Ionic Liquids and Continuous Flow Processes: a good marriage to design Sustainable Processes.
Ionic Liquids and Continuous Flow Processes: a good marriage to design Sustainable Processes.

Eduardo García-Verdugo, a Belen Altava, a M. Isabel Burguete, a Pedro Lozano, b and S.V Luis a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

In the last years the use of Ionic Liquids (ILs) as alternative solvents for (bio)catalytic processes has increased substantially, and the benefits and different approaches reported to combine continuous flow systems and ILs are at the core of this overview. The combination of both elements provides synergies allowing to highlight their great potential to manufacture both bulk and fine chemicals by new and greener (bio)catalytic processes.

1. Introduction.
Over the last decade academy and industry have been working together in order to develop new greener alternative solvents.1 The main aim is to reduce significantly the important drawbacks and hazards associated with traditional solvents, replacing them by safer and more efficient alternatives. This can be achieved, ideally, through the design of new substances with specific and tailored properties. This is the case of ionic liquids (ILs), for which the performance can be tuned to be as good as or even better than that of conventional solvents for many applications.2, 3

The application of other alternative reaction media including, amongst others, the use of water, supercritical fluids, switchable solvents and fluorous solvents is also envisaged.4 In this regard, a variety of new chemical processes have been designed based on those alternative solvents in order to exploit their advantages and to implement their use in well-known chemical processes.

An additional factor that can contribute to implement the sustainability of a chemical transformation is the substitution of batch processes by flow processes.5, 6 Advantages associated to flow systems include the improvement in mass and heat transfer, with a significant intensification of the process, making available systems working 24 h a day, 7 days a week (24/7), or their easier optimization through the adjustments of simple parameters such as flow, pressure or temperature. Additionally, the scale-up of flow processes is generally more easily attainable than for batch processes, via different approaches such as the scale-out or the number-up.4 Although the advantages of flow chemistry were soon realized by the bulk chemistry industry, the situation is quite different in the Fine Chemicals or Pharmaceutical industries. Most industrial petrochemical processes, and many of those for the preparation of bulk chemicals, are carried out in flow, but batch processes still dominate in other industrial areas, and a high pressure is currently being exerted to introduce flow processes there. In the last years, there has been a blossoming of new developments in the field of

the application of flow processes in complex organic syntheses, especially those based on the application of microstructured devices.9

Here, we shall focus on recent advances in the use of ILs, working alone or together with other neoteric solvents (i.e. supercritical fluids), exploring their great potential to manufacture both bulk and fine chemicals by continuous flow systems. The combination of (bio)catalytic reactions in ILs with continuous flow processes can fulfill the needs and challenges of the chemical industry, achieving significant scientific and technological breakthroughs. Indeed, the examples here presented describe a series of techniques, methodologies and approaches that could allow the development of new and more efficient chemical processes, not only taking into account classical parameters such as yield, purity or selectivity, but also considering, for the overall equation, the environmental and hazard costs. Our goal in this overview is to present some significant cases highlighting the main advantages and some of the shortcomings found for the combined use of ILs and continuous flow technologies.

2. Continuous flow processes for the synthesis and scale-up of ILs.

A wide variety of ILs can be designed, taking into account their modular character, considering structural elements such as the nature of the cation, the nature of the anion, the ion substitution patterns, the introduction of either bio-renewable or chiral moieties, etc. Indeed, a wide range of structurally different ILs has been reported.10 Besides, ILs can be regarded as “design solvents” not only as their structure can be tailored on demand, but also for their physical and chemical properties can be tuned at the molecular level by selecting the right combination of structural elements. These unique opportunities offered by ILs have led to increase their use as an alternative to classic organic solvents and to their application in completely and unexpected new fields.11
In general, the synthesis of ILs is a simple process involving the quaternisation of an amine, imidazole, pyridine or phosphine, through an alkylation reaction, to form the corresponding cation. The variation in the nature of the nucleophile and the alkylation lead to ILs with different structures, typically having halide as the counteranion. In a second step, a variety of anions can be introduced by anion metathesis (e.g., BF$^-$, PF$_6^-$, (CF$_3$SO$_2$)$_2$N$^-$). The most simple purification protocol for ILs is the distillation of the excess of alkylation agent prior to their use as solvents or reactants, according to their inherent nonvolatility. Although the performance often tends to be set above the purity of ILs, especially for industrial applications, high purity ILs are essential to study in detail the fundamental science of this kind of new interesting materials, which often involves a significant effort. Thus, tedious subsequent purification steps are usually required leading to high costs and limiting the potential for industrial application. In this context, the use of continuous flow systems and in particular those based on microstructured elements has shown a significant potential for the preparation of ILs and the corresponding scale-up. In fact, systems containing micro-mixers and/or microreactors in the experimental set-up can provide very short diffusion pathways and large interfacial contact areas per unit volume (10,000–50,000 m2/m3), which results in superior heat and mass transfer compared to conventional batch reactors. Thus, higher yields and selectivities, as well as improved product qualities, can be achieved by transferring the syntheses of ILs (especially those that are highly exothermic) from classical batch reactors to microstructured devices.

In this context, Böwing et al. have described the continuous production of ethylmethylimidazolium ethylsulfate ([EMIM][EtSO$_4$]) by the alkylation of methylimidazole. This compound can be considered as both a bulk IL and a source for various other ILs, through a two-step synthesis approach. Thus, the first step involves the synthesis of a methylsulfate or ethylsulfate liquid by direct alkylation. In the second step, this intermediate is transformed via a transesterification reaction, using different functionalized and nonfunctionalized alcohols, to the corresponding new alkylsulfate ILs. In this case, a simple tubular reactor (6 mm inner diameter and 4 m length) can produce up to 4 kg/day of [EMIM][EtSO$_4$] without the need of a solvent, by simply pumping methylimidazole and ethylsulfate (Et$_2$SO$_4$) into a cooled reactor tube (303 K).

The introduction on the experimental set-up of microstructured reactors (submillimetre range: 10-100 µm diameters) based on parallel microchannels instead of a simple tubular reactor can contribute to increase significantly the heat exchange capacity. Thus, Löwe et al. synthesised 1,3-dimethylimidazolium trifluoromethanesulfonate ([BMIM][OTf]) by alkylation of 1-methylimidazole (MIM) with methyltriflate (MeOTf), combining a microreactor and a heat pipe. The productivity of the system can reach up to 0.74 Kg/h. The combination of different types of mixers and reactor designs with different temperature profiles were assayed to adjust the overall performance of the process. Hence, a production rate up to 1.24 Kg/h of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) can be achieved. In a similar way, Waterkamp et al. have reported an approach to intensify the synthesis of 1-butyl-3-

The reactor set-up consists of a microstructured mixer of 450 µm channel width and a tubular reactor (inner diameter from 2 to 6 mm). Under optimised conditions, production rates up to 9.3 kg [BMIM][Br]/per day could be obtained. In this reactor system the strongly exothermic alkylation can be thermally controlled even at elevated temperatures, leading to high reaction rates in a solvent-free process. Thus, high purity (> 99%) [BMIM][Br] was obtained even when the process was performed at moderate temperatures (85 °C). Noteworthy, the process intensification involved more than a twentyfold increase of the space–time–yield (STY), as compared to the conventional synthesis in batch. By increasing the flow rate, the mass transfer of the reactant 1-methylimidazole from the product phase to the reaction phase could be enhanced. This can be achieved simply by means of higher flow velocities in the slug flow regime that is formed due to the generation of a two-phase liquid/liquid system. At high reaction temperatures (145 °C) an almost colorless ionic liquid could be produced by increasing the flow. In this case, a space time yield of 1240 kg L$^{-1}$ day$^{-1}$ could be obtained.
amounts with little experimental effort. In a typical experiment, using a single microstructured reactor, up to 200 mL of high purity ionic liquid can be prepared. The employment of additional similar devices in a parallel operation mode provides convenient access to multikilogram per hour scales without having to resort to a more complex system.

Water-soluble ionic liquids (1,3-dibutylimidazolium acetate [BBIM][OAc] and 1,3-dibutylimidazolium chloride [BBIM][Cl]) were synthesized by the modified Radziszewski reaction through a continuous procedure in a multipurpose microreaction device. Thus, the [BBIM][Cl] can be obtained with up to 70% yield and with STY of 0.12 kg L\(^{-1}\) h\(^{-1}\) and a capacity of 0.09 kg d\(^{-1}\). Using the same reaction, the corresponding parameters were adapted for the synthesis of 1,3-dibutylimidazolium acetate that was obtained with a 91% yield (STY of 0.35 kg L\(^{-1}\) h\(^{-1}\) and a capacity of 0.25 kg d\(^{-1}\)). In comparison to the modified Radziszewski reaction in batch mode, the results clearly showed the potential of microreaction technology in terms of process intensification. Indeed the reaction times were reduced by factors of 3 and 6 for chloride- and acetate-based ionic liquids.

Recently, Nokami, Itho and co-workers have reported a simple microreactor system for the continuous flow synthesis of novel ionic liquids having a (2-methoxymethoxy)methyl or methoxymethyl substituent. Both N-bases and tributylphosphine ILs were efficiently prepared in the microreactor system. The authors claimed that the conversion rates for the synthesis of the ILs in the microreactor system are faster than those of the batch system due to the smaller diffusion distance in the tube reactor. Indeed the reaction times were reduced by factors of 3 and 6 for chloride- and acetate-based ionic liquids.

The use of continuous flow systems has been demonstrated to be significantly more efficient than the corresponding batch processes for the synthesis of chiral imidazoles by the lipase-catalyzed kinetic resolution of racemic 2-(1H-imidazol-4-yl)cycloalkanols. The continuous flow biotransformations have allowed to easily increasing the production scale of these chiral imidazoles, which are adequate building blocks in the synthesis of chiral ionic liquids (Figure 2a).

In summary, the use of continuous flow systems facilitates the preparation of a wide variety of novel ionic liquids and/or their precursors by a simple and precise control of the reaction parameters, avoiding time-consuming purification steps while meeting the strict demands for highly pure reaction products and simultaneously bearing the possibility to prepare “on demand” the desired compounds in large scale. This will finally provide access to the rapid synthesis of tailor-made products for the steadily growing demand for ionic liquids.

3. Continuous flow processes using ILs as either solvents or catalysts.

ILs have been intensely exploited as the homogeneous phase for the immobilization of different types of reagents or catalysts. The immobilization of a catalyst in an IL-phase can provide a series of advantages over the use of other supports, in particular solid supports: i) first of all, no modification of the homogeneous catalyst is required for the immobilization, a factor that often affects to the efficiency of solid-supported systems; ii) the presence of the counterion can contribute to the activation of the catalyst; iii) the large variety of available ILs can be used to fine-tuning the overall efficiency of the catalytic system through straightforward modifications in the structure of the IL (anion and cation nature, aliphatic chains, presence of additional functional groups...); iv) finally, the IL phase can significantly contribute to the stabilization of the catalyst.

Furthermore, under certain experimental conditions, the tunable miscibility of ILs with other solvents may facilitate the separation of both the catalyst and the reaction medium from the products by means of liquid-liquid extractions. In terms of the potential industrial applications, this is a big advantage when considering the price of the metal catalysts, as the recovery of the catalytic IL-phase will facilitate the recycling and the reuse of these expensive catalysts (and that of the IL) for longer periods of time. Hence, it is feasible, in principle, to design a continuous flow system, in which a (bio)catalytic reaction is carried out in homogeneous phase using an IL as the reaction medium. The experimental set-up should be completed by adding to the layout an efficient extraction/recycling device allowing for the recycling of the IL-phase containing the catalyst.

Indeed, based on those principles, Eastman Chemical Company developed in 1998 the first continuous flow industrial IL-based process using continuous stirred tank reactors. This process, which is an important intermediate for the synthesis of higher added value products. This isomerisation requires a catalytic Lewis acid (a trialkyltitanium) and an ionic liquid ([P\(_{888}\)18][I]) as Lewis base. The system operated with three continuous stirred-
Liu et al. have developed a continuous microflow system for the synthesis of butyl cinnamate by a Mizoroki–Heck reaction catalysed by Pd-carbene species, which also allowed catalyst recovery, based on a similar approach combining reaction in ILs, product separation and recycling of the catalyst-IL phase. 33 The 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonil) imide ([BMIM][NTf₂]) was used as the homogeneous reaction medium due to its low viscosity. An automated continuous flow system was developed as shown in Figure 4. The continuous flow reactor was designed in conjunction with two microextraction units. The first one allowed the separation of the product (butyl cinnamate) from the IL/catalyst phase by liquid/liquid extraction with hexane. In the second unit, water was used to extract from the IL-phase the salts (ammonium salts) forming during the reaction. Altogether, the system led to high yields of butyl cinnamate and efficient removal and recycling of the catalyst-IL phase, which could be used again in consecutive runs without any drop in product yield (an overall yield of 80%, 115.3 g, 10 g/h). The repeated use of the Pd catalyst supported in the ionic liquid allowed exploring a totally automated flow system with continuous catalyst recycling.

A similar set-up was used for the 100 g scale synthesis of a key matrix metalloproteinase inhibitor through a copper-free Sonogashira coupling reaction in [EMIM][NTf₂] using a flow microreactor enabling a continuous catalyst-recycling. 34 A different application of ILs to design continuous flow processes has been reported by Horii et al. 34,35 They developed an electrosynthetic system for an anodic substitution reaction using a micro-flow reactor. This system enables nucleophilic reactions to overcome restraints such as the oxidation potential of nucleophiles and the stability of carbocations by the combined use of ILs as reaction media and a parallel laminar flow in the reactor. In this case, a stable liquid-liquid interface can be formed and mass transfer between input streams occurs only via diffusion (Figure 5). The microflow system enables the precise control of the reactive intermediates formed and thereby facilitates highly selective reactions that are difficult to achieve in conventional reactors. The product yield was improved up to 91% when N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl) imide [DEME][NTf₂] was used as the reaction medium in comparison with the 59% yield obtained in 2,2,2-trifluoroethanol (TFE), which is known as a stabilizing solvent for carbocations. These results suggest that ILs have an excellent stabilizing ability for carbocations, and therefore the carboxylation generated from N-(methoxycarbonyl)pyrrolidine could react with allyltrimethylsilane before its decomposition.
Liquids) process introduced by BASF in 2002.36 In this process, an IL (1-methyl-imidazolium chloride [HMIM][Cl]) is formed \textit{in situ} by using 1-methylimidazole as the HCl scavenger in the production of diethylphosphonophosphate, which is used as a key raw material for the production of photoinitiators to cure coatings and printing inks by exposure to UV light. In the conventional process, tertiary amines were used to scavenge the HCl, but this led to thick, non-stirrable slurries, decreasing enormously the efficiency of the process.

The original process had to be carried out in a batch mode in order to filter the product after the reactor, being both the reaction and the isolation process difficult to operate and with low yields. The introduction of methyl imidazole as the acid scavenger affords 1-methyl-imidazolium chloride, which is a colourless mobile liquid that it is easily separated from the product (Figure 6). Having eliminated the formation of any solid and having increased the reaction rate, developing new reactor concepts was possible. BASF was able to do the same reaction formerly carried out in a large vessel in a small jet reactor having the size of a thumb. The productivity of the process was raised by a factor of 8x104 to 690000 kg m$^{-3}$ h$^{-1}$.

Another interesting development of an industrially relevant process is the dimerisation of alkenes, typically propene (Dimersol-G) and butenes (Dimersol-X) to the more valuable branched hexenes and octenes (Dimersol process) catalysed by Ni complexes. The use of 1,3-dialkylimidazolium chloroaluminates as solvents has been developed and pioneered at IFP. These ILs are good solvents for the butanes and also help to stabilise the Ni catalyst without even needing additional ligand. Under these conditions, the desired products are not soluble in the IL-phase.

Thus, it is possible to establish a liquid-liquid biphasic system and the reaction can be performed in a continuous stirred tank reactor (CSTR) followed by a phase separator. In the separator the upper organic phase containing the products escapes through an overflow for collection and processing, whilst the lower IL-phase containing the catalyst is recycled back to reactor. This system dramatically decreases the Ni leaching when compared with the homogeneous Dimersol process in the absence of ILs.

Another example of a process facilitated by an IL has been the biocatalytic synthesis of esters in ILs by an esterification reaction. The non-volatile character of ILs facilitates separation of flavour and water products, and so to shift equilibrium reactions towards the synthetic goal.41a By this approach, the immobilized CALB-catalysed the synthesis of isoamyl acetate and ethyl acetate by esterification of acetic acid and the corresponding alcohol in a continuous stirred-tank reactor containing [Bmim][PF$_6$] as the reaction medium. The coupling of two membrane units on the reactor permitted continuous removing of both the isoamyl acetate and water products by a double pervaporation system using hydrophobic and hydrophilic membranes, respectively, in continuous operation for 72 hours without any loss in the enzyme activity.41

Rahman \textit{et al.} have reported a low pressure microflow system for continuous flow multiphase palladium catalyzed carboxylation reactions in ILs.42 The microflow system resulted in superior selectivity and higher yields in the carboxylative Sonogashira coupling and the amidation reactions of aryl iodides when compared to the related conventional batch systems (Figure 8). The authors claimed that the superior efficiency of the microflow system over the batch reactor can be attributed to the occurrence of a plug flow. This flow regime might provide a large specific...
interfacial area between the CO and the liquid phase facilitating the diffusion of CO into the thin IL phase. This cannot be obtained by mechanical stirring, justifying the low efficiency of the batch reactions under similar conditions.

Fig. 8 Pd-catalyzed carboxylative three-component coupling under continuous flow using ILs.42 Continuous flow set-ups can also be built on different types of biphasic systems derived from an ILs phase and a supercritical fluid, in particular supercritical carbon dioxide (scCO₂).50 These systems are based on the fact that scCO₂ can be very soluble in some ionic liquids (up to 60 mol %), whilst the same ILs have no measurable solubility in CO₂. In this way, it is relatively straightforward to develop continuous and semi-continuous ILs/scCO₂ set-ups. Generally, the IL-phase is used for the homogeneous immobilisation of the catalyst (metal complexes, enzymes, nanoparticles, etc), while the scCO₂ phase is intended to favour the delivery of substrates to the catalytic sites on the IL phase and to facilitate the extraction and separation of the final products.44 Figure 9 schematically shows the reactor set-ups used for biphasic continuous flow systems based on ILs/scCO₂. Very often, this combination allows optimising the efficiency of a given process leading to good yields, (enantio)selectivities and productivities by the fine tuning of the contact time of the scCO₂/IL-phases using either the pressure or the flow rates.

Fig. 9 General set-up for biphasic continuous flow systems based on ILs/scCO₂. In general, this excludes the need of other additional solvents and facilitates the isolation and separation of the products from the catalyst, being able to work 24/7, requiring less man power for operation and reducing the equipment size, maximizing at the same time the productivity. Therefore, they present a great potential for the development of industrial processes. Although the examples here reported have been performed at lab-scale its scale-up is feasible. Indeed, there is commercially available equipment designed for small-scale natural product extraction, which could be readily modified for this kind of purposes. As for any process involving scCO₂, one of the limiting factors for the scale-up is the operating costs associated with the energy requirement for the compression cycles of CO₂ between isolation and reaction.45

Fig. 10 Continuous flow hydroformylation reaction in ILs/scCO₂.46,47,48,49 The pioneering work in this field has been developed by Cole-Hamilton in the hydroformylation of long-chain olefins with rhodium complexes.46 The metal complex is dissolved in the IL and the reaction proceeded with high stability. Different catalysts and ILs have been assayed for the process (Figure 10). After the optimisation of the catalyst, the IL and the flow conditions, excellent yields, with an improved TOF value of 517 h⁻¹ and a long-term stability, over several weeks, could be achieved with almost negligible levels of rhodium leaching, down to 0.01 ppm.47,48 The hydroformylation of long chain alkenes can be achieved with selectivities to the desired linear aldehyde of 92%. The supercritical fluid–ionic liquid continuous flow system is based on the use a xantphos-derived ligand attached to an imidazolium salt.49

Leitner and co-workers have developed, based on a similar set-up, a simple system that allows for the synthesis of pure HCO₂H in a single processing unit. The scCO₂ phase is used as both reactant feeding and extractive phase, affording the continuous removal of the product based on the negligible vapor pressure of the ruthenium catalyst in the IL phase ([EMIM][NTf₂]), (Figure 11). Thus a continuous and efficient separation and removal of pure HCO₂H, free of any cross-contamination, is obtained. The adjustment of the right combination of the catalytic system in the IL-phase, together with the use of a supported base (QuadraPure-DMA), led to a stable system for continuous flow conditions. The initial activity was largely retained even after 200 h on-stream. In some cases the system was highly active, even surpassing the performance of similar ruthenium catalysts in conventional solvents.50
Fig. 11 Continuous flow hydrogenation of Carbon Dioxide in ILs/scCO$_2$.40

Similar biphasic systems can also be applied for the synthesis of chiral compounds. For instance, Leitner \textit{et al}. have reported the enantioselective synthesis of N-(1-phenylethylidene)aniline by hydrogenation using a biphasic scCO$_2$/[EMIM][NTf$_2$] system. The combined use of ILs-scCO$_2$ reduces the required pressures of H$_2$. Thus, under very mild conditions, a full conversion and a moderate enantioselectivity could be achieved (Figure 12).51,52

Although initial studies were performed under semicontinuous conditions, the easy isolation and recycling of the IL-catalytic phase by successive reaction-extraction cycles allowed the consecutive use of the system for at least seven cycles without any loss in conversion or enantioselectivity. The system was further improved to efficiently obtain a fully continuous process.53

In a similar way, the continuous-flow asymmetric hydrogenation of methyl propionylacetate in a biphasic ILs/scCO$_2$ was reported.20 The synergic use of a chiral catalyst immobilised on an IL-phase with different acid additives led to very efficient catalytic systems showing a good conversion (>90%) and enantioselectivity (80–82% ee) with a single pass. The initial catalyst activity was retained to 91% after 100 h and to 69% after 150 h time-on-stream, whereas the enantioselectivity remained practically constant during the entire process. A total turnover number of ~21,000 and an averaged space-time yield of 149 g L$^{-1}$h$^{-1}$ were reached in a long-term experiment.54

The potential of this methodology has been extended for reactions where the catalyst involved is sensitive to the air, changes on pressure, temperature, etc. For instance, the hydrovinylation of styrene using the Wilke’s catalyst was carried out in an IL-scCO$_2$ biphasic continuous flow system.55 The stability of the catalyst is improved (more than 60 h of continuous operation) in comparison with the recycling in the batch mode, where the catalyst was deactivated by the consecutive separation and reuse cycles.

Fig. 12 Continuous flow enantioselective hydrogenation of imines in ILs/scCO$_2$.51,52,53

Finally, the IL-scCO$_2$ biphasic continuous flow systems can also be exploited to design biocatalytic processes. In general, the possibility of immobilization of biocatalysts into IL-phases is a simple approach to enhance their stability. In this case, the biocatalyst is fixed (either dissolved or suspended) and activated by the IL phase, while the scCO$_2$ becomes the mobile phase.56 Lozano and Leitner and Reetz were the pioneers in the development of such systems for the kinetic resolution of phenyl ethanol using CALB (\textit{Candida antarctica} lipase B) as the biocatalyst (Figure 13).57,58 The system could be further modified to fully explore the possibilities than supercritical fluids provide for the continuous separation of the two products formed based on their different solubilities in the scCO$_2$ phase.59

Fig. 13 Continuous flow enzymatic resolution in ILs/scCO$_2$.57,58,59

A step forward for the simple implementation of continuous flow processes based on ILs consists in the absorption of the ILs on a porous support material (Supported IL Phase: SILP).60 This strategy brings together the full potential of homogeneous biphasic IL-based systems with those provided by catalysts immobilised onto an insoluble support. The incorporation of the (bio)catalyst is then carried out by its adsorption on the surface modified with the IL-phase.61 The resulting continuous flow catalytic processes can use either a gas-phase or a supercritical
fluid phase as the mobile phase to deliver the reactants to the IL phase and to extract the products. The main limitation of this approach is the possible leaching of the IL-phase from the support. This phenomenon can be due to either certain solubility of the IL in the mobile phase or the products (which severely limits the use of liquid phases for delivery and extraction of reagents and products) or to physical abrasion during extended exposition to the mobile phase. The type and morphology of the support is also a key parameter to achieve an efficient system. This type of set-up has been evaluated for the development of different industrial relevant processes under continuous flow conditions (Figure 14).

Different reports have described the application of this methodology for hydroformylation reactions in either scCO$_2$ and/or in the gas phase. Thus, for the SILP/scCO$_2$ system, higher rates than for the batch bulk-IL/scCO$_2$ system were obtained, reaching TOF values of 800 h$^{-1}$ and more than 3-fold enhancement on spatial-time yields. Furthermore, the system showed good stability maintaining the TOF values (500-800 h$^{-1}$) for at least 40 h of continuous flow operation (TON > 20000) independently of the IL used to prepare the SILP.

A similar system has been reported using as the gas-phase a highly diluted, technical grade, C4 feed containing 1.5% 1-butene, 28.5% 2-butenes, and 70% of inert n-butane (Figure 15). To obtain the desired product, n-pentanal, the Rh-biphosphine sulfonated catalyst (Rh-sulfoxantphos) was immobilized in the SILP system to allow for consecutive isomerization/hydroformylation activity. The resulting SILP-catalyst system converted up to 81% of the reactive butenes, with a residence time of 155 s in the reactor. The n-pentanal selectivity was greater than 92% for more than 500 h time-on-stream in the continuous gas-phase reaction. The non-ionic Rh-diphosphite catalyst was also used to prepare a catalytic SILP system. The catalyst was found to be sensitive to hydrolysis. However, when a dried feed gas was used and an acid scavenger added to the immobilized ionic liquid, the catalyst stability could be extended to more than 30 days time-on-stream. During this operation time a total turnover number of more than 350000 was achieved. Under slightly harsher reaction conditions (120 °C, 25 bar total pressure) the performance of the Rh-catalyst-SILP system was increased, with the same highly diluted feed, reaching a TOF of 3600 h$^{-1}$ and a space–time yield of 850 kg of n-pentanal m$^{-2}$ h$^{-1}$. Under these conditions, the selectivity towards n-pentanal always remained above 99%. It is worth mentioning that in an IL–organic biphasic operation, this non-ionic ligand would leach quickly into the product phase. A structural modification (e.g., attachment of ionic groups) would be necessary to immobilize it in the IL-phase. This is an important finding for the application of a much broader range of non-ionic ligand systems in future catalysis studies based on SILPs.

A related approach has been developed for the synthesis of amines in a one-pot cascade reaction involving an alkene hydroformylation followed by a reductive amination. Both, the nature of the IL and the characteristics of the support, can be used to tune the efficiency and chemoselectivity between the desired amination/hydrogenation process and the undesired aldol reaction (Figure 16). Thus, SILP-supported catalysts based on neutral oxides and porous carbon supports and ILs of low basicity and lipophilicity resulted in very selective hydroaminomethylation catalysis. The long-term stability of the developed systems is remarkably high, with an effective time-on-stream of more than 18 days, reaching a total turnover number of 115000.
The continuous flow homogeneous alkene metathesis can also be performed using this methodology. The self-metathesis of oleochemicals is of considerable interest for the conversion of low value feedstocks into useful chemicals for petrochemistry and polymerization. The system involves a Ru homogeneous boomerang catalyst with an imidazolium tag on the reactive carbene. At a flow rate of 0.05 mL min\(^{-1}\) and a temperature of 50 °C, up to 64% conversion was obtained over the first 6 h. A slight deactivation was observed after 10 hour on a continuous flow stream (Figure 17). In the most favorable cases, 6 g of substrate per hour can be converted to an equilibrium mixture of products in a 9 mL reactor. No solvent is present in the collected product and the only purification needed is the fractional distillation of the equilibrium mixture of products.

Ru-based SILP catalysts have also been applied for the gas phase asymmetric hydrogenation of \(\alpha\)-keto esters.\(^{21}\) With Ru-BINAP, dissolved in the SILP 3-hydroxypropylpyridinium bis(trifluoromethylsulfonyl)imide on silica 100, a stable catalyst performance could be obtained for more than 50 h time-on-stream, although only a moderate enantioselectivity was reported. The hydrogenation of methyl acetoacetate using dibromo[3-(2,5-\(\text{Me}\)-dimethylphospholanyl)-1-4-di-o-tolylphosphino-2,5-\(\text{Me}\)-dimethyl-thiophene]ruthenium as the catalyst in [EMIM][NTf\(_2\)] immobilised on silica 30 rendered enantiomeric excesses in the range of 65–82% ee for more than 100 h time-on-stream of continuous operation.\(^{20}\)

A highly enantioselective continuous transformation could be achieved, using a SILP-catalyst based on a chiral transition-metal complex and scCO\(_2\) as the mobile phase, for the asymmetric hydrogenation of dimethyl itaconate. A dehydroxylated silica was chosen as the support. The pretreated silica gel 100 (surface area=300 m\(^2\)·g\(^{-1}\), pore volume=1 mL·g\(^{-1}\)) was coated with [EMIM][NTf\(_2\)] saturated with QUINAPHOS–Rh as the catalyst (Figure 18). Deposition of the IL solution onto the support caused the surface area to decrease to 130 m\(^2\)·g\(^{-1}\) and the pore volume to 0.44 mL·g\(^{-1}\). The full conversion of dimethyl itaconate with an excellent enantioselectivity of >99% ee for the desired alcohol could be achieved. The total TON reached a remarkable value of 115000 moles of substrate per mole of rhodium. After 65 h, 3 mg of catalyst in 0.4 mL of IL had converted over 50 g of substrate, corresponding to a high space–time yield of 0.3 kg·h\(^{-1}\)·L\(^{-1}\). Although good initial catalyst performance could be achieved with a variety of silica-based materials, the long-term stability was very sensitive to the surface properties of the support. The selection of hydrophobic, fluorinated materials (meso-scale) or the introduction of water scavengers into the processing unit (macro-scale) proved effective in retarding or preventing catalyst deactivation caused by water poisoning (molecular scale).\(^{22}\)

PdNPs of 5 and 10 nm obtained in either [BMIM][PF\(_6\)], or [BMIMOH][NTf\(_2\)] have been supported on carbon nanofibers (CNF) anchored to sintered metal fibers (SMF) and applied for the selective acetylene hydrogenation under continuous-flow conditions. The lower solubility of ethylene as compared to acetylene in the IL results in a high selectivity to ethylene, up to 85% at 150 °C. The catalytic system also demonstrated high efficiency and long-term stability without any deactivation in ethylene-rich feed (2 vol % of acetylene, 40 vol % of ethylene, 10 vol % of H\(_2\) in Ar), and therefore, the system shows promise for industrial application.\(^{23}\)
The SILP methodology has been applied to screen transition metal complexes for their catalytic activity under very controlled steady-state conditions in the search of new water–gas shift (WGS) catalytic systems. Differing from classical batch experiments, this method provides a great amount of information on catalyst formation and deactivation phenomena. This makes the selection of the most promising candidates, and the structural motifs for the further development of even more effective WGS catalysts much more reliable. Using as a model feedstock H₂O and CO, in a continuous screening reactor, an activity of 3 mol H₂·mol⁻¹·h⁻¹ was attained at 160 °C and 0.1 MPa after a prolonged induction period of more than 20 h. This moderate activity already exceeded that of a commercial copper-based catalyst under the same ultra-low temperature conditions (0.5 mol H₂·mol⁻¹·Cu·h⁻¹). The systematic development of a SILP-catalyst by variation of the ionic liquid, the support, the additive and the metal complex has shown a cooperative interplay of the influencing factors when combining the individually optimized factors in one system. In this way, a new SILP-WGS catalytic system of unprecedented activity, under extremely mild conditions, displaying a unique re-start behavior and robustness under typical storage conditions has been developed (Figure 19). An optimized SILP system was further developed including an increased Cu- and IL-loading and the addition of the ionic Lewis base [DMMAP][OTf]. This catalytic system, using the SILP concept, was tested over 50 h time-on-stream, achieving a total turnover number of more than 600, which is an unprecedented productivity in the gas-phase homogeneous oxycarbonylation. The process design requires a smaller reactor size than the existing technology, in order to obtain the same productivity, which makes the SILP carbonylation concept potentially interesting for technical applications.

Another interesting application of the SILPs approach in gas phase is the Friedel-Crafts isopropylation of toluene and cumene. It could be performed using an acidic SILP system, where the different Lewis acidity of the catalysts and the IL loading play a key role. The study showed that a moderate IL loading (α = 0.2) with considerably high aromatic-to-propylene ratio (7:1 molar ratio) were the best conditions to suppress consecutive alkylation reactions that fill the catalyst pores with low-volatile heavies.

Besides, the support had a beneficial effect on the selectivity to mono-alkylated products. The optimized acidic SILP system was able to effect the Friedel-Crafts alkylation for more than 210 h time-on-stream showing constantly high selectivity to the mono-alkylated product (> 95%) and excellent selectivity to metacumene within the cymenes (up to 80%) (Figure 20). SILP-based systems have also been assayed for the continuous gas-phase methanol carbonylation to produce dimethyl carbonate (DMC), which is a potential alternative for phosgene in polycarbonate and isocyanate synthesis. Fixed-bed reactors based on silica-SILPs bearing a rhodium iodide Monsanto-type catalyst have been proved as good catalytic systems. The reaction proceeds with an excellent activity and selectivity towards acetyl products. Alternatively, a system based on CuBr as the catalyst on a Polymer-Based Spherical Activated Carbon (PBSAC) as the support and [OMA][Br] as the IL-phase yielded the best results (Figure 21). An optimized SILP system was further developed including an increased Cu- and IL-loading and the addition of the ionic Lewis base [DMMAP][OTf]. This catalytic system, using the SILP concept, was tested over 50 h time-on-stream, achieving a total turnover number of more than 600, which is an unprecedented productivity in the gas-phase homogeneous oxycarbonylation. The process design requires a smaller reactor size than the existing technology, in order to obtain the same productivity, which makes the SILP carbonylation concept potentially interesting for technical applications.
A completely different application of the SILP approach has been used for the design of enzymatic reactions. Lozano and coworkers have evaluated the immobilisation of free Candida antarctica lipase B (Novozyme 525L) by adsorption onto 12 different silica supports surface-modified with specific side chains (e.g. alkyl, amino, carboxylic, nitrile, etc.) for the kinetic resolution of 1-phenyl ethanol.\(^8^1\) Coating immobilized enzyme particles with ionic liquids (butyltrimethylammonium bistriflimide [BTMA][NTf\(_2^+\)] or trioctylmethylammonium bistriflimide [OMA][NTf\(_2^+\)]) resulted in an increase in activity (10 times) under batch conditions. It is worth mentioning that, in this case, the enzyme maintained an excellent activity and a reasonable stability even at 150ºC, which reveals the important stabilization associated to the combination of the biocatalyst with the IL phase. Very interestingly, the synthetic activity displayed by the CALB-C4-silica/BTMA][NTf\(_2^+\)] in the continuous flow scCO\(_2\) system was enhanced up to 35.1 U/mg protein, six-fold higher than the obtained in hexane/IL media (Figure 22).

As many commercial enzyme formulations contain the enzyme immobilized on different support materials (i.e. Novozyme 435 is a commercial product with CALB immobilized on an acrylic resin), a simple alternative for the preparation of the enzyme-SILP system is the direct coating of the commercial material with a thin layer of IL. Lozano et al. created a thin layer of an IL phase on the surface of the particles containing the enzyme and the resulting material was used in a packed bed reactor, using vinyl propionate as the acyl donor (50ºC, 15 MPa, substrate:donor ratio 0.5, conversion >35%, 99% ee for the product).\(^8^2\)

A logical step forward from the kinetic resolution process based on an enzyme-SILP system is the dynamic kinetic resolution (DKR). This can be achieved by introducing an additional chemocatalyst, either an acid or an organometallic catalyst, able to racemize the free alcohol present in solution. The key to success is the compatibility between the biocatalytic and chemocatalytic components, as the interaction between them leads, in general, to deactivation of the enzyme. In this regard, the use of immobilized systems coated with an IL thin film is also advantageous, as the immobilized IL-phase can greatly decrease the possibility of interparticle site-site interactions between two immobilized catalysts. Thus, the first attempts to develop a continuous DKR process of rac-1-phenylethanol combined in a single-pot the biocatalyst (Novozym 435) and the acid catalyst (a silica modified with benzenesulfonic acid groups, SCX) both coated and protected with IL thin-layer. Nevertheless, the direct mixture of the two components afforded a rapid deactivation of the enzyme, most likely because of the influence of the acidity originating at the SCX. To overcome this problem, a fixed bed tubular reactor was assembled, in this case with three different compartments. The SCX/IL was placed in the middle of a high-pressure cartridge, while the Novozym 435/IL mixture was placed at the two ends of the cartridge. The three different layers were separated by glass wool to avoid any physical contact. Using scCO\(_2\), at 40ºC and 100 MPa, containing the racemic substrate and the acyl donor as the flowing solvent, excellent results were obtained, with yields up to 75% and 91-98% ee for the R-ester.\(^8^3\) It is worth noting that the yield attained is the maximum that can be expected for a DKR with this configuration. A simpler and more effective approach for this purpose should be, however, the work with a single layer containing a mixture of the enzymatic and the acid catalyst. In order to avoid the interference of the acid catalysts with the enzyme, different acid catalysts of decreasing acidity have been assayed. Excellent results could be obtained, for this configuration (Figure 23), using zeolites coated with an IL. The reactor was filled with a homogeneous mixture of both catalysts and finally assayed for the DKR of sec-alcohols under a flow of scCO\(_2\) at 50ºC and 10 MPa. Because of the lower acidity of the zeolites, no loss of enzymatic activity was observed. With this configuration, yields close to 100% could be obtained. Best results were observed for a multicatalytic reactor prepared by a combination of zeolite CBV400 and Novozym 435 both coated with [TBMA][NTf\(_2^+\)]. In this case, the yield was 98% and the ee 96%, and the system maintained the same activity and selectivity after continuous use for 14 days.\(^8^4\)

![Figure 22](image1.png)
Fig. 22 Continuous flow enzymatic kinetic resolution in SILP.\(^8^7\)

![Figure 23](image2.png)
Fig. 23 Continuous flow enzymatic dynamic kinetic resolution in SILPs.\(^8^8\)
The biocatalytic synthesis of biodiesel can be improved by using ILs with cations bearing large alkyl side-chains (e.g. [C₄ mim][NTf₂]), because they are able to dissolve the vegetable oil and methanol substrates in a monophasic reaction medium.58

The ILs also protect enzyme against the fast deactivation that results from direct contact with methanol, e.g. up to 1370 days half-life time at 60 °C.85b In this context, a continuous flow synthesis of biodiesel in scCO₂ can be carried out by using a SILP based on immobilised lipase particles coated with a monolayer of the corresponding IL ([C₄ mim][NTf₂]). Although the system can provide pure biofuel (95% yield at 18 MPa and 60°C), it was not stable enough for long operation times. The biodiesel continuously produced during the operation was able to dissolve the protective IL shell around enzyme particles, producing a fast biocatalyst deactivation.85c These results underline some of the limitations of this approach and the interest for developing approaches based on the permanent protection of the enzyme by ILs under scCO₂ flow operations (e.g. by using covalently attached IL phases).

An alternative to the immobilization of the IL-phase by coating the surface of a support with a thin layer of the IL (SILPs) is to attach covalently structural fragments related to ILs to the functional groups present in the surface of the support. The resulting materials have been termed as Supported Ionic Liquid-Like Phases (SILLPs). Both, inorganic (silica or other metal oxides) and organic (crosslinked polymers) supports have been used for the preparation of catalysts immobilized in SILLPs.86 Solid materials with multilayer IL structures can also be obtained by the polymerization of polymerizable task specific ILs either directly or in combination with a support.87–88 It is clear that in this case, when the IL-like fragment is covalently attached to the support, the problem of leaching is totally eliminated. However, the transfer of the proper essential properties of the corresponding ILs to the solid phase needs to be guaranteed, and this is not a simple matter. Fortunately, it has been demonstrated that, based on a proper selection of the different design elements involved, it is feasible to transfer the IL properties to the surface of the solid. Therefore, the resulting materials present the advantages associated to ILs but can overcome many of the drawbacks often associated to bulk Ionic Liquids, facilitating their technological applications.89,90 Indeed, their controlled solid nature enables them to be used to develop fixed-bed flow reactors for continuous flow processes (Figure 24).

The incorporation of the catalyst to the SILLP is simply carried out by adsorption of the homogeneous catalyst as an adequate solution onto the modified surface of the support bearing IL-like units. The continuous catalytic reactions can be performed either in conventional solvents or alternatively, and moving towards greener methods, using different types of supercritical fluids or in solvent free processes.

The nature of the support provides an additional design vector, besides those related with the structure of the IL-like units, to tune the characteristics of the new materials, in particular in the case of polymeric supports. Thus, envisioning the different potential applications of SILLPs, a variety of polymeric supports can be obtained with different morphological, chemical and physical characteristics by a controlled variation of their synthetic protocol and the existing functionalities. This modular design facilitates both the immobilization and the stabilization of the catalytic moieties.83

Based on the fact that the polymeric SILLPs present at the molecular level the same fundamental properties of the bulk ILs,84 they can be used, for instance, for the simple preparation and stabilisation of metal nanoparticles (MNPs) from different metal precursors, reproducing the analogous behaviour observed for bulk ILs.92 Thus, PdNPs supported onto monolithic SILLPs have been used as stable and active catalysts for the Heck reaction. As an alternative solvent to conventional organic solvents used for this reaction, hot pressurised ethanol was used (Figure 25). Ethanol is not only benign, easily available and relatively cheap, but is also a solvent whose properties are easily adjustable with pressure and temperature. Supercritical ethanol provides a less corrosive solvent than supercritical water and with more accessible critical parameters (T_c = 516 K, P_c = 6.4 MPa). A stable performance on a continuous flow fixed bed reactor (ca. up to 91 bed-volumes) was observed for the Heck reaction in near critical EtOH (200 °C and 8 MPa). The presence of IL-like moieties in the polymer seems to help to stabilise the Pd(0), simultaneously reducing the leaching through a release and catch mechanism.93 The morphological and chemical properties of the support and the IL-like fragments, including the loading, in the polymeric ionic-liquid-like phase has been shown to play an active role on the catalytic cycle.94

A partly related approach has been the immobilization of a biocatalytic lipase onto a covalently Supported Ionic Liquid-Like
Phase (SILLP). CALB supported on SILLPs was shown to be an efficient and very stable catalyst for the continuous flow synthesis of citronellyl propionate in scCO$_2$. The presence of a high IL/enzyme ratio is reflected in a high stabilization of the CALB in those systems. Thus, the process could be carried out at 80°C with yields of 93% for more than 10 h without any appreciable deactivation of the enzyme (Figure 26). The results substantially exceeded those obtained for packed-bed reactors with supported silica-CALB-Si-4 catalyst under the same experimental conditions, highlighting the key role played by the covalently attached IL-like units. The SILLPs not only provide an adequate microenvironment for the lipase action, but also improve the mass-transfer phenomena of hydrophobic substrates and products from the scCO$_2$ phase, leading to a highly selective and stable immobilised enzyme even at high temperatures and pressures.

![Figure 26](image)

Figure 26 Continuous flow enzymatic synthesis of citronellyl propionate in SILLPs/scCO$_2$.

PS-DVB-derived SILLPs can also be prepared starting from commercial Merrifield resins in the form of beads. Both, gel-type and macroporous resins containing covalently attached imidazolium subunits have shown to act efficiently for the immobilization of CALB, in particular for the polymers having a relatively high content in IL-like fragments. The macroporous resins are, however, more appropriate for being packed into tubular reactors and for the development of flow processes, according to their higher mechanical stability. In this way, CALB immobilised onto SILLPs bearing 1-decyl-2-methylimidazolium cations has been used as the biocatalyst for the continuous flow synthesis of biodiesel (methyl oleate) by the methanolysis of triolein in scCO$_2$ (18 MPa, 45 °C). The system showed very good stability (85% mean yield of biodiesel after 45 cycles of 4-8 h) in scCO$_2$. Again, the nature of the SILLPs regarding both the substitution pattern at the IL-like units and the type of polymeric support used were key factors to obtain an efficient supported biocatalyst. These elements determine the efficiency of the mass-transfer processes at the interfaces, either of the substrates to the active site or the products from the enzyme. The selection of an IL that contains a large alkyl chain in the cation results in a clear improvement of the efficiency for the biotransformation in monophasic liquid systems and the same takes place when the corresponding SILLPs are prepared. Thus, controlling the structure of the SILLPs, it is possible to develop efficient continuous processes for the transformation of vegetable oil into biodiesel (Figure 27).

![Figure 27](image)

Figure 27 Continuous flow enzymatic biodiesel synthesis in SILLPs-scCO$_2$.

The corresponding SILLPs-based fixed-bed biocatalytic mini reactors were assayed for the continuous KR of sec-alcohols, using scCO$_2$ at 50°C and 10 MPa for feeding the substrates to the reactor. The results were excellent, as yields of 50% in the expected enantiopure ester were obtained. A high level of stability was also observed for the mini bioreactor, as the activity and selectivity was maintained without any significant change after 6 days of use under the above-mentioned conditions. It is remarkable that, in this case, resins with imidazolium fragments containing chloride as the counter anion showed to be the more active, while the NTf$_2^-$ anion had revealed to be the most appropriate for other enzymes supported either in SILLPs or SILLPs.

As was mentioned above, development of an efficient DKR allows raising the yields of the desired ester to 100% but requires the combination of the biocatalyst with an acidic or organometallic catalyst to produce the continuous racemization of the undesired enantiomer of the alcohol. Taking into account the former results discussed above, different zeolites (CP811C, CBV720 and CP811E) were studied as the acid catalysts for the racemization in combination with the CALB supported on SILLPs based on bead-type resins.

The complete isolation of the enzyme and the acid catalysts guarantees that no deactivation of the enzyme can be associated to the contact with the zeolite. The systems were maintained under continuous flow conditions using scCO$_2$ at 50°C and 10 MPa. A “one pot” single column minireactor was prepared using a mixture of the CALB-SILLP polymer with zeolite CP811E-150 (Figure 28). Good results were obtained when the zeolite catalyst was coated with a small amount of an IL. This follows the same trend observed in the case of SILLPs. Nevertheless, contrary to the observations obtained in that case with the use of commercial immobilized CALB (Novozym 435), no additional coating with an IL of the biocatalyst was required for the stabilization of the enzyme. This clearly highlights how
SILLPs are able to efficiently stabilize CALB against deactivation by scCO$_2$ or the presence of acidic catalysts.

This journal is © The Royal Society of Chemistry [year]

The combination in a single reactor of SILLPs with different functionalities can lead to new catalytic systems (catalytic cocktails) with improved properties towards their application for C-C coupling reactions. In this regard, it is important to understand that the chemical functionalities present in SILLPs can play different functions in the reaction medium. This can involve simultaneously (or consecutively) their actuation as supported reagents (i.e. supported bases or acids), precatalysts and scavengers of undesired reaction side-products.

The Heck reaction could also be conducted under continuous-flow conditions using a packed bed of a SILLPs polymeric cocktail containing basic functionalities and PdNPs and employing supercritical carbon dioxide (scCO$_2$) as the solvent (Figure 29). This approach cannot be carried out with the use of soluble bases as this eventually leads to the clogging of the reactor. Finally, this kind of SILLPs cocktail enables the combination of different reaction and purification steps in a single reactor, which represents a significant improvement in terms of process intensification and green chemistry. This is particularly true in the case of using scCO$_2$ as this allows the direct production of pure crude materials not contaminated either by salts or by solvents.

Supported ionic liquid-like phases (SILLPs) have also been efficiently applied as organocatalysts for the cyanosilylation of carbonyl compounds using trimethylsilyl cyanide under solvent-free conditions. They acted as efficient catalysts for a variety of carbonyl compounds including aromatic, aliphatic and α,β-unsaturated systems. Furthermore, the supported nature of the SILLPs allowed for the development of a continuous flow synthesis of cyanohydrin trimethylsilyl ethers (Figure 30). The effect of the morphology of the polymer (gel-type or macroporous bead resins or, alternatively, a monolithic polymer) was also studied, which allowed selecting the most suitable materials for the efficient continuous flow single pass synthesis of cyanohydrin trimethylsilyl ethers. The optimized system provided excellent productivities and high yields without observing any decrease in the activity of the catalyst with time. The results obtained showed a productivity of up to 45.1 g of cyanohydrin trimethylsilyl ether per g of SILLP used and hour. This process perfectly conforms to the features of green chemistry: no waste regarding side-products and unconverted reactants, metal-free, solvent-free, excellent catalytic activity, very low E factor and no requirement for separation.
The exchange of the counter anion in the IL-fragments of SILLPs to introduce a basic anion such as OH– or AcO– led to developing a basic catalyst for the continuous flow solvent-free Henry nitroaldol reaction (Figure 31). A total conversion of the substrate into the product was achieved with residence times as short as 1–3 min, using a monolithic mini-reactor with a free-volume of ca. 500–800 μL.

Indeed, if the TON for the related batch and continuous flow processes are compared, higher values are obtained for the flow systems. The base-supported systems present a high throughput and are advantageous for the upscaling of the process. Although the activity of the catalysts decays with time, the continuous flow set-up allows an easy and efficient washing and recycling of the catalytic system affording a complete recovery of the activity. Indeed, a set-up with parallel reactors would allow the continuous production for long periods of time, by switching from one to the other when the catalytic activity decreases.100

5. New developments and future directions

Additional exciting possibilities of the marriage of ILs/capillary microfluidic devices are the generation of double and multiple emulsions, in a similar way to those of water-in-oil-in-water (W/O/W).101,102,103,104 Such two-phase systems based on the presence of an IL-phase enable for extraction/separation and continuous reaction. Thus, a biphasic system 1-butyl-3-methylpyridinium dicyanamide/n-heptane was found to be a highly efficient reaction medium for the biocatalytic synthesis of isoamyl acetate using acetic anhydride as the acyl donor and using a 20 vol% of an aqueous CaLB solution.105 Under optimized conditions, 48.4 g m-3 s-1 of isoamyl acetate were produced, which was almost three-fold better as compared to the intensely mixed batch process. This was mainly a consequence of the efficient reaction–diffusion dynamics in the microchannel system, where the developed flow pattern involving an intense emulsification provided a large interfacial area for the reaction and the simultaneous product extraction to the desired phase.

The combination of multi-phase microfluidics with magnetic fields extends these possibilities to the selective manipulation of fluids or nano/micro-particles in flow, through the interaction with these external magnetic fields.106,107 In this regard, a surfactant-free technique for the continuous generation of double emulsion droplets, composed of an organic solvent and a paramagnetic ionic liquid, has been recently reported.108 The specific magnetic properties of the IL allow, through the application of external magnetic fields, for a selective and controllable manipulation of the individual emulsion droplets. Such systems might provide, even in a continuous flow set-up, a quick and simple method for the separation of a catalyst immobilized in the IL phase from the reaction mixture. The magnetic and catalytic behaviour of imidazole based magnetic ionic liquids was used to establish a so-called liquid fixed-bed (LFB) in a micro-/meso-structured reactor. As a proof of principle, the esterification of Ac\textsubscript{2}O with cyclohexanol was investigated by bubbling the generated regular microdroplets of the reaction mixture through the magnetically fixed ionic liquid catalyst. With residence times of approximately 1.4 s a yield of 78.5% of the target ester molecule was achieved.109

6. SWOT analysis of the process based on the combination of ILs and continuous flow processes.

Once reviewed the state of art and future trends on the field of ILs and continuous flow process, it is important to properly assess the technologies and procedures based on their combination. We have applied a common tool used in strategic planning, viz. strengths, weaknesses, opportunities, threats (SWOT) analysis.110 SWOT analyses can highlight the advantages and disadvantages of their combined use. Table 1 summarises the main strengths, weaknesses, opportunities and threats based on the above reviewed examples.

The strengths of this technology were highlighted in the previous sections with significant examples that demonstrated the synergies achieved by the combined use of ILs and flow processes. These achievements allow for the development of new greener processes for both the synthesis of high quality ILs (newly designed or already reported) and their application in (bio)catalytic processes. The ILs phases generally contribute to the stabilisation of the catalyst and even, in some cases, to an enhancement of their catalytic activity. Thus, under a continuous flow stream, the productivity can significantly improve. In this way, new opportunities rise from the synergistic combination of these enabling tools. The greatest opportunities are the design of new processes based on new types of reactors integrating reaction and separation in a single unit. This will contribute to process intensification and it will require the joint effort of chemists and engineers. Regarding to the synthesis of ILs, continuous flow synthesis offers a simple, fast and scalable approach for the synthesis of new ILs based in different building blocks. Furthermore, this combination provides exciting opportunities to generate valuable intellectual property.

Regarding to the weaknesses, recovery and reuse of ILs is a key parameter to be overcome when ILs are used. Although some of the methodologies reported on the section 4, that are based on the immobilisation of ionic liquids (SILPs and SILLPs), can help to partially solve this problem, for the systems in which ILs are used as a homogeneous solvent their recyclability would be the limiting step. Extraction of non-volatile products and distillation of volatile solutes/impurities from ILs are still the most common methods currently used to recycle and reuse of ILs, however these approach are energy and cost demanding. Alternative methods based on membrane processes such as filtration, pervaporation, reverse osmosis and electrodialysis have shown some promise for the recovering of ILs; however, the practical feasibility of these methods at large scale needs to be proved.111 It seems evident that this is one of the weakest points of the methodology. Even when the ILs can be efficiently reused, there is still an uncertainty regarding the stability of the ILs under a prolonged use. Besides, some of the reported approaches may be difficult to scale-up or should be redesigned for an industrial application.

The problems of blocking/clogging of the system related with the presence of not soluble products should also be mentioned as a possible disadvantage of the continuous flow systems. This is a major problem associated to the development of practical continuous flow systems and will also be problematic with the use of ILs under flow conditions.

Regarding possible industrial applications, it should bear in mind...
that for any new industrial-scale application based on ionic liquids the implementation of the REACH (registration, evaluation, authorisation and restriction of chemicals) legislation is a threat. Especially for new ILs, since they require a large initial financial investment for the registration and the gathering of the full physic-chemical characterization and eco-toxicity data required for their evaluation.

Finally cost issues related to ILs continue being an important threat for the generalization of the use of ILs and the possibility of scaling-up the corresponding applications up to the industrial level. This is particularly true in the case of flow applications involving the use of bulk ILs. The development of flow processes for the synthesis of ILs can make a significant contribution in this regard, but this approach still needs to be implemented and generalized. It is clear that the continuous effort towards the development and application of supported IL systems represents a positive answer to overcome this limitation.

Table 1 SWOT analysis of the process based on the combination of ILs and continuous flow processes.

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>develop greener procedures</td>
<td>full recovery of the ILs required</td>
</tr>
<tr>
<td>synergy (better two than one)</td>
<td>insoluble products (blocking)</td>
</tr>
<tr>
<td>applicable different type of catalysis</td>
<td>scale-up</td>
</tr>
<tr>
<td>high quality ILs synthesis</td>
<td>new engineering solutions needed</td>
</tr>
<tr>
<td>(bio)catalyst more stable and reactive</td>
<td>ILs leaching in SILPs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>new process</td>
<td>toxicity of ILs</td>
</tr>
<tr>
<td>new reactor design</td>
<td>IL stability under long continuous use and recovery (colouration/decomposition)</td>
</tr>
<tr>
<td>integration separation/reaction intensification</td>
<td>legislation (REACH)</td>
</tr>
<tr>
<td>fast synthesis of new ILs</td>
<td>Cost issues related to ILs</td>
</tr>
<tr>
<td>new technologies/new IP development of new materials (SILLPs)</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

A variety of technical approaches can be considered for the implementation of flow processes involving the use of ILs. In most cases, the ILs act as the catalytic phase, being directly the IL the catalyst or acting as the support for the immobilization of the corresponding catalyst (organometallic catalyst, catalytic MNP, organocatalyst or biocatalyst). From a practical point of view, both the full recovery of the catalyst and that of the IL used need to be always considered and this is improved, in general, with the use of continuous flow set-ups. Currently, two main approaches have been developed. The first one is associated to the use of biphasic systems involving a bulk IL, containing the catalytic system, and a second phase designed to deliver the substrates and extract the products from the IL phase. This has been the option initially selected for the development of industrial applications and has been often optimized through the use of microreactor technologies. The combination of ILs-based systems with a gas phase or a supercritical fluid phase (particularly scCO₂) is particularly well suited for the development of biphasic flow processes. A different alternative is the use of ILs supported on solid materials either by adsorption (SILPs) or by covalent attachment of IL-like fragments (SILLPs). This approach combines the advantages of the use of ILs as catalyst supports and the use of solid phase chemistry, well established for the development of flow chemistry processes.

Most of the examples considered reveal that continuous flow processes provide significantly enhanced performances in comparison with the related batch processes. This is particularly true when they are carried out in combination with other key enabling techniques. The use of micro- or mini-reactor technologies, with different alternative reactor configurations, or the combination with supercritical fluids represents two important examples. Overall, the considered applications display, in general, important improvements in space-time-yield as well as excellent long-term stabilities for the corresponding catalytic systems.

New approaches are currently being developed that combine the use of ILs with flow chemistry. The incorporation of NPs chemistry, the use of systems responsive to external stimuli (i.e. magnetic or electric fields) or the integration in a single process of complex and often mutually incompatible multicatalytic systems represent some of the challenges to be achieved in the next future.

Acknowledgements

This work was partially supported by MINECO, Spain (Ref: CTQ2011-28903) and Generalitat Valenciana (PROMETEO 2012/020) and UJI (P-1IB 2013-37).

Notes and references
