, while EGF 

primarily produced transient TFr activity between days 1 and 5. 

Cells activated through ErbB2 dimerization responded with a 

slow activation of TFr up to 5 days in culture. Between days 5 

to 7, numerous TFrs became activated through E2F1, YY1 and 

STAT3 reporters, with the AP1 reporter being the hub with the 

most outgoing connections between those time points. A 

majority of the TFr constructs had increased activities toward 

the end of culture, while the P53 reporter was down-regulated 

through PTTG and AP1 reporters. In contrast, EGF stimulation 

induced ELK1 reporter activity by day 2, which served to 

control the activation of numerous other TFrs. ELK1 reporter 

also functioned as a hub, along with NFkB and SP1. Activated 

TFrs had their activities decline to basal levels (i.e., untreated 

10A/ErbB2 cells) by day 5, with some TFrs having activity 

dropped below control by day 10. Taken together, EGF 

stimulation was translated as a transient activation of ELK1 

reporter, whereas ErbB2 dimerization and constitutive activity 

were translated through the network to increase activity of 

E2F1, YY1 and STAT3 reporters at later times of culture. 

 Next, we examined patient data to investigate the 

translational relevance of the dynamic TF network to two breast 

tumor subtypes: ErbB2 positive (ErbB2+) and triple negative 

(TN).  Analysis of transcriptional data from The Cancer 

Genome Atlas (TCGA) identified 143 genes that were 

differentially expressed between ErbB2+ and TN tumors (FC 

≥1.2 and p-value≤0.01). Analysis of the promoter regions of 

differentially expressed genes revealed that ErbB2+ tumors had 

significantly activated E2F4, STAT1 and STAT5A (Fig. 3) 

relative to TN tumors. Our dynamic TF network identified that 

the E2F1 reporter had increased activity at later times in 

culture, and E2F4 would be expected to bind the E2F1 reporter 

(Supplementary File 1). Furthermore, the activation of STAT1 

and STAT5A in the ErbB2+ tumors is consistent with the 

increased activity through the STAT1 reporter (Supplementary 

File 1), which had increased activity in our dynamic TF 

network. The differential gene expression did not support 

increased activity for the other TFs (AP1, SRF and YY1) in the 

ErbB2+ tumors.  
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Mode of lapatinib drug action within induced 10A/ErbB2 

cells 

   

 We subsequently investigated the mechanism of action for 

lapatinib. 10A/ErbB2 cells growing in BME were stimulated 

with DA and subsequently treated with lapatinib or no 

therapeutic. At 3 d of culture, lapatinib treatment reduced 

viability by approximately 80% compared with untreated cells, 

consistent with a similar study16. A 3D TRACER was 

subsequently applied to lapatinib treatment of DA-treated 

10A/ErbB2 cells growing in BME. Lapatinib treatment resulted 

in activity of numerous TFrs at day 1 and day 2 of culture, with 

significant reductions in activity for all reporters (except P53) 

at day 3, which coincided with the significant decrease in cell 

viability (Fig. 4A). The TFrs with greatest activity change at 

day 1 were E2F1, ELK1, GATA, P53 and STAT4, which may 

suggest that the TFs that bind to those reporters are the 

downstream targets of lapatinib (Supplementary Table 3). 

 Lapatinib most directly increased activity of ELK1, GATA, 

P53, and RAR reporters (Fig. 4B-D), with SP1 and STAT4 

reporters being the initial dynamic hubs that modulated the 

activity of many of the remaining TFrs. After 2 days of culture, 

NTRACER infers that E2F1 reporter activity was inhibited by 

factors associated with GATA, P53 and SP1 reporters. At 3 

days in culture, most TFrs had activity that decreased relative to 

day 2 and were similar or had decreased activity relative to pre-

lapatinib treatment. The P53 reporter was the sole exception, 

which had activity increased relative to day 0 that served to 

decrease activity of E2F1 and CMYC reporters. This decrease 

in TFr activity relative to day 2 may result from apoptosis of 

cells as the cell viability decreased (Supplementary Fig. 3).We 

subsequently investigated the hypothesis that GATA was a key 

factor modulating the biological effects of lapatinib. GATA 

was selected as its reporter construct had increased activity at 

the initial time point, yet the modeling predicted a down-

regulation of E2F1 reporter by day 2. E2F1 has multiple 

cellular functions such as cell proliferation and p53 dependent 

and independent apoptosis17. Multiple TFs can bind to GATA 

reporter (Supplementary File 1), and GATA1 was investigated 

as literature reports connect GATA1 to E2F, specifically 

E2F418, and its role in regulating growth in other cell types19. 

To test our hypothesis, Western blotting for cells with and 

without lapatinib treatment revealed increased levels of 

phosphorylated GATA1 after 1 d of lapatinib treatment, 

consistent with its increased activity (Fig. 5A-B). Subsequently, 

we confirmed that the GATA reporter could identify changes in 

GATA1 activity. Overexpression of GATA1, confirmed with 

Western blots (Supplementary Fig. 4), led to increased activity 

through the GATA reporter (Fig. 5C), and produced smaller 

and less disorganized 3D structures after ErbB2 dimerization 

with DA (Fig. 5D-E). Cell viability was decreased with 

overexpression of GATA1, with measurement of viability 

similar to levels measured for 10A/ErbB2 cells treated with 

lapatinib (Fig. 5F). However, lapatinib treatment of GATA1 

overexpressing cells led to a further decrease in viability. These 

phenotypic results and protein analyses are consistent with 

lapatinib treatment acting, in part, through activation of 

GATA1. 10A/ErbB2 only included the intracellular domain of 

ErbB2 and, hence, the therapeutic antibodies trastuzumab and 

pertuzumab did not stimulate the key TFrs found using 

lapatinib (Supplementary Table 3 and Supplementary Fig. 5). 

Notably, these studies were performed for 3D culture, which 

has been proposed as essential for investigating mechanisms of 

drug action 20, as drug mechanisms can differ between 2D and 

3D culture. 

 Finally, the translational relevance of these dynamic TF 

networks was investigated using human ErbB2+ cell lines (i.e., 

BT474 and SKBR3). Analysis of transcriptomic data for 

lapatinib sensitive ErbB2+ cell lines21, 22 identified a total of 

592 genes that were differentially expressed upon lapatinib 

treatment relative to control. For this differential gene 

expression, a significant increase was not observed for the 

ELK-1, P53 or RAR targets. However, a significant enrichment 

of GATA1 targets was observed (Fig. 6A). Conversely, in a 

BT474 lapatinib insensitive cell line, 680 differentially 

expressed genes were identified and the GATA1 target 

enrichment was not observed (Fig. 6B).  

 

Discussion 

 We have applied 3D TRACER arrays to analyze dynamic 

TF activity in a model of cancer progression and in response to 

a targeted therapeutic. These arrays monitor intracellular 

signaling on a large scale with parallel delivery of TFrs8, 9. 

Herein, TRACER employed 23 TFrs, which has the potential to 

be expanded (approximately 1400 TFs in humans23). More 

traditional approaches for dynamic analysis of cell signaling 

include microscopic techniques, which can analyze few 

pathways24, time series transcriptomics25 and proteomics2. The 

latter omics methods have greater coverage than TRACER as 

they quantify the abundance of >10,000 cellular components 

(i.e., mRNA, proteins), with pathway activity inferred indirectly 

from expression level26. Phosphoproteomics can be a more 

direct measure of pathway activity, but there are constraints on 

the extent to which post-translational modifications can be 

characterized27 . The activity measurements from TRACER 

offer the potential to identify key TFrs associated with cellular 

processes. The promoter region of each TF reporter construct 

may bind multiple TFs, and identifying the specific TFs that are 

active at the promoter region can be accomplished through 

validation with omics data (e.g., microarrays) or biological 

techniques such as overexpression, knockdown, or Western 

blotting. Interestingly, and unlike other methods, quantification 

is compatible with 3D culture of cells in hydrogels and over 

time scales that support formation of multicellular structures 

over multiple weeks that resemble the range of pathologies of 

native tissues28. Relative to growth on 2D polystyrene, cells 

growing in 3D matrices can exhibit differential responsiveness 

to chemotherapeutics that more faithfully represent patient 

responses29. Importantly, TFr activity is quantified through 

non-invasive bioluminescence imaging, and the cells were 
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repeatedly imaged, thus the cost of the array does not scale with 

the number of measured time points, as cells are not lysed.  

 TRACER provides data with two unique aspects: firstly, the 

experimental determination of TF activity, and secondly, TF 

activity is monitored dynamically over several days. These 

unique aspects motivated the development of the computational 

approaches (Supplementary Fig. 6). Analysing dynamic TFr 

activity data involved generating dynamic networks from a 

limited amount of temporal data and employing a combination 

of prior knowledge and an ensemble of inference methods. 

Approaches have been developed to handle inference in 

dynamic data1; however, few focus on a limited number of 

available time points in the range of days and weeks30 and most 

assume a static network31. The connections in TF regulatory 

networks are not necessarily present in all cells or at all times32, 

33; thus, we proposed to model our system as dynamic networks 

in order to capture cellular re-wiring.  

 Currently, no single inference method can determine all 

network motifs present in a biological network. Combining 

multiple inference methods takes advantage of the method 

preference for certain types of motifs34. Additionally, due to the 

nature of the experimental data, TF activity, the TF regulatory 

networks have encompassed multiple processes (e.g., 

transcription, translation, and possibly phosphorylation) that are 

represented by the edges between nodes. Each process can be 

non-linear and thus their combination is likely to be non-linear 

as well. Therefore inference methods that can handle non-linear 

interactions are included for identifying edges in non-linear 

processes, such as mutual information or Bayesian network 

inference methods, as well as linear inference methods such as 

PLSR. 

 Moreover, prior knowledge is commonly used in reverse 

engineering of networks1, 35, although biological databases, 

from which prior knowledge is acquired, are incomplete36 and 

their information is not cell specific37. However, connections 

between nodes of the transcription factor (TF) regulatory 

network are indirect interactions of the two TFs (i.e., TF A 

binds to the promoter region of the gene that encodes TF B, or 

TF A binds to the promoter region of a gene whose production 

modulates the activity of TF B). The experimental system 

measures the activity of the two TFs, yet cannot distinguish 

between the different indirect pathways of interaction. The 

available prior knowledge is in the form of direct protein-DNA 

interactions, and does not account for all possible indirect 

connections. Thus, inferred connections only overlap with prior 

knowledge connections in the case that one TF directly 

regulates the transcription of a second TF, which based on our 

results, occurs at relatively low levels (13%). Therefore, 

combining prior knowledge with inference methods 

incorporates connections that are established in the literature, 

yet allows for new cell-specific interactions that are determined 

through inference.  

 NTRACER equally weighted both sources of information to 

accommodate novel interactions or indirect TF-TF interactions, 

which provided an initial network topology that contained 

multiple false positive edges originating from the union of 

diverse inference methods as well as the previously established 

connections obtained from the literature, as the connections 

were established from a variety of cell types. We employed a 

structure optimization methodology to identify the most likely 

connections present at each time point while penalizing 

network complexity, based on a modification of CellNOptR15 

to accommodate TF-TF interactions and dynamic data, to 

remove false positive edges coming from prior knowledge as 

well as inference methods.   

 Dynamic networks identified TFrs associated with 

phenotypes that developed over 10 days resulting from ErbB 

stimulation. ErbB family signaling pathways have been 

extensively studied due to their implication in cancer38, with 

most signaling studies performed on short time scales (i.e., 

hours). We established that the E2F family was active in 

ErbB2+ tumors, specifically E2F4. Previous work in human 

breast cancer tumors has shown E2F4 nuclear expression to be 

associated with markers of poor prognosis39. Furthermore, 

increased E2F4 expression correlated to both decreased distant 

metastasis and overall survival from breast cancer39. 

Additionally, our findings that STAT1 and STAT5A were 

highly activated in ErbB2+ tumors relative to TN tumors 

confirmed prior observations40, 41.  

 The combination of TFr activity data and computational 

analysis identified novel mechanisms for lapatinib action. 

Lapatinib was found to exert its effects through activation of 

GATA1 in the 10A/ErbB2 cells, and also two more clinically 

relevant breast cancer cell lines (BT474 and SKBR3), which 

were derived from ErbB2+ breast cancer patients. Collectively, 

these findings support the capacity of our systems biology 

network assessment to identify hubs of TF activity that may 

translate into drug targets and also inform mechanisms of drug 

action and resistance. Notably, these studies were performed for 

3D culture, which has been proposed as essential for 

investigating mechanisms of drug action20.  

 

Materials and methods 

Cell line and maintenance  

 10A/ErbBB2 cells10, generously provided by Dr. S. K. 

Muthuswamy, Cold Spring Harbor Laboratory, Cold Spring 

Harbor, NY, were cultured using DFCI-1 media described 

previously42  

 

3D cell culture  

 10A/ErbB2 cells were cultured in BME (Trevigen, 

Gaithersburg, MD) using the cell overlay technique43 on 16-

well chamber slides (Nalgene Nunc International, Rochester, 

NY). Cold BME solution was diluted to 12 mg/ml and 40 µl 

was added to wells and incubated at 370C for 45 min to 

solidify. 10A/ErbB2 cells in DFCI media containing 5 ng/ml 

EGF and 2% (v/v) BME were subsequently seeded on top of 

BME underlay (2250 cells/well). After 3 d of culture, media 

was removed and replaced with DFCI containing 2% BME and 

i) no EGF and EtOH vehicle, ii) 5 ng/ml EGF and EtOH 

vehicle, or iii) no EGF and 500 nM dimerizing agent (DA) 
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(AP1510, ARIAD pharmaceuticals, Cambridge, MA; or B/B 

homodimerizer, Clontech). Media was changed every 3 d 

thereafter. A Leica microscope was used to capture phase 

images of structures every 3 d. ImageJ was used to quantify the 

areas occupied by cells in images taken with a 5x objective (at 

least three fields of view sampled from triplicate conditions, 

each experiment was performed with at least two replicates).  

 

Immunostaining and confocal microscopy  

 Following 10 days of culture, cells were fixed and 

immunostained as described by Muthuswamy et al.10 with some 

modifications. Cells were fixed for 30 min with 4% 

paraformaldehyde, washed with phosphate buffered saline 

(PBS) containing 100 mM glycine, permeabilized with 0.5% 

Triton-X in PBS for 5 min, washed with immunofluorescence 

buffer (IF)10, blocked with 2% bovine serum albumin for 1 h, 

stained with mouse anti-ß-catenin (1:100 dilution; Millipore, 

Billerica, MA) overnight, washed with IF, stained with anti-

mouse-AlexaFluor 488 (1:500 dilution, Invitrogen, Carlsbad, 

CO) for 1 h, washed with IF, counterstained with TOPRO-3 (5 

µM, Invitrogen) for 10 min, and washed with PBS. A Leica 

confocal microscope fitted with a 40x immersion lens was used 

to image structures. A student’s t-test with false discovery rate 

adjustment was used to assess cell growth data. 

 

Treatments and assessment of viability  

 10A/ErbB2 cells (2250 cells seeded/well) were cultured in 

96-well plates (Becton Dickinson and Company, Franklin 

Lakes, NJ) using the cell overlay culturing technique. After 3 

days of culture, 5 ng/ml EGF in media was replaced with 500 

nM DA, then after another 3 d the following treatments were 

added in combination with DA: i) no additional treatment, or ii) 

1.5 µM lapatinib (Santa Cruz Biotechnology, Santa Cruz, CA). 

We also used two other ErbB2 therapeutics as negative 

controls, i) 20 µg/ml trastuzumab (generously provided by 

Genentech/Roche, South San Francisco, CA), and ii) 25 µg/ml 

pertuzumab (Genentech/Roche), as 10A/ErbB2 cells do not 

contain the ErbB2 extracellular domain that is binding by these 

antibodies, trastuzumab and pertuzumab. After 3 d of treatment, 

alamarBlue reagent (Invitrogen) was used to assess viability 

using the manufacturer recommendation with a BioTek 

Synergy 4 plate reader. A student’s t-test with false discovery 

rate adjustment was used to assess viability. 

 

Transfer vector constructs  

 An HIV-based transfer vector encoding CMV-GFP44 was 

modified to encode TA-FLuc (plenti-TA-FLuc) by exchanging 

the CMV-GFP cassette with TA-FLuc from the Panomics 

translucent control vector (Panomics, Madison, WI) using NheI 

and XbaI restriction enzymes. This construct was further 

modified to create a library of lentivirus-producing transfer 

vector constructs with TF-responsive binding elements. 

Sequences derived from Panomics constructs were digested out 

of the constructs also using NheI and XbaI and ligated into the 

plenti-TA-FLuc backbone. For non-Panomics constructs, such 

as TCF/LEF45, CMYC14, NOTCH146, and PTTG47, custom 

oligonucleotides were synthesized (Sigma Aldrich), annealed, 

and inserted into the plenti-TA-FLuc backbone using NheI and 

BglII. A vector encoding Gaussia luciferase (GLuc), TA-GLuc, 

was also constructed by transferring the GLuc gene from 

pCMV-GLuc (New England Biolabs, Ipswich, MA) into the 

Panomics vector using HindIII and XbaI, and subsequently 

following the same procedure as the other Panomics-derived 

constructs. 

 

Lentivirus production 

 Lentivirus for each TFr was produced by co-transfecting 

HEK-293T cells with one of the transfer vector constructs and 

three packaging plasmids (pMDL-GagPol, pRSV-Rev, and 

pIVS-VSV-G)48 using techniques described previously49. 

Number of physical particles (PP) for each virus batch was 

determined using an HIV-1 p24 Antigen ELISA kit 

(ZeptoMetrix, Buffalo, NY). GATA1 and GFP expression 

lentiviral packaging plasmid pRRL-GATA1-GFP (graciously 

provided by JD Crispino, Northwestern University) was used to 

produce lentiviral particles in an identical fashion as TFr 

transfer vector constructs.   

 

Formation of 3D transduced cell arrays  

 GLuc expression was used to normalize for cell number. 

10A/ErbB2 cells were transduced with lentivirus encoding TA-

GLuc (25,000 PP/cell) by centrifugation (800 g, 320C, 45 min) 

and cultured continually to create a stable TA-GLuc encoding 

cell line, which was used in all array experiments. To form an 

array, cells were transduced with lentivirus encoding TA-FLuc 

or one of the TFr genes (10,000 PP/cell) by centrifugation, 

resuspended in media containing 5 ng/ml EGF and 2% BME, 

and seeded into wells of a black 384-well plate (Greiner 

BioSciences, Monroe, NC) previously containing BME (1000 

cells seeded/well). Stimulations and treatments were added at 

times and concentrations described above.  

 

Measuring reporter gene activities 

 Bioluminescence imaging was utilized to assess FLuc 

activity. D-luciferin (1 mM, Caliper, Hopkinton, MA) was 

added to wells and plates were incubated at 37˚C for 30 min, 

followed by imaging with an IVIS 200 system (Perkin Elmer, 

Waltham, MA). For assessing GLuc activity, a GLuc activity 

kit (New England Biolabs) was used. Media (10 µl/well) was 

sampled and placed in a black 384-well plate. Substrate 

solution (20 µl/well) was added and luminescence was 

measured with a 1 s integration time using a Synergy 4 plate 

reader (BioTek, Winooski, VT). After each time point, media in 

wells was partially replaced with the addition of appropriate 

stimulants and treatments.  

 

Normalization and statistical significance  

 Data were analyzed using R50. The initial methodology to 

normalize and determine statistical significance11 was slightly 

modified. Data from the array was log2 transformed and 

filtered to eliminate all intensities below background (p<0.05). 

Background was defined as the measured intensity in non-
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infected cells subject to the same treatment at the same time 

and plate. Each TFr Fluc intensity data point was  subsequently 

normalized by Gluc at the initial experimental time, t=0 days, 

and multiplied by the ratio of initial measured activity to the 

average of all initial measured activities for a given TFr, such 

that the initial normalized value was the same across all 

conditions for the same TFr. Finally, data for each TFr were 

normalized by the control reporter, TA, and outliers were 

removed (p<0.01). Quality assessment also included at least a 

Pearson correlation of 0.75 intra- and inter-arrays. The R 

package limma51 was employed to determine differentially 

activated TFr versus initial time and experimental control (no 

treatment). False discovery rate (fdr) was used to correct for 

multiple comparisons.  

 

Western blotting  

 Cells were washed with PBS and lysed with ice cold IP 

Lysis/Wash Buffer (Pierce) containing protease inhibitor 

cocktail (Sigma) and Halt phosphatase inhibitor (Pierce), 

followed by centrifugation and storage at -800C. A BCA Assay 

(Pierce) was performed to quantify protein concentrations. 

Proteins were reduced with 20 mM DTT, resolved on a NuPage 

4-12% Tris-Bis gel (Invitrogen), transferred to a PVDF 

membrane, and blocked overnight in TBS-T containing 5% 

BSA. Membranes were subsequently blotted on a SnapID 

system (Millipore) using antibodies against p-GATA1 (Assay 

biotech), GATA1, or β-actin (Santa Cruz Biotechnology) (all 

diluted 3:1000), and species appropriate HRP-conjugated 

secondary antibodies (3:1000). HRP was detected with ECL-

Plus (GE Healthcare) using a Typhoon imaging system. 

Blotting was quantified with densitometry using ImageJ. 

Sample bands were normalized to the corresponding β-actin 

band and then normalized to the average appropriate control 

samples. A student’s t-test with fdr adjustment was used to 

assess Western blot data.  

 

Determination of TFr specificity  

 P-match13 from Explain 3.0 was selected to identify TFs 

that might bind to the DNA sequence of a given reporter. High 

specific PWMs from vertebrates that minimized the sum of 

false positives and negatives were selected to explore the most 

likely TFs that bind to a given DNA sequence. PWMs that 

predict binding to a given sequence with a core score ≥0.9 and a 

matrix score ≥0.9 were deemed as significant (Supplementary 

File 1).  

 

Living cell array consensus with publically available 

microarray data in MCF10A cell line  

 GSE18938 microarrays12 were downloaded from the 

ArrayExpress library52. Briefly, MCF10A were treated with 

EGF or left untreated over a period of 9 days. Time-series 

HuGene 1.0st v1 arrays were background corrected using 

robust multi-array average (rma)53, quantile normalized54 and 

probeset summarized with the oligo package55. Inadequate 

experiments were previously removed (see supplemental 

methods). Differentially expressed probes versus the untreated 

MCF10A cells were identified using limma package and were 

deemed significant at a fold change, FC ≥3 and p-value 

≤0.00151. P-match13 was exploited to identify the most likely 

TFs that might regulate the expression of such genes, using no 

significant genes (FC ≤ 1.001 and p-value ≥ 0.5) as a 

background set. Search was performed between -1000 to 500 

base pairs with respect to the transcription starting site (TSS). 

The most significant PWMs associated with the most likely TFs 

were contrasted against the PWMs associated with each TFr 

(Supplementary File 1) to establish whether the activity of any 

TFr could be altered by any of the active TF. Sensitivity and 

specificity of TRACER were calculated assuming the 

computational results from the transcriptomic measurements as 

reference. Results are presented in Supplementary Figure 2 as 

well as the receiving operating characteristic (ROC) and 

precision-recall curves. 

 

Generation of GATA1 overexpressing cells 

 10A/ErbB2 cells were seeded in a 6-well plate at 1.5e5 

cell/cm2 and subsequently GATA1/GFP-expressing lentivirus 

and Polybrene (4 µg/ml; Sigma) were added. Following 3 d in 

culture, transduction efficiency was assessed by imaging GFP 

expression. 

 

Dynamic network generation 

 Initial network topology was originated from an equally 

weighted ensemble of prior knowledge sources and inference 

methods. Prior knowledge information includes directed human 

protein-DNA interactions, either proximal or distal regulation 

with respect to their TSS and external stimuli and TFs, obtained 

from TRANSFAC14, IPA (Ingenuity® 

Systems, www.ingenuity.com) and GeneGO (MetaCore, 

Thomson Reuters). An ensemble of inference methods was 

employed to determine novel connections that have not been 

explored before experimentally: PLSR56, mutual information 

(MI)57-60 and Bayesian networks (BN)61. MI methods were only 

considered to determine the interactions between the external 

stimuli and TFrs at the initial time point only. Inference 

networks from PLSR, MI and BN were combined with equal 

weights and finally merged with the prior knowledge network. 

Measurements for the cell array were taken on the time scale of 

days while signaling networks have activity that occurs on 

much shorter time scales62. We thus assume that experimental 

data were under a pseudo-steady state. Data were discretized in 

three levels, 1, 0 and -1, and modeled in a Boolean paradigm. 

Present edges at each pseudo-steady state were identified using 

structure optimization, by minimizing the difference between 

the experimental data and the fit of the model. Complex 

structures were penalized to avoid over fitting. A total of 500 

runs were performed and reported dynamic consensus networks 

were obtained by generating an ensemble of the top 1% 

networks (see Supplementary Methods for more details). The 

raw data and source code are available at 

http://www.bme.umich.edu/labs/shea/publications.php.  
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Testing for edge significance in the final dynamic consensus 

networks 

 The significance of edges present in the consensus networks 

was identified using a total of 1000 bootstrapping samples, 

which were randomly generated to determine the probability of 

an edge to be present. Finally, the probability that an edge was 

present was compared with the probabilities generated by a 

random model using 1000 samples. An edge was deemed 

significant if it was at least three times more probable to be 

observed compared with the random model for a given time and 

treatment (Supplementary Figs. 7 and 8). Edges that were 

determined to not be statistically significant were removed from 

the consensus graphs. P-values for each edge were calculated 

based on the area under the permutation curve for the same 

probability as the given edge according to the bootstrapping 

runs and are summarized in Supplementary File 2 as well as the 

probability of each edge (see Supplementary Methods for more 

details). 

 

Dynamic network target validation in human breast cancer 

tumors and lapatinib treated BT474 and SKBR3 cell line 

 22 ErbB2 positive and 58 triple negative Agilent 

microarrays were downloaded from TCGA 

(http://cancergenome.nih.gov/). Possible TFs that could 

regulate those genes and are direct targets of ErbB2 

overexpression based on the dynamic network (AP-1, STAT, 

SRF, E2F and YY families) were explored. Two additional 

experiments of lapatinib treated BT474, BT474-J4 and SKBR3 

cell lines were employed in the validation studies (E-GEOD-

16179 and E-MEXP-440). The entire set of raw microarrays are 

not available for E-MEXP-440, so the significant genes 

obtained by O’Neil et al.63 were used in that case (see the 

reference for details on the analysis). Possible TFs that could 

regulate those significant genes and are direct targets of 

lapatinib overexpression based on the dynamic network (ELK-

1, RAR, GATA and P53 families) were explored.  

TF gene targets were identified in two manners. First, from 

experimentally validated targets obtained from GeneGO 

(MetaCore, Thomson Reuters), a list of more than 7000 

interaction was compiled for the above TF families. Secondly, 

computationally predicted targets were extracted by exploring 

the promoter regions of the entire human genome, 

NCBI36/hg18, (from the Regulatory Sequence Analysis Tools, 

http://rsat.ulb.ac.be/) and the consensus mammalian promoter 

regions64 between -2000 to 2000 from TSS. Mammalian 

consensus and human promoter regions were investigated using 

MATCH65 and FIMO66 at 0.999 matrix scores and 10-6 

uncorrected p-value (Supplementary Files 3 and 4). 

The most likely active TFs were calculated using a 

hypergeometric test for both, experimentally and 

computationally obtained targets, and a z-score test for the 

computationally acquired targets26. Results from the three 

different methods were consolidated using a meta-analysis 

approach for the same type of experiment (i.e, E-MEXP-440 

results and BT474 from E-GEOD-16179 were combined using 

the meta-analysis method). Median chi-square values were 

reported due to the skew of the bootstrapping results.  

Conclusions 

 We have applied 3D TRACERs to monitor long-term 
dynamics of intracellular signaling that can be connected to 
cellular phenotype and response to therapeutics. NTRACER 
enabled determination of key dynamic hubs, and the temporal 
relationship between them, that contribute to cellular 
phenotype. These findings were validated in human breast 
cancer cell lines and tumor tissue. This identification of key 
signaling hubs may facilitate the development of treatment 
strategies or drug combinations that will further improve 
outcomes for patients with aggressive breast cancer subtypes, 
including patients with ErbB2 overexpression. 
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Figure 1. Culture of 10A/ErbB2 cells in BME with different stimuli. 10A/ErbB2 cells grown in BME for a period of 10 d following no stimulation 

or stimulation with EGF or DA form multicellular structures with different morphologies over time. Cells were imaged repeatedly with phase contrast 

microscopy (A) and confocal microscopy at day 10 (B). (Scale bars represent 50 µm; red – nuclei, green – ß-catenin) (C) Transduced cell arrays 

measured activities of TFrs in 10A/ErbB2 cells growing in BME following stimulation with no stimulant (blue), EGF (green), or DA (red). Normalized 

transcription factor reporter intensities for TFrs above the background are represented (TCF/LEF, SMAD and NC are excluded). Shaded areas around 

the average lines represent ± standard error. Significance TFrs under DA stimulation are highlighted with a red rectangle; under EGF stimulation under 

a green rectangle; purple rectangles indicate that the TF reporter is significant under both stimulations (p-value ≤0.15). 
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Figure 2. Dynamic transcription factor activity networks upon DA or EGF treatment of 10A.ErbB2 cells. Dynamic transcriptional consensus 

networks upon DA activation between 0 to day 1 in culture (A), day 1 to day 3 (B), day 3 to day 5 (C), day 5 to day 7(D) and day 7 to day 10 (E). 

Panels F to J represent the corresponding dynamic transcriptional networks upon EGF activation. Treatments, TFrs and inhibitory mechanism are 

represented as nodes, while the connections between them are represented by directed edges. Active treatments are symbolized by green circles; 

inhibitory mechanism, by a red circle. TFrs that are activated with respect to the beginning of the culture based on their median experimental discretize 

value are purple; deactivated TFrs are orange and no change in activity is denoted by yellow. TFrs that are not modulated by the treatment at any of the 

explored experimental time points are represented in white. Active or present edges at a given culture time interval are colored in black. Activating 

edges end in an arrow, deactivating edges end in a T. Edges obtained from prior knowledge are indicated by continuous lines; identified by inferences 

methods are denoted by discontinuous lines. Those identified by both methods are marked by two parallel lines.  
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Figure 3. Transcription factor targets overexpression in breast cancer human tumors. Chi-square in log10 scale for AP1, SRF, STATs, E2Fs and 

YYs families during ErbB2 activation according to the dynamic network (Fig. 2) in ErbB2 positive human breast cancer tumors in comparison with 

triple negative human breast cancer tumors. Horizontal lines indicate level of significance (p-value≤0.01). Blue bars represent the overexpression of a 

given TF when considering consensus mammal promoters; red bars represent the overexpression of a given TF when considering just human 

promoters.  
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Figure 4. Treatment of cells with ErbB2-targeting therapeutic and dynamic transcription factor activity networks upon lapatinib treatment of 

DA activated 10A.ErbB2 cells. A) Transduced cell arrays measured activities of TFrs in DA activated 10A/ErbB2 cells growing in BME following no 

treatment (blue), or lapatinib treatment (red). Normalized transcription factor reporter intensities for TFrs above the background are represented 

(TCF/LEF, SMAD and NC are excluded). Shaded areas around the average lines represent ± standard error. Significance TFrs under lapatinib 

treatment are highlighted with a red rectangle (fdr corrected p-value ≤ 0.05). B)  Dynamic transcriptional consensus networks upon lapatinib treatment 

between 0 to day 1 in culture (B), day 1 to day 2 (C), and day 2 to day 3 (D). See Figure 2 legend for more details.  
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Figure 5. Overexpression of GATA1 decreased structure disorganization and cell viability. 10A/ErbB2 cells were stimulated with DA and treated 

with lapatinib for 1 d and lysates were probed on Western blots. A) Sample bands detected for phosphorylated GATA1 (p-GATA1), total GATA1 

(GATA1), and β-actin. B) Quantification of relative p-GATA1 and GATA1 expression normalized to β-actin, represented by mean ± s.d. from five 

distinct samples (*** p<0.001). C) 10A/ErbB2 and 10A/ErbB2/GATA1 cells were transduced with GATA reporter gene and imaged with 

bioluminescence imaging to confirm increased activity. D) Sample images of 10A/ErbB2 and 10A/ErbB2/GATA1 cells growing in BME without and 

with DA stimulation for 10 d (scale bars represent 200 µm), with a quantification of cell coverage area (E) (solid bars – 10A/ErbB2; spotted bars – 

10A/ErbB2/GATA1). F) Relative viability of cells stimulated with DA and subsequently treated with lapatinib for 3 d, with significant differences 

indicated by letters (a, b, c, d; α=0.05). For C, E, and F, bars represent mean ± s.d. from at least three replicates and three distinct experiments (*** 

p<0.001).  
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Figure 6. Transcription factor targets overexpression after lapatinib treatment in two breast cancer cell lines. Chi-square in log10 scale for ELK-

1, GATA, P53 and RAR families duringlapatinib treatment according to the dynamic network (Fig. 4) in (A) BT474 and SKBR3 cell lines in 

comparison with no lapatinib treatment and in (B) a resistant BT474 cell line in comparison with no lapatinib treatment. Horizontal lines indicate level 

of significance (p-value≤0.01). Blue bars represent the overexpression of a given TF when considering consensus mammal promoters; red bars 

represent the overexpression of a given TF when considering just human promoters. 
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