Green Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/greenchem

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Structural-functional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions

João V. Rodrigues^{a,‡}, Diana Ruivo^{a,‡}, Ana Rodríguez^b, Francisco J. Deive^b, José M.S.S. Esperança^a, Isabel M. Marrucho^{a,*}, Cláudio M. Gomes^{a,*}, Luís Paulo N. Rebelo^a

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXXX DOI: 10.1039/b000000x

Using ionic liquids as co-solvents may improve reaction media in enzyme-based biotechnological processes. To establish new conditions, large libraries need to be screened for bio-¹⁰ compatibility and protein stabilisation. Using a lipase model, we herein describe a combination of methods leading to an expedited evaluation of 61 different solvent compositions.

Ionic liquids (IL) are promising alternative solvents for enzymes, due to their high thermostability, low vapour pressure, ¹⁵ non-flammable nature and solvation ability towards a wide variety of solutes¹. Most importantly, these molten salts offer a broad range of different physico-chemical properties which can dramatically influence the stability and function of proteins. Potential applications include the use of ILs to increase the ²⁰ stability and enantioselectivity² of enzymes, as refolding and crystallization additives^{3,4} and as inhibitors of protein aggregation⁵.

However, understanding how ILs act on the structure and function of proteins is still a major challenge. One of the main ²⁵ reasons for this is that proteins respond differently to changes in solvent conditions, due to differences in their own physicochemical, structural and functional properties. It is, thus, common to find opposing trends for different proteins when the same solvent properties are varied (e.g. hydrophobicity⁶). Moreover,

- ³⁰ the interpretation of the effects of ILs on proteins may be further complicated as published reports frequently focus solely on either the effects on enzymatic activity, or on those on protein stability (for a review see ref. ⁶). This makes it difficult to identify generalized trends predicting how the inclusion of a particular
- ³⁵ type of ILs as co-solvent will affect protein function and structure. To overcome this limitation, we have established an experimental platform that allows us to evaluate how solvent conditions affect protein structure and function. In particular, we have analysed the functional and structural effects of a library of
- ⁴⁰ 61 different ILs over the *Thermomyces lanuginosus* lipase (*TI*L), which we used as a model. This enzyme has been generating great interest due to its wide range of applicability in the food, energy and pharmaceutical industries⁷. The screened ILs are all water soluble and were used at a concentration of 25% (m/v), and
- ⁴⁵ the library included different cation (ammonium, imidazolium, pyrrolidinium,), and anion (halides, alkyl sulfonates, alkyl sulfates, alkyl phosphates and carboxylates) families, (full list in supplementary information, Table S1 and Fig. S1).

Fig. 1 Distribution of *Tl*L activity in different ILs grouped by ion family. The average activity according to families is as follows: Ammonium (42%, *n*=26), Imidazolium (18.2%, *n*=26), Halides (25.8%, *n*=16, Sulfonates (27.7%, *n*=14), Carboxylates (39%, *n*=18), Other (21%, *n*=7). * p<0.05

The function of *Tl*L was evaluated using an adaptation of a colorimetric assay for a 96-well plate, described previously by Choi *et al*⁸. Part of these results is shown in Fig. 1, in which activities are grouped by ion families. On average, the ILs ⁶⁰ containing ammonium cations lead to relatively higher activities than those based on the imidazolium cation, whereas no statistical difference was observed for the anion series. The high dispersion of data thus suggests that other factors, distinct from mere ion family type, are important in lipase function.

⁶⁵ The impact of ILs as co-solvents on *Tl*L was investigated by differential scanning fluorimetry (DSF), which had been previously validated as a rapid method for assessing the stability of proteins in ILs⁹. It is based on monitoring protein thermal denaturation using the Sypro Orange dye, as its fluorescence is 70 greatly increased upon binding to hydrophobic domains exposed to solvent upon protein unfolding¹⁰. The slope of the thermal unfolding transition denotes the cooperativity of the transition, and its midpoint corresponds to T_m - the protein melting temperature (Figure S2). Since *Tl*L unfolding is irreversible due

to the formation of aggregates, these are not thermodynamic but, apparent protein stability parameters, which serve, nevertheless, to compare different compounds tested under similar conditions. The effects of different co-solvent ILs on lipase stability were

- s thus determined from the difference in the apparent $T_{\rm m}$ values $(\Delta T_{\rm m})$ in respect to the condition in which the co-solvent is absent (the $T_{\rm m}$ of *Tl*L in water is 70°C) (as exemplified in Fig S3). Control experiments in the absence of the protein ruled out any artifactual transitions due to the ILs alone.
- ¹⁰ Enzymatic activity was then plotted against the $T_{\rm m}$ for each solvent condition (Fig. 2A). The rationale for this analysis is that structural changes leading to a significant decrease in protein stability result in conformational destabilization impairing function. Nevertheless, a clear-cut correlation was not observed:
- ¹⁵ the distribution of $T_{\rm m}$ values obtained for those ILs that strongly impair activity (<25%) ranged from $T_{\rm m}$ = 38 °C (for N_{1 1} Bz (2OH) Cl) to a surprisingly high $T_{\rm m}$ = 66.5 °C (for C₂C₁im C₁SO₃), only 3.5 °C below the control reference. On the other hand, some ILs in which *T/*L has a moderate activity (25-75 %)
- ²⁰ also lead to a dramatic decrease in stability, in some cases 30 °C below the control. Potential explanations for these discrepancies are multiple: they may, for example, result from the fact that some ILs perturb protein stability (decreasing the $T_{\rm m}$) while maintaining the catalytic site intact (thus sustaining high activity)
- ²⁵ at temperatures below the transition midpoint. On the other hand, a stabilizing effect of an IL (increasing the $T_{\rm m}$) is not necessarily beneficial, as protein hyper-stabilisation may compromise activity due to a substantial decrease in breathing dynamics required for catalysis¹¹. Overall, these examples illustrate the ³⁰ complex interplay between different factors governing protein
- stability-structure-function relationships, and highlight the need for further structural insights on the effects of ILs.

The slope of the thermal unfolding transition contains information about how solvent conditions affect protein structure.

- ³⁵ If solvent composition affects the unfolding pathway causing deviations from two-state transitions, this will result in lower slopes indicative of the accumulation of intermediate forms during the unfolding pathway. Likewise, if a certain solvent condition mildly perturbs the native state it will broaden the
- ⁴⁰ conformational landscape of native-like conformers and the thermal unfolding transition of this ensemble will then be monotonic (i.e. with a lower slope than the native state). In fact, the analysis of the variation of the transition steepness versus activity shows that its decrease is associated with a clear
- ⁴⁵ compromise of catalytic activity (Fig. 2B, linear fit: $Act=2.3+0.84 \times T_s$, $r^2=0.64$, P<0.0001, where T_s is the transition steepness).

We also noticed that those ILs that strongly impaired the activity of Tl were associated with a strong Sypro Orange fluorescence

- ⁵⁰ arising from direct interaction of the IL with the dye alone at 25 °C (control experiments in the absence of protein). In agreement, Figure 2B shows a marked correlation between *Tl*L activity and the relative fluorescence intensity of Sypro Orange in the presence of the various solvents ($Act=5.2 + 67.9 \times e^{-3.58 \times l}$, $r^2=0.52$,
- ss P<0.0001). It is well known that solvent hydrophobicity is a major parameter affecting both stability and activity. Since the fluorescence of Sypro Orange depends on its interaction with hydrophobic environments, it is most likely that the analysis of

Fig. 2 Relationship between the activity of T/L and the stability parameters determined by DSF. A) Activity as a function of T_m . Data points were grouped and colored according to the effect of ILs on T_m and activity B) Activity as a function of Sypro Orange fluorescence intensity in different solvents and transition slope of the T/L thermal denaturation. The yellow, black-framed squares are the references values in water.

Fig. 2B is related to the effect of the hydrophobic character of the solvent on the activity.

To further address this effect we have analysed our data considering the predicted hydrophobicities values (octanol:water 70 partition coefficient – logP) which were computed for each IL combination using the virtual computational chemistry lab web server^{12,13}). Indeed, this analysis also denoted a noticeable dependence of the activity on the solvent logP (Fig. 3, fit: Act=- $12+40.7 \times e^{-0.25 \times \text{LogP}}$, $r^2=0.41$). This further supports that higher 75 hydrophobic character of the IL has a detrimental influence on T/L activity. In agreement, T/L stability is also inversely proportional to total solvent hydrophobicity: T_m =56.9-3.95×logP, r^2 =0.66, P<0.0001 (Figure 3B), although some exceptions are found (grouped within dashed lines). These results may be ⁸⁰ interpreted by taking into account the destabilizing effect of long alkyl chains in the anion as they interact with the hydrophobic residues that are usually solvent-protected inside the protein core. However, it remains to be clarified why the most stable condition

Fig. 3 Effect of hydrophobic character of ILs on the activity and stability of T/L. A) Effect of the hydrophobicity of the molecule on the activity of T/L. B) Effect of total solvent hydrophobicity on the T_m of T/L.

⁵ ($T_{\rm m} = 72$ °C) is observed with the most hydrophobic IL (N_{8 8 8 H} (2-C₄)C₇COO) tested in this work. Eventually, an encapsulationtype mechanism in which the protein is surrounded by micelles (possibly of mixed type) could account for a more stable protein structure due to rigidification, as suggested by Pavidis *et al*¹⁴. ¹⁰ Another explanation may reside in the structural similarities between the IL anion and the products of esterase reaction catalysed by *TIL*. Binding of (2-C₄)C₇COO⁻ to the active site may stabilize the protein by a pharmacological chaperone-type mechanism^{15,16}.

15

Conclusions

Establishing structure/function relationships for proteins in IL media is an extremely valuable tool for increasing our predictive ²⁰ power and creating better solvents for biotechnology. We have simultaneously evaluated the activity and stability of *TI*L in the presence of 61 ILs using 96-well plate based methods. By combining three parameters obtained by DSF (T_m , transition

slope and fluorescence intensity of Sypro Orange in a given ²⁵ solvent) it is possible to gain further structural information about the effect of ILs on the proteins, namely the effects on the native state and unfolding pathways. This type of analysis, in combination with the study of IL physico-chemical properties, allows us to rationalise, at least partially, the impact of ILs on ³⁰ enzymatic function.

This work was partially supported by the strategic grant PEst-OE/EQB/LA0004/2011 (to ITQB Laboratório Associado) and by *Fundacão para a Ciência e Tecnologia* through research grants: ³⁵ PTDC/QUI/70101/2006, PTDC/CTM-NAN/121274/2010, INVESTIGATOR FCT and CIENCIA2007 (I.M.M. and J.M.S.S.E) and fellowships SFRH/BPD/34763/2007 (J.V.R.) and SFRH/BD/74081/2010 (D.R.). F.J.D. wishes to acknowledge *Xunta de Galicia* for the *Isidro Parga Pondal* contract.

40 Notes and references

- ^a Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
- * Corresponding authors: gomes@itqb.unl.pt and imarrucho@itqb.unl.pt ^b Department of Chemical Engineering, University of Vigo, P.O. Box 45 36310, Vigo, Spain
- † Electronic Supplementary Information (ESI) available:Table S1 listing ionic liquids and raw data; Fig. S1 main cation structure of ILs; Fig. S2 grapic showing examples of DSF curves, Fig. S3 graphic showing activity and ΔT_m for each IL; Fig. S4 effect of hydrophobicity of ILs on

 $_{50}$ the fluorescence of Sypro Orange; Table S2 List of ILs used in this work and source. See DOI: 10.1039/b000000 x/

‡ Equally contributing authors

- ¹ N. V. Plechkova and K. R. Seddon, *Chem Soc Rev*, 2008, **37**, 123.
- ² H. Zhao, S. M. Campbell, L. Jackson, Z. Y. Song, and O. Olubajo, *Tetrahedron-Asymmetry*, 2006, **17**, 377.
- ³ P. Attri, P. Venkatesu, and A. Kumar, *Org Biomol Chem*, 2012, **10**, 7475.
- M. Kowacz, A. Mukhopadhyay, A. L. Carvalho, J. M. S. S. Esperanca, M. J. Romao, and L. P. N. Rebelo, *Crystengcomm*, 2012, 14, 4912.
- ⁵ H. Weingartner, C. Cabrele, and C. Herrmann, *Phys Chem Chem Phys*, 2012, **14**, 415.
- ⁶ M. Naushad, Z. A. Alothman, A. B. Khan, and M. Ali, Int J Biol Macromol, 2012, **51**, 555.
- 65⁷ R. Fernandez-Lafuente, J Mol Catal B Enzym, 2010, **62**, 197.
 - ⁸ S. J. Choi, J. M. Hwang, and S. I. Kim, *J Biochem Mol Biol*, 2003, 36, 417.
 - ⁹ J. V. Rodrigues, V. Prosinecki, I. Marrucho, L. P. Rebelo, and C. M. Gomes, *Phys Chem Chem Phys*, 2011, **13**, 13614.
- ⁰ M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik, E. Graf, T. Carver, E. Asel, B. A. Springer, P. Lane, and F. R. Salemme, *J Biomol Screen*, 2001, 6, 429.
- A. R. Correia, S. Adinolfi, A. Pastore, and C. M. Gomes, *Biochem J*, 2006, **398**, 605.
- ^{75 12} in 'VCCLAB, Virtual Computational Chemistry Laboratory, <u>http://www.vcclab.org'</u>, 2005.
- ¹³ I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. Palyulin, E. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, and V. V. Prokopenko, *J Comput Aided Mol Des*, 2005, 19, 453.
- I. V. Pavlidis, D. Gournis, G. K. Papadopoulos, and H. Stamatis, J Mol Catal B Enzym, 2009, 60, 50.
- ¹⁵ C. M. Gomes, *Curr Top Med Chem*, 2012, **12**, 2460.
- ¹⁶ P. Leandro and C. M. Gomes, *Mini Rev Med Chem*, 2008, **8**, 901.

Structural-functional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions

ELECTRONIC SUPPLEMENTARY INFORMATION

10 Materials and methods

Lipolytic activity assay method - 2,3-dimercapto-1-propanol tributyrate (Sigma Aldrich), DMPTB, was dissolved in Triton X-100 (Sigma Aldrich) and in 50 mM trizma base buffer (Sigma Aldrich), pH 7.2. The final stock solution is 10 mM DMPTB and 2% Triton X-100 and was stored at -20 °C. A 40 mM ¹⁵ solution of 5,5'-dithiobis(2-nitro benzoic acid) (Sigma Aldrich), DTNB, in isobutanol was prepared daily. Thermomyces lanuginosus lipase (Sigma Aldrich, L0777), TIL, was dissolved in 50 mM trizma base buffer pH 7.2 with 0.0025% of triton X-100. The standard reaction mixture contained 4.44 mM DMPTB, 0.88 mM DTNB, 0.0013% Triton X-100, and 26.70 mM Trizma base, pH 7.2. The concentration of enzyme used was 70 nM. Each well of the 96-well microplate was filled with 100 μl ²⁰ of a 50% IL (prepared in water), 50 μl of the standard reaction mixture and 50 μl of the enzyme sample. Controls without the enzyme and/or the IL were also performed.

The time-dependent absorbance change was monitored at 405 nm for 10 min of reaction in a Biotek Synergy 2 multi-mode microplate reader. The lipolytic activity was calculated based on the initial velocity of the reaction (Abs/s). Lipolytic activity is calculated as a percentage of the activity of TlL in ²⁵ buffer in the presence of the selected ionic liquids and represents the average of at least 2 replicates.

Differential Scanning Fluorimetry (DSF)- Differential scanning fluorimetry, runs were performed by monitoring the fluorescence of the exogenous probe Sypro Orange (Life Technologies, 5000x concentrate in DMSO) in a Bio Rad IQ5 Multicolor Real-Time PCR detection system equipped with a ³⁰ charge-coupled device (CCD) camera and a Cy3 filter with excitation and emission wavelengths of 490 and 575 nm, respectively. 75 μL of 6.67 μM enzyme solution in 20x DMSO concentrated sypro orange probe was left in contact with 25 μL of 25% (w/w) IL solution for 15 minutes. Each well of the 96-Well PCR plate was filled with 20 μL of this mixture. The assays were performed in a Bio Rad IQ5 Multicolor Real-Time PCR detection system with heating rates of 1.0 °C min-1 from 20 to 90 °C. ³⁵ Controls without the enzyme and/or the IL were also performed.

Green Chemistry

Table S1 – List of ionic liquids used in this work and respective activity and stability data for T/L

Compound	Activity (%)	Normalized intensity	Apparent T _m by DSF (°C)	$\Delta T_{\rm m}$ (°C)	Transition steepness (%)	logP (Cation)	logP (Anion)	LogP (IL)
Control (Water)	100	0	70	0	100	-	-	-
$(CH_3)_2N_2CNH_2 N(CN)_2$	19	#N/D	#N/D	#N/D	#N/D	-2.043	0.282	-1.761
N _{111(20H)} Bicarbonate	10	3	59	-11	68.3	-1.574	-0.516	-2.09
N _{1 1 1 (20H)} NO ₃	12	8	54	-16	55.1	-1.574	1.31	-0.264
N _{1 1 1 (20H)} C ₃ COO	39	5	64	-6	67.2	-1.574	0.215	-1.359
N _{1 1 1 (20H)} (C ₁) ₂ PO ₄	42	6	69	-1	93.6	-1.574	-1.094	-2.668
N _{1 1 1 (20H)} C ₂ COO	44	6	67	-3	80.2	-1.574	-0.241	-1.815
N _{1 1 1 (20H)} C ₄ COO	46	12	60	-10	36.5	-1.574	0.672	-0.902
N _{1 1 1 (20H)} C ₂ SO ₃	54	12	63	-7	74.0	-1.574	-0.768	-2.342
N _{111(20H)} Pivalate	54	19	60	-10	38.9	-1.574	0.639	-0.935
N111(20H) Salicylate	57	22	35	-35	38.6	-1.574	0.489	-1.085
N _{1 1 1 (20H)} Cl	61	7	40	-30	63.1	-1.574	0.77	-0.804
N _{111(20H)} OTf	71	9	55	-15	59.9	-1.574	1.019	-0.555
N _{1 1 1 (20H)} C ₁ COO	87	4	70	0	86.1	-1.574	-0.908	-2.482
N _{1 1 1 (20H)} (C ₁) ₂ CCOO	88	7	60	-10	59.9	-1.574	0.222	-1.352
N _{1 1 1 (20H)} C ₁ SO ₃	100	9	66	-4	89.7	-1.574	-1.117	-2.691
N _{1 1 1 (20H)} C ₅ COO	#N/D	92	54	-16	8.0	-1.574	1.128	-0.446
N _{1 1 1 (20H)} H ₂ PO ₄	#N/D	2	37	-33	27.0	-1.574	-1.911	-3.485
N _{1 1 2 (20H)} Br	33	29	63	-7	60.1	-1.225	0.89	-0.335
N ₁₁₁₍₂₀₁₎ Cl	70	6	57	-13	65.0	-1.189	0.77	-0.419
N _{1 1 3 (20H)} Br	23	35	50	-20	53.8	-0.702	0.89	0.188
N _{1 1 4 (201)} Cl	97	15	60	-10	71.2	-0.316	0.77	0.454
N _{1 1 4 (20H)} Br	6	30	59	-11	16.2	-0.072	0.89	0.818
C_1C_1 im C_1SO_3	46	42	40	-30	40.7	0.025	-1.117	-1.092
N _{1 1 5 (20H)} Br	7	75	53	-17	2.8	0.211	0.89	1.101
C_2C_1 im N(CN) ₂	0	85	No transition	No transition	No transition	0.374	0.282	0.656
C ₂ C ₁ im HCOO	11	42	59	-11	25.7	0.374	-0.516	-0.142
C_2C_1 im C_2SO_3	12	21	65	-5	19.1	0.374	-0.768	-0.394
C_2C_1 im Cl	17	38	57	-13	10.5	0.374	0.77	1.144
C ₂ C ₁ im Pivalate	19	29	55	-15	21.2	0.374	0.639	1.013
C_2C_1 im C_2COO	19	12	62	-8	29.4	0.374	-0.241	0.133
C_2C_1 im C_1COO	24	35	64	-6	40.6	0.374	-0.908	-0.534
C_2C_1 im C_1SO_3	24	88	67	-3	35.8	0.374	-1.117	-0.743
$C_2C_1imC_6SO_3$	27	76	No transition	No transition	No transition	0.374	1.124	1.498
C ₂ C ₁ im C ₄ SO ₃	35	57	No transition	No transition	No transition	0.374	0.212	0.586
C ₂ C ₁ im Gala	71	1	66	-4	41.5	0.374	-3.153	-2.779
C_2C_1 im C_4SO_4	#N/D	50	No transition	No transition	No transition	0.374	0.058	0.432
C ₂ C ₁ im C ₈ SO ₄	#N/D	2	No transition	No transition	No transition	0.374	0.97	1.344
N _{1 1 Bz (20H)} Cl	1	60	38	-32	2.9	0.469	0.77	1.239
C ₄ C ₁ pyrr Lactate	19	31	58	-12	24.6	0.755	-0.989	-0.234
C ₄ C ₁ pyrr Cl	#N/D	23	49	-21	12.4	0.755	0.77	1.525
C_3C_1 im C_3SO_3	12	44	54	-16	27.8	0.898	-0.245	0.653
C_3C_1 im C_2SO_3	13	36	61	-9	15.0	0.898	-0.768	0.13
C ₃ C ₁ im Cl	20	38	43	-27	12.0	0.898	0.77	1.668
C ₃ C ₁ im C ₄ SO3	35	55	45	-25	3.5	0.898	0.212	1.11
C ₄ C ₁ pip Cl	36	45	No transition	No transition	No transition	1.211	0.77	1.981
C_4C_1 im N(CN) ₂	2	78	50	-20	1.0	1.354	0.069	1.423
C_4C_1 im C_2SO_3	6	44	53	-17	3.4	1.354	-0.768	0.586
C ₄ C ₁ im Cl	10	42	No transition	No transition	No transition	1.354	0.77	2.124
C_4C_1 im C_1COO	18	29	58	-12	16.6	1.354	-0.908	0.446
C ₆ C ₁ pyrr Cl	#N/D	34	No transition	No transition	No transition	1.667	0.77	2.437
C ₅ C ₁ im Cl	20	78	No transition	No transition	No transition	1.81	0.77	2.58
C_6C_1 im C_1SO_3	2	69	No transition	No transition	No transition	2.267	-1.117	1.15
C ₆ C ₁ im Cl	6	96	No transition	No transition	No transition	2.267	0.77	3.037
C_6C_1 im C_2SO_3	19	59	No transition	No transition	No transition	2.267	-0.768	1.499
C ₈ C ₁ im Cl	2	96	45	-25	5.9	3.179	0.77	3.949
N _{1 1 4 8} Cl	3	66	No transition	No transition	No transition	3.448	0.77	4.218
N _{888H} C ₇ COO	12	78	48	-22	13.7	8.22	2.04	10.26
N _{8 8 8 H} C ₁ COO	56	15	36	-34	70.4	8.22	-0.908	7.312
$N_{8821}C_2SO_4$	3	100	41	-29	4.8	5.272	-0.922	4.35
N _{888H} (2-C ₄)C ₇ COO	39	28	72	2	55.7	8.22	3.871	12.091
C ₄ C ₁ im OTf	2	85	No transition	No transition	No transition	1.354	1.019	2.373

#N/D = not determined

Figure S1 –Main cation structure of ILs

Figure S2 –Examples of DSF curves and parameter determination. A) The melting temperature (T_m) is the temperature at midpoint transition, and the transition steepness is the slope of the intensity change at T_m , normalized by the amplitude of the transition, which is calculated by the difference in maximum and minimum intensities extrapolated through T_m using slopes for the post- and pre-transitions, respectively. B) Different types of curves obtained by DSF using distinct solvents and C) activity data for the corresponding examples.

Figure S3 –Comparison between the activity of T/L and the T_m determined by DSF

Green Chemistry

Figure S4 – Effect of the hydrophobic character of IL on the fluorescence intensity of Sypro Orange in the corresponding solvent condition.

Ionic liquids	Source				
$(CH_3)_2N_2CNH_2N(CN)_2$	GVSM Carrera, RFM Frade, J Aires de Sousa, CAM Afonso, LC Branco, <i>Tetrahedro</i> 2010, 12 , 643				
N _{111(20н)} Bitartrate	Sigma Aldrich				
N _{111(20H)} H ₂ Citrate	Sigma Aldrich				
N _{111(20H)} Bicarbonate	Sigma Aldrich				
N1 1 1 (20H) NO3	lolitec				
	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon,				
N _{111(20H)} C ₃ COO	LPN Rebelo, C Silva Pereira, <i>Green Chem</i> 2010, 12 , 643				
N _{1 1 1 (20H)} (C ₁) ₂ PO₄	lolitec				
	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon,				
N _{111(20H)} C ₂ COO	LPN Rebelo, C Silva Pereira, Green Chem 2010, 12 , 643				
N _{111(20H)} C ₄ COO	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Sedo				
N _{111(20H)} C ₂ SO ₃	A.L.L. Costa, M.R.C. Spromenho, K. Shimizu, LM.S.S. Esperanca, LN. Canongia Lopes.				
	I P N Roholo FUCHEM 2012 Wales LIK August 5-10 2012				
	C. Chat de di L.C. Tan (- 1997) Anglis, UNI Patala - 199 Califata - 199 Anglis - 199				
N _{111(20H)} Pivalate	S Shahriari, LC Tome, JMM Araujo, LPN Rebelo, JAP Coutinho, IM Marrucho, MG				
	Freire, KSC Aav 2013, 3 , 183				
N _{111(20H)} Salicylate	Digma Aldrich				
N _{111(20H)} CI	Digma Aldrich				
N _{111(20H)} OTt					
N _{111(20H)} C ₁ COO	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon, LPN Rebelo, C Silva Pereira, <i>Green Chem</i> 2010, 12 , 643				
N _{111(20H)} (С ₁) ₂ ССОО	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon, LPN Rebelo, C Silva Pereira, <i>Green Chem</i> 2010, 12 , 643				
N _{111(20H)} C ₁ SO ₃	A.J.L. Costa, M.R.C. Soromenho, K. Shimizu, J.M.S.S. Esperança, J.N. Canongia Lopes, L.P.N. Rebelo, <i>EUCHEM</i> 2012, Wales, UK, August 5-10, 2012				
N _{111(20H)} C ₅ COO	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon, LPN Rebelo, C Silva Pereira. <i>Green Chem</i> 2010. 12 , 643				
	lolitec				
N (20H) H21 04	Sigma Aldrich				
N ₁₁₁₍₂₀₁₎ Cl	AJL Costa, P Papis, PM Reis, K Shimizu, J Szydłowski, JN Canongia Lopes, JMSS Esperanca, LPN Rebelo, <i>COIL-5</i> , Vilamoura, Portugal, April 21-25, 2013				
N _{113(20H)} Br	AJL Costa, MRC Soromenho, K Shimizu, IM Marrucho, JMSS Esperança, JN Canongia Lopes, LPN Rebelo, <i>ChemPhysChem</i> 2012. 13 , 1902				
C20HC1im Cl	lolitec				
-2011-11-11-12-	AJL Costa, P. Papis, PM. Reis, K. Shimizu, J. Szydłowski, JN. Canongia Lopes, JMSS				
N _{1 1 3 (201)} Cl	Esperanca, LPN Rebelo, COIL-5, Vilamoura, Portugal, April 21-25, 2013				
N _{114 (2ОН)} Br	AJL Costa, MRC Soromenho, K Shimizu, IM Marrucho, JMSS Esperança, JN Canongia				
C.C.im C.SO.	Blesic at al Phys Chem Chem Phys 2009 11 8939				
$N_{115(20H)}$ Br	AJL Costa, MRC Soromenho, K Shimizu, IM Marrucho, JMSS Esperança, JN Canongia				
	Lupes, Lenn Rebeiu, Chemiennyschem 2012, 13, 1902				
$C_2C_1 \text{IM N}(CN)_2$					
C ₂ C ₁ im SCN	lolitec				
C ₂ C ₁ im HCOO	M Petkovic, JL Ferguson, HQ Nimal Gunaratne, R Ferreira, MC Leitão, KR Seddon, LPN Rebelo, C Silva Pereira, <i>Green Chem</i> 2010, 12 , 643				
C ₂ C ₁ im Br	lolitec				
C_2C_1 im C_2SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C ₂ C ₁ im Cl	lolitec				
C_2C_1 im Pivalate	It was prepared by several of the authors in accordance with the protocol cited in J Blath, N Deubler, T Hirth, T Schiestel, <i>Chem Eng J</i> 2012, 181 , 152				
C₂C₁im C₂COO	B Zhao, L Greiner, W Leitne, RSC advances 2012 2, 2476				
C ₂ C ₄ im C ₄ COO	Sigma Aldrich				
$C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	Blesic et al Phys Chem Chem Phys 2009 11 8939				
$C_1 = C_1 = C_1 = C_2 $	Place et al. Phys Chem Chem Dhys 2000, 11, 0030				
$C_2 C_1 \dots C_6 S O_3$	Placis at al Phys Chem Cham Drug 2000, 11, 8333				
C_2C_1 im C_4SO_3	piesic et al. Priys chem chem Priys 2009, 11, 8939				
C_2C_1 im Galactate	I ney were prepared by some of the authors in QUILL centre (Queen's University Ionic Liquids Laboratory, Belfast, UK).				
C_2C_1 im C_2SO_4	Merck				
C ₂ C ₁ im C ₄ SO ₄	Merck				
C ₂ C ₁ im C ₈ SO ₄	Merck				
N _{1 1 Bz (20H)} Cl	Sigma Aldrich				
C ₄ C ₁ pyrr Lactate	They were prepared by some of the authors in QUILL centre (Queen's University Ionic				

	Liquids Laboratory, Belfast, UK).				
C ₄ C ₁ pyrr OTf	lolitec				
C ₄ C ₁ pyrr Cl	lolitec				
C_3C_1 im C_3SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C_3C_1 im C_1SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C ₃ C ₁ im C ₂ SO ₃	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C ₃ C ₁ im Cl	lolitec				
C ₃ C ₁ im C ₄ SO3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C ₂ py Cl	lolitec				
C₄C₁pip Cl	lolitec				
C_4C_1 im C_1SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C_4C_1 im N(CN) ₂	lolitec				
C_4C_1 im C_2SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C_4C_1 im BF ₄	lolitec				
C₄C₁im Cl	lolitec				
C ₄ C ₁ im Alalinate	Ohno H, Fukumoto K, <i>Acc Chem Res</i> 2007, 40 , 1122				
C_4C_1 im C_1COO	Sigma Aldrich				
C ₆ C ₁ pyrr Cl	lolitec				
C_5C_1 im C_1SO_3	Blesic et al. Phys Chem Chem Phys 2009. 11. 8939				
	They were prepared by some of the authors in QUILL centre (Queen's University Ionig				
C₅C₁im Cl	Liguids Laboratory, Belfast, UK).				
C₄py Cl	lolitec				
C_6C_1 im C_1SO_3	Blesic et al. Phys Chem Chem Phys 2009, 11, 8939				
C_6C_1 im Cl	lolitec				
C_6C_1 im C_2SO_3	Blesic et al. Phys Chem Chem Phys 2009. 11. 8939				
C ₈ C ₁ pyrr Cl	They were prepared by some of the authors in QUILL centre (Queen's University Ioniv				
	Liquids Laboratory, Belfast, UK).				
C ₄ C ₁ py Cl	lolitec				
	They were prepared by some of the authors in QUILL centre (Queen's University Ionig				
C ₈ C₁im Cl	Liquids Laboratory, Belfast, UK).				
	Cheng Chen, Guang Xian Zhang, Feng Xiu Zhang, Hui Zheng, Adv Materials Res 2012				
N ₁₁₄₈ CI	549 , 278				
C ₆ C ₁ py Cl	lolitec				
C ₆ C ₁ py C ₁ SO ₃	AB Pereiro, A Rodríguez, M Blesic, K Shimizu, JNC Lopes, LPN Rebelo, J Chem Eng Date				
	2011, 56 , 4356				
C ₈ C₁py Cl	AB Pereiro, A Rodríguez, M Blesic, K Shimizu, JNC Lopes, LPN Rebelo, J Chem Eng Date				
	2011, 56 , 4356				
N _{888H} C ₇ COO	Bioniqs				
N _{888H} C ₁ COO	Bioniqs				
P4442 (C2)2PO4	Cytec				
N ₈₈₂₁ C ₂ SO ₄	Bionigs				
N _{888H} (2-C ₄)C ₇ COO	Bionigs				
C₄C₁im OTf	lolitec				