This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
**In vitro** bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis

O. Power-Grant, C. Bruen, L. Brennan, L. Giblin, P. Jakeman and R.J. FitzGerald*

Enzymatically hydrolysed milk proteins have a variety of biofunctional effects some of which may be beneficial in the management of type 2 diabetes mellitus. The purpose of this study was to evaluate the effect of commercially available intact and hydrolysed whey protein ingredients (DH 32, DH 45) on markers of the enteroinsular axis (glucagon like peptide-1 secretion, dipeptidyl peptidase IV inhibition, insulin secretion and antioxidant activity) before and after simulated gastrointestinal digestion (SGID). A whey protein hydrolysate, DH32, significantly enhanced (P<0.05) insulin secretion from BRIN BD11 βHcells compared to the positive control (16.7 mM glucose and 10 mM Ala). The whey protein hydrolysates inhibited dipeptidyl peptidase IV activity, yielding half maximal inhibitory concentration values (IC\(_{50}\)) of 1.5 ± 0.1 and 1.1 ± 0.1 mg/mL for the DH 32 and DH 45, samples respectively, and were significantly more potent than the intact whey (P<0.05). Enzymatic hydrolysis of whey protein significantly enhanced (P<0.05) its antioxidant activity compared to intact whey, as measured by the oxygen radical absorbance capacity assay (ORAC). This antioxidant activity was maintained (DH 32, P>0.05) or enhanced (DH 45, P<0.05) following SGID. Intact whey stimulated GLP-1 secretion from enteroendocrine cells compared to vehicle control (P<0.05). This data confirm that whey proteins and peptides can act through multiple targets within the enteroinsular axis and as such may have glucoregulatory potential.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder which imposes a substantial personal and economic burden. There is an increasing prevalence of T2DM and the number of cases worldwide are predicted to reach 550 million by 2030. Changes in diet and increasing physical activity are key strategies to prevent and manage T2DM. The health enhancing properties of dietary proteins and their constituent peptides are being increasingly recognised. In particular, emerging evidence suggests that ingestion of whey protein and its enzymatic hydrolysates may have a role in the management of T2DM.

Whey proteins account for ~20% of bovine milk protein. The globular proteins in whey consist of β-lactoglobulin (β-Lg), α-lactalbumin (α-La), bovine serum albumin (BSA), immunoglobulins and a number of minor proteins such as glycomacropeptide, lactoferrin and lactoperoxidase. Whey proteins are a rich source of essential amino acids. In addition each individual whey protein contains bioactive peptides within their primary structures which may be released by enzymatic hydrolysis. The profile of peptides generated is dependent on the enzyme, the hydrolysis conditions and the whey protein substrate. Bioactive peptides are typically short (5-11 amino acids) sequences that can act via intestinal receptors or systemic targets.

Incretin hormones secreted from enteroendocrine cells are natural, post-prandial hormones that augment the insulinotropic response. The incretin hormone, glucagon-like peptide-1 (GLP-1) is an enteroendocrine L-cell derived peptide. Plasma concentrations of biologically active GLP-1, GLP-1(7-36), increase within 10-15 min of food ingestion, peak between 30-45 min and persist for 1-2 hours in a nutrient dependent manner. It has been demonstrated in vitro, using different cell lines, that intact food proteins, food protein hydrolysates and the amino acids Leu, Ile and Gin can stimulate the release of GLP-1 from intestinal cells. Once in the circulation GLP-1 travels to pancreatic β-cells where it binds to the GLP-1 receptor resulting in insulin production and secretion. Therefore, natural, food derived compounds that stimulate the release of GLP-1 may be an alternative to synthetic drugs in the control of glycaemic function in man.
the ubiquitous enzyme dipeptidyl peptidase IV (DPP-IV) resulting in loss of its insulinotropic activity.\textsuperscript{20} Therefore, a potential strategy to increase incretin half-life is to inhibit DPP-IV activity.\textsuperscript{21} Recently, whey protein derived peptides with DPP-IV inhibitory activity have been identified.\textsuperscript{22-26} Further investigation of the DPP-IV inhibitory properties of food derived peptides may help to identify natural compounds that may be used in addition to, or in replacement of, synthetic drug inhibitors.\textsuperscript{27} The mechanism of protein-stimulated insulin secretion is not fully elucidated, however, a change in circulating essential amino acids\textsuperscript{28} and the release of incretin hormones\textsuperscript{29} are proposed as the primary regulators. Amino acid residues including Ala, Leu, Arg have been shown to stimulate acute insulin secretion \textit{in vitro}.\textsuperscript{30, 31} Recently, whey protein hydrolysates have been shown to induce insulin secretion in BRIN BD11 cells.\textsuperscript{32, 33} In humans, acute ingestion of intact and hydrolysed whey proteins were shown to act as insulin secretagogues\textsuperscript{34-36}. Development of T2DM compromises the body’s natural antioxidant defence and leads to an increase in oxidative stress.\textsuperscript{37} Reactive oxygen species damage vital cellular components such as proteins, lipids and DNA ultimately compromising cellular function. The antioxidant activity of whey protein hydrolysates has been highlighted.\textsuperscript{38, 39} Whey protein hydrolysates have been shown to act as radical scavengers,\textsuperscript{40-42} reducing agents and inhibitors of lipid peroxidation.\textsuperscript{43} More recently, whey protein hydrolysates were shown to increase the production of antioxidant enzymes and to enhance antioxidant gene expression in human umbilical vein endothelial cells.\textsuperscript{44} Emerging evidence of the multiple bioactive properties of whey protein hydrolysates support their use as potential regulators of glucose homeostasis. These natural, food derived, multifunctional compounds could remove or decrease reliance on pharmacological therapy and may prove effective in the dietary management of T2DM. The aim of this study was to evaluate the effect of intact and hydrolysed whey protein on components of the enteroinsular axis. \textit{In vitro} model systems were used to evaluate the effect of two whey protein hydrolysates on GLP-1 secretion from intestinal STC-1 cells, DPP-IV inhibition, insulin secretion from pancreatic β-cells and antioxidant activity. In addition, the stability of each bioactivity following simulated gastrointestinal digestion was evaluated.

2. Methods and materials

2.1 Materials

Intact whey protein concentrate (WPC, Carbelac WPC80 Carbery Ingredients, Ballineen, Ireland, 79.0% (w/w) protein, Table 1), WPC hydrolysate degree of hydrolysis (DH) 32% (Optipep\textsuperscript{®}, Carbery Ingredients, 78.0% (w/w) protein, Table 1), whey protein isolate hydrolysate DH 45% (Glanbia NutritionalI, Kilkenny, Ireland, 84.0% (w/w) protein Table 1) were obtained from the manufacturers. Protein hydrolysates were obtained by enzymatic hydrolysis of the native proteins. An aqueous solution was prepared and equilibrated to the hydrolysis reaction temperature and pH. Following this microbial enzymes which are Halal, Kosher and non-GMO were added to the solution. The aqueous solution was held at optimal conditions for the enzymes in order to achieve the desired DH. Following hydrolysis the solution was heat treated to inactivate the enzyme. This solution was spray dried. Krebs ringer bicarbonate buffer pH 7.4, Dulbecco’s Modified Eagle Medium (DMEM), RPMI-1640 tissue culture medium, Leu, Gln, fetal bovine serum, penicillin, streptomycin, sodium pyruvate, trifluoroacetic acid (TFA), Tris(hydroxymethyl)aminomethane hydrochloride (Trizma\textsuperscript{®} base), ethylenediamine tetra acetic acid disodium dihydrate (EDTA), DPP-IV (EC 3.4.14.5, human recombinant; 8 mU/mL), Tyr-hydrochloric acid (Tyr-HCl), bacitracin, aprotinin, Cytochrome c, α-lactalbumin (α-La), β-lactoglobulin (β-Lg), BSA, phosphate buffered saline, sodium phosphate dibasic, fluorescein sodium salt, 2,2’-azobis-2-methyl-propanimidamide, dihydrochloride (AAPH), Trolox\textsuperscript{TM} (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) were all obtained from Sigma-Aldrich (Dublin, Ireland). Pepsin (BC pepsin, Biocatalysts, Cardiff, United Kingdom) and Corolase PP (CorPP; AB Enzymes, Darmstadt, Germany) were obtained from the manufacturers. 7-Amino-4-methylcoumarin (AMC) standard, H-Gly-Pro-AMC, Dipeptin A (Ile-Pro-Ile), Asp-Glu and Leu-3-5-Met-Arg were obtained from Bachem (Bubendorf, Switzerland). High performance liquid chromatography (HPLC) grade acetonitrile (ACN), sodium hydroxide (NaOH) and HPLC grade water were obtained from VWR (Dublin, Ireland). HPLC grade methanol was obtained from Lennox (Dublin, Ireland). Murine secretin tumour cell line (STC-1) (ATCC code: SD5482) was purchased from the American Tissue Culture Collection (LGC Standards, Teddington, UK). Halt Protease and Phosphatase Inhibitor was obtained from Thermo Fisher Scientific (Waltham, MA, USA). The insulin enzyme linked immunosorbent assay (ELISA) kit was obtained from Mercodia (Uppsala, Sweden).

2.2 Reverse phase ultra performance liquid chromatography

Intact and hydrolysed whey protein samples were analysed by reverse phase ultra performance liquid chromatography (RP-UPLC) as previously described by Nongonierma & FitzGerald.\textsuperscript{45} The UPLC system (Acquity UPLC\textsuperscript{®}, Waters, Milford, MA, USA), comprising of binary solvent and auto sample manager, a heated column compartment and TUV absorbance detector. The pump was operated at a flow rate of 0.3 mL/min and 1 µL of each sample was injected onto the column. Separation of proteins and peptides was carried out at 30°C using a 2.1 x 50 mm, 1.7 µm Acquity UPLC C18 BEH column (Waters) fitted with a pre-column security guard (VanGuard, Waters). The system was interfaced with Empower 2 (Waters) data handling software. Mobile phase A consisted of 0.1% (v/v) TFA in HPLC grade water. Mobile phase B was 0.1% (v/v) TFA in 80% HPLC grade ACN in HPLC grade water. Freeze dried intact and hydrolysed protein material were
diluted to a concentration of 0.8% (w/v) in mobile phase A and were filtered through 0.2 µm filters (Phenomenex, Phenex RC, Cheshire, UK) prior to injection. The gradient elution program used to separate the proteins and peptides consisted of a linear gradient 0-0.3 min 0% B; 0.3-45 min 0-80% B; 45-46 min 80-100% B; 46-48 min 100% B; 48-49 min 100-0% B, 49-51 min 0% B. The absorbance of the eluent was monitored at 214 nm.

2.3 Gel permeation chromatography

Molecular mass distribution profiles of the intact and hydrolysed whey proteins were obtained as per the methodology described by Spellman et al. Briefly, a gel permeation chromatography (GPC) system (Waters) comprising of a binary pump (Waters, Model 1525), dual absorbance detector (Waters, 2487) and an autosampler (Waters 717 Plus) was utilised. Separation was by isocratic elution with 0.1% TFA in 30% HPLC grade ACN at a flow rate of 0.5 mL/min and 20 µL of sample was injected. Each sample was prepared at a concentration of 0.25% (w/v) in 0.1% TFA, 30% (v/v) HPLC grade ACN and pre-filtered through 0.2 µm polytetrafluoroethylene filters (VWR, Dublin, Ireland). Separation of proteins and peptides were carried on a TSK-Gel G2000SW column (10 µm Particle size, 600 mm x 7.5 mm, ID; Tosoh Biosciences, Tokyo, Japan) connected to TSK-Gel G2000SW guard column (10 µm, 50 mm x 7.5 mm ID; Tosoh Biosciences). The detector response was monitored at 214 nm and the total run time was 60 min. The system was calibrated using protein, peptide and amino acid standards with a molecular mass between 67500 and 218 Da including BSA (67500 Da), β-Lg (36000 Da), α-La (14200 Da), Cytochrome c (12300 Da), aprotinin (6500 Da), bacitracin (1400), Leu-Trp-Met-Arg (604 Da), Asp-Glu (262 Da) and Tyr-HCl (218 Da). The calibration curve was prepared from the average retention time (n=3) of each standard plotted against the Log of the molecular mass of each standard. The system was interfaced with Breeze Software (Waters) for data analysis. Data for each hydrolysate sample was expressed as percentage area within a defined molecular mass range for each chromatogram obtained at 214 nm.

2.4 Simulated gastrointestinal digestion of intact and hydrolysed whey protein

Test samples were subjected to a simulated gastrointestinal digestion (SGID) process. Briefly, freeze dried samples were diluted to 2.0% (w/w) protein and resuspended in distilled water at 37°C for 30 min with overhead stirring at pH 2. Pepsin was then added at an enzyme to substrate ratio (E:S) of 1:40 (w/w). After 90 min, a sub-sample was removed and heat inactivated at 90°C for 20 min in a waterbath. The pH of the remaining reaction mixture was adjusted to 7.5. CorPP was added at an E:S of 1:100 (w/w). After 150 min incubation at 37°C, the hydrolysis reaction was terminated by heat inactivation in a waterbath at 90°C for 20 min. SGID samples and undigested control material were cooled to room temperature, frozen at -20°C and freeze dried (Freezone 181, Labconco, Kansas, USA). All samples were stored at -20°C until further analysis.

Table 1 – Protein content (% dry weight (dw)), degree of hydrolysis (%), total and free amino acid composition (g/100 g powder) for intact whey protein concentrate (WPC), whey protein hydrolysate degree of hydrolysis (DH) 32% (DH 32) and whey protein hydrolysate DH 45% (DH 45).

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>WPC</th>
<th>DH32</th>
<th>DH45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein source</td>
<td>Whey protein concentrate</td>
<td>Whey protein concentrate</td>
<td>Whey protein isolate</td>
</tr>
<tr>
<td>Protein Nitrogen (% dw)</td>
<td>78.0</td>
<td>78.0</td>
<td>84.0</td>
</tr>
<tr>
<td>Degree of Hydrolysis (%)</td>
<td>NA</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>Amino Acid</td>
<td>Total amino acids</td>
<td>Total amino acids</td>
<td>Free amino acids</td>
</tr>
<tr>
<td>Ala</td>
<td>4.3</td>
<td>3.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Arg</td>
<td>2.4</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Asp</td>
<td>9.5</td>
<td>5.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Cys</td>
<td>2.1</td>
<td>2.1</td>
<td>ND</td>
</tr>
<tr>
<td>Glu</td>
<td>15.2</td>
<td>11.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Gly</td>
<td>1.7</td>
<td>1.5</td>
<td>ND</td>
</tr>
<tr>
<td>His</td>
<td>1.6</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Ile</td>
<td>5.1</td>
<td>4.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Leu</td>
<td>9.4</td>
<td>7.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Lys</td>
<td>8.1</td>
<td>6.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Met</td>
<td>1.6</td>
<td>1.7</td>
<td>ND</td>
</tr>
<tr>
<td>Phe</td>
<td>2.8</td>
<td>2.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Pro</td>
<td>5.1</td>
<td>4.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Ser</td>
<td>4.7</td>
<td>5.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Thr</td>
<td>6.4</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Try</td>
<td>1.2</td>
<td>1.4</td>
<td>ND</td>
</tr>
<tr>
<td>Tyr</td>
<td>2.7</td>
<td>2.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Val</td>
<td>5.1</td>
<td>4.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

NA: Not applicable, ND: Not detected
initiated by addition of 10 µL of human DPP-IV (8 mU/mL) to
the wells. The microplate was incubated at 37°C for 30 min
after which fluorescence was measured at an excitation of 360
nm and an emission 460 nm. One unit of DPP-IV activity (U)
was defined as the amount of enzyme which hydrolyses 1
µmol of H-Gly-Pro-AMC per minute at 37°C. The DPP-IV
IC_{50} value, the concentration of peptide required to inhibit 50%
of the enzyme activity, for each hydrolysate was determined by
plotting DPP-IV inhibition as a function of hydrolysate
concentration. The logarithmic regression equation generated
from this plot was then used to calculate the IC_{50} value. DPP-IV
inhibition (%) and IC_{50} values for each hydrolysate were
expressed as the mean ± SD of independent triplicate analyses.

2.6 **In vitro GLP-1 secretion in STC-1 cells**

The ability of the test samples to stimulate GLP-1 secretion was
evaluated using the murine enteroendocrine cell line (STC-1).
Cells were cultured in DMEM media containing 4.5 g/L
glucose and L-Gln supplemented with 10% foetal bovine
serum, 100 U/mL penicillin and 100 mg/mL streptomycin.
Cells were passaged upon reaching confluence and all cells
used in these studies were between passages 15-25.

Test sample stock solutions were prepared at a concentration of
50 mg/mL in HPLC grade water. The pH of each was adjusted
to pH 7.4 using 1 M NaOH and the solution was hydrated
overnight at 4°C. Following hydration, the solution was
centrifuged (Beckman Coulter, Allegra X-22R) at 1257 g, for
5 min at room temperature and filter sterilised using a sterile
syringe filter (0.45 µm Filtropur, Sarstedt, Wexford, Ireland).

All test samples were assayed at 10 mg/mL prepared in
modified Krebs buffer (Krebs ringer bicarbonate buffer pH7.4
containing 1% BSA).

STC-1 cells were seeded into 6-well plates (Fisher Scientific,
Dublin, Ireland) at a density of 1.5 x 106 cells/well and placed
in an incubator (Forma Scientific, Marietta, USA) at 37°C in
5% carbon dioxide for 18 h prior to test sample addition. Media
was aspirated and the cell monolayers in each well were
washed with 1 mL of modified Krebs buffer. Cells were pre-
incubated for 1 h in 500 µL of modified Krebs buffer. Modified
Krebs buffer was aspirated off and replaced with 1 mL of the
10 mg/mL test sample. A monosaccharide solution (40mm
glucose and 40M fructose) was used as the positive control to
induce GLP-1 secretion from STC-1 cells. Plates were
incubated (Forma Scientific) for 4 h at 37°C in 5% carbon
dioxide. The heterogeneous nature of the STC-1 cells results in
varying levels of hormone secretion from flask to flask.

Therefore, test samples were assayed in quadruplicate on
a single day and modified Krebs buffer acted as the vehicle
control. In addition, test samples were assayed in duplicate on
separate days. Following the 4 h incubation period, 10 µL of 10
X Halt Protease and Phosphatase Inhibitor was added to each
well to inactivate endogenous DPP-IV activity. Cellular
supernatants were collected by aspiration and stored at -80°C
prior to GLP-1 analysis.

Cellular supernatant levels of total GLP-1 were assayed using a
GLP-1 assay kit (Meso Scale Discovery (MSD®), Rockville,
MD, USA) according to the manufacturer’s instructions. GLP-1
concentration (pM) in the samples was quantified by
interpolating the intensity of emitted light from a GLP-1
standard curve generated under the assay conditions. Each
sample was assayed in duplicate and plates were read using a
MSD® Sector Imager 2400 instrument (Meso Scale Discovery).

2.7 **In vitro insulin secretion by pancreatic β-cells**

Pancreatic BRIN BD11 β-cells were used to measure acute
insulin secretion. Cells were maintained in RPMI-1640 tissue
culture medium supplemented with 10% (v/v) foetal bovine
serum, 0.1% antibiotics (100 U/mL penicillin and 0.1 mg/mL
streptomycin) containing 11.1 mM glucose and 0.1% Glu pH
7.4. Cells were seeded into a 6-well microplate (Sarstedt,
Wexford, Ireland), incubated (Forma Scientific, Marietta, USA)
with 5% carbon dioxide and 95% air at 37°C and allowed to
adhere overnight. Cells were then washed with phosphate
buffered saline before being incubated in Krebs-Ringer
bicarbonate buffer at pH 7.4 containing 1.1 mM glucose. After
40 min of incubation the buffer was removed. Test samples
were incubated with the cells at a concentration of 1 mg/mL in
Krebs ringer buffer containing 16.7 mM glucose for 20 min.
The supernatant was then removed and acute insulin secretion
was measured by ELISA. The positive control for induction of
insulin secretion was 16.7 mM glucose and 10 mM Ala. Insulin
secretion data is presented as the mean ± SD of four
independent experiments.

2.8 **Oxygen radical absorbance capacity (ORAC) assay**

Antioxidant capacity was evaluated using the fluorescence
based ORAC assay as per the methodology of Power et al.26
Briefly, the assay was performed in a 96 well microplate
(Fisher Scientific, Dublin, Ireland). A Trolox standard curve
was generated by assaying Trolox standards at concentrations
between 10 and 200 µM. Test samples, blank (assay buffer) and
Trolox standards were dissolved in 75 mM sodium phosphate
buffer, pH 7.0 and were added (50 µL) to the appropriate wells
and pre-incubated with 50 µL of 0.312 µM fluorescein (final
concentration) at 37°C for 10 min in a microplate reader
(Biotek Synergy HT, Winooski, USA). Baseline fluorescence
was measured at excitation (485 nm) and emission (520 nm)
wavelengths after 1 min. The reaction was initiated by addition
of 25 µL of 44.2 mM AAPH (final concentration) to each well.
The microplate was incubated at 37°C for 120 min during
which fluorescence was measured every 5 min. For each
sample, the reaction was deemed to be complete if final
fluorescence intensity (FI_{n}) was less than 5% of initial
fluorescence (FI_{0}). Final results were presented as µmol TE per
100 g of dry weight (µmol TE/100 g dw). All data are presented
as the mean ± SD of independent triplicate analyses (n=3).

2.9 **Statistical Analysis**

All analyses were performed at least in triplicate and presented
as the mean ± SD. Data were tested for normality (Shapiro-
Wilk) and evaluated by analysis of variance (ANOVA; one-
way) followed by Tukey’s test and a significance level of
P<0.05 was employed. All analysis was performed using SPSS (SPSS, version 19, IBM Inc., Armonk, USA).

3 Results

3.1 Physicochemical characterisation of the test samples

The physicochemical properties of the different milk protein hydrolysates were evaluated by determination of the RP-UPLC and the molecular mass distribution profiles. The RP-UPLC profiles highlight differences in the intact protein and the hydrolysates (Fig. 1a-c). Enzymatic hydrolysis resulted in significant degradation of the intact whey proteins. However, the DH 32 sample still contained some intact β-Lg (Fig. 1b). The peptide profiles of the DH 32 and DH 45 hydrolysates contained distinct peaks which may be attributed to the specificity of the enzymatic cleavage and differences in the hydrolysis parameters. The RP-UPLC profiles (Fig. 1d-f) also highlight the degradation of the protein substrates that occurred following SGID. In all cases there was an increase in abundance of the peptide peaks particularly those in the more hydrophillic region of the chromatogram. SGID of WPC resulted in a reduction in the intact whey proteins and an increase in abundance of peptide peaks (Fig. 1a & d). For the DH 32 hydrolysate there was an increase in abundance of the main peptide peaks at 2.7, 4.7 and 7.4 min (Fig 1e). SGID of the DH 45 hydrolysate resulted in an increase in abundance of the peptide peaks at 4.8 and 7.7 min and a general reduction in the apparent complexity of the peptide profile (Fig.1f).

In line with the RP-UPLC profiles, 86.9% of the material in the intact WPC had a mass >5 kDa (Table 2). Within the DH 32 hydrolysate, 21.8% of the material had a mass >5 kDa and this hydrolysate also contained a large proportion of low molecular mass material, 52.1% of the area was <0.5 kDa. The DH 45 hydrolysate contained the highest proportion of low molecular mass material, 71.9% <0.5 kDa (Table 2). SGID increased the proportion of peptide material within the low molecular mass range (<0.5 kDa; Table 2) for all test samples. However, there was large variability in the proportion of low molecular weight peptides within the digested samples ranging from 33.7 to 96.4% for WPC SGID and DH 45 SGID, respectively.

Table 2 - Molecular mass distribution profile for intact whey protein concentrate (WPC), whey protein hydrolysate degree of hydrolysis (DH) 32% (DH 32), whey protein hydrolysate DH 45% (DH 45) and associated simulated gastrointestinal digested (SGID) samples (d-f). Freeze dried intact and hydrolysed protein material was diluted to a concentration of 0.8% (w/v) in 0.1% (v/v) TFA in high performance liquid chromatography grade water. Individual whey protein peaks, glycomacropeptide (1), bovine serum albumin (2), α-lactalbumin (3) and β-lactoglobulin a and b (4) are labelled.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Molecular Mass Distribution (% area)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&gt;5 kDa</td>
</tr>
<tr>
<td>WPC</td>
<td>86.9</td>
</tr>
<tr>
<td>WPC SGID</td>
<td>17.4</td>
</tr>
<tr>
<td>DH 32</td>
<td>21.8</td>
</tr>
<tr>
<td>DH 32 SGID</td>
<td>0</td>
</tr>
<tr>
<td>DH 45</td>
<td>0</td>
</tr>
<tr>
<td>DH 45 SGID</td>
<td>0</td>
</tr>
</tbody>
</table>

*Values expressed as % area within a defined molecular mass range for a gel permeation chromatogram obtained at 214 nm.

3.2 GLP-1 secretion in vitro by STC-1 cells

The ability of WPC and the hydrolysates (DH 45 and DH 32) to stimulate total GLP-1 secretion from enteroendocrine cells was evaluated. Preliminary experiments indicated that although modified Krebs buffer contained 10 mM glucose, it was not sufficiently stimulatory to distort results. It was therefore a suitable vehicle control as it maintains viable STC-1 cells during 4 hour exposures. Intact WPC prepared in modified...
Krebs buffer resulted in increased GLP-1 secretion compared to modified Krebs buffer alone (189.8 ± 18.7 vs. 81.4 ± 3.5 pM; P<0.05; Table 3). Whey protein hydrolysates (DH 32 and DH 45) prepared in modified Krebs buffer did not increase the level of secreted GLP-1 above levels observed for buffer alone, 90.7 ± 32.1 vs. 127.4 ± 38.6 pM (P>0.05, Table 3) for the DH 32 and DH 45, respectively. SGID of intact WPC led to a 37% reduction in GLP-1 secretion, 189.8 ± 46.4 vs. 119.8 ± 19.7 pM for WPC and SGID WPC, respectively (P<0.05, Table 3). There was no significant difference in GLP-1 secretion for the DH 32 and DH 45 hydrolysates following SGID.

3.3 In vitro DPP-IV inhibition

The ability of the three test compounds to inhibit DPP-IV activity was evaluated in vitro. Table 3 compares the IC_{50} values for all compounds before and after SGID. The DPP-IV IC_{50} values of both hydrolysates were significantly lower than for the intact WPC. However, these IC_{50} values were 647-882 fold higher than the positive control, Diprotin A. There was a significant reduction in the DPP-IV IC_{50} value for the intact WPC following SGID (Table 3). The DH 32 SGID hydrolysate gave a 37% reduction in the DPP-IV IC_{50} value, 1.5 ± 0.1 vs. 0.9 ± 0.2 mg/mL (P>0.05; Table 3). In contrast, the DH 45 SGID hydrolysate resulted in a 14% increase in the DPP-IV IC_{50} value, 1.1 ± 0.1 vs. 1.3 ± 0.1 mg/mL (P>0.05; Table 3).

Table 3 – In vitro glucagon-like peptide-1 (GLP-1) secretion from murine secretin tumour cells (STC-1), in vitro insulin secretion from BRIN BD11 β-cells, dipeptidyl peptidase IV (DPP-IV) half maximal inhibitory concentration (IC_{50}) and oxygen radical absorbance capacity (ORAC) values for intact whey protein concentrate (WPC), whey protein hydrolysate degree of hydrolysis (DH) 32% (DH 32) and whey protein hydrolysate DH 45% (DH 45), associated simulated gastrointestinal digested (SGID) samples and associated assay controls. Values are expressed as the mean ± SD, n ≥ 3. Within each column values with different letters indicate significant differences determined by ANOVA (P<0.05).

<table>
<thead>
<tr>
<th>Sample</th>
<th>GLP-1 IC_{50} (pM)</th>
<th>DPP-IV IC_{50} (mg/mL)</th>
<th>Insulin IC_{50} (ng/mg protein)</th>
<th>ORAC (µmol TE/100 g dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPC</td>
<td>189.8 ± 18.7</td>
<td>≥ 4</td>
<td>20.95 ± 6.45*</td>
<td>31.36 ± 10.18*</td>
</tr>
<tr>
<td>SGID WPC</td>
<td>119.8 ± 19.7</td>
<td>3.3 ± 0.3*</td>
<td>17.59 ± 4.71*</td>
<td>36.60 ± 35.90*</td>
</tr>
<tr>
<td>DH 32</td>
<td>90.7 ± 32.1</td>
<td>1.5 ± 0.1*</td>
<td>31.51 ± 5.42*</td>
<td>37.39 ± 22.98*</td>
</tr>
<tr>
<td>SGID DH 32</td>
<td>118.9 ± 67.2</td>
<td>0.9 ± 0.2*</td>
<td>33.93 ± 8.45*</td>
<td>44.48 ± 20.64*</td>
</tr>
<tr>
<td>DH 45</td>
<td>127.4 ± 38.6</td>
<td>1.1 ± 0.1**</td>
<td>17.78 ± 3.33*</td>
<td>77.69 ± 14.64*</td>
</tr>
<tr>
<td>SGID DH 45</td>
<td>87.2 ± 2.7</td>
<td>1.3 ± 0.1**</td>
<td>17.74 ± 3.72*</td>
<td>60.61 ± 13.452*</td>
</tr>
</tbody>
</table>

Table 3 – In vitro glucagon-like peptide-1 (GLP-1) secretion from murine secretin tumour cells (STC-1), in vitro insulin secretion from BRIN BD11 β-cells, dipeptidyl peptidase IV (DPP-IV) half maximal inhibitory concentration (IC_{50}) and oxygen radical absorbance capacity (ORAC) values for intact whey protein concentrate (WPC), whey protein hydrolysate degree of hydrolysis (DH) 32% (DH 32) and whey protein hydrolysate DH 45% (DH 45), associated simulated gastrointestinal digested (SGID) samples and associated assay controls. Values are expressed as the mean ± SD, n ≥ 3. Within each column values with different letters indicate significant differences determined by ANOVA (P<0.05).

4. Discussion

There is increasing interest in understanding the biofunctional properties of food and in utilizing food-derived bioactive components in the management of diet related diseases. Whey proteins in particular are a rich source of bioactive peptides. A number of human studies have highlighted the potential for intact and hydrolysed whey proteins to regulate plasma glucose in healthy and T2DM subjects. Furthermore, it has been suggested that much of this regulation takes place via targets within the enteroinsular axis. However, the mechanisms responsible are yet to be fully explored. In this study, we investigated the potential regulatory effects of intact and hydrolysed whey protein via a number of mechanisms using different in vitro test systems.

GLP-1 is a 30 amino acid, L cell derived, polypeptide with a variety of physiological functions including incretin activity. The combined action of the incretin hormones (GLP-1 and glucose dependent insulinotropic polypeptide) account for 50-70% of the postprandial insulin response. However, the magnitude of this response may be nutrient specific. There is considerable evidence in vivo that ingestion of protein, and individual amino acids elevate plasma GLP-1. The relative potency of each compound and the mechanism(s) responsible, however, remain to be established. STC-1 cells are a heterogeneous intestinal epithelial cell population derived from the intestinal endocrine tumor of double transgenic mice and an accepted model of enteroendocrine cells. Following exposure of STC-1 cells to intact and hydrolysed whey proteins only intact WPC enhanced GLP-1 secretion above the vehicle
control. This is in agreement with previous data reporting the stimulation of GLP-1 secretion by intact whey proteins.\textsuperscript{14} Interestingly, further degradation of the intact protein during SGID reduced the GLP-1 secretory properties of WPC suggesting that it may be important to protect (encapsulate or enteric coat) the components responsible to prevent gastric and intestinal degradation.

DPP-IV is the principal enzyme that rapidly degrades active incretins following their secretion.\textsuperscript{20} Whey protein-derived peptides have been shown to act as DPP-IV inhibitors.\textsuperscript{22, 24-26, 59} In addition, peptides can also act as substrate-like DPP-IV inhibitors.\textsuperscript{60, 61} Recently, individual amino acids (Met, Leu and Trp) have also shown moderate DPP-IV inhibition.\textsuperscript{52} Therefore, peptides or amino acids present in, or released from, intact whey proteins could contribute to increasing the half-life of active incretins. The hydrolysed whey proteins evaluated herein acted as DPP-IV inhibitors and the IC\textsubscript{50} obtained (Table 3) compare well with previously published values (0.075-1.51 mg/mL) for whey protein hydrolysates.\textsuperscript{26, 27, 63} A variety of factors contribute to the DPP-IV inhibitory properties of a peptide including amino acid composition,\textsuperscript{64} sequence\textsuperscript{24} and physicochemical characteristics.\textsuperscript{65} However, the relative contribution of each parameter is still unclear. Milk protein derived DPP-IV inhibitory peptides are typically short sequences containing 2-7 amino acids.\textsuperscript{66} The DH 45 hydrolysate had a significantly lower DPP-IV IC\textsubscript{50} than DH 32. The DH 45 hydrolysate contained a higher proportion of short peptides (Table 2) which may have contributed to the greater potency of this hydrolysate.

Some amino acids (Arg, Leu, Gln, Ala, Lys) and protein hydrolysates can directly stimulate insulin secretion by pancreatic β-cells \textit{in vitro}.\textsuperscript{30-31, 48} In this study, only the DH 32 hydrolysate and its SGID form had a significantly higher insulinotropic response than the positive control (glucose + Ala, Table 3). The DH 32 hydrolysate also had a 1.7 fold greater (P<0.05) insulinotropic potency than the DH 45 hydrolysate (Table 3). Interestingly, the DH 45 hydrolysate contained a higher proportion of low molecular mass peptides than the DH 32 sample (Table 2) which suggests that the insulinotropic response is not solely dependent on the DH or the abundance of low molecular mass peptides. Independent of carbohydrate, the insulinotropic properties of milk protein hydrolysates has been demonstrated in a small number of human studies.\textsuperscript{34-36} The mechanism(s) responsible are not yet fully elucidated but changes in the concentration of key insulinotropic amino acids\textsuperscript{28, 67} or peptides\textsuperscript{36} have been implicated. The DH 32 hydrolysate had a higher concentration of free Arg and Lys, than the DH 45 hydrolysate, two highly potent insulinotropic amino acids which may have contributed to the potency of this hydrolysate. Short peptides containing branched chain amino acids were reported to contribute to the insulinotropic action of whey proteins.\textsuperscript{36} The specific peptide profile within the DH 32 hydrolysate (Fig. 1b) may be responsible for the insulinotropic response; however, the peptides therein have yet to be identified. If bioactive peptides act via systemic targets then gastrointestinal stability of the peptides may be necessary to ensure translation of the bioactive effect \textit{in vivo}. Although there was further degradation of the protein substrates during SGID (Fig. 1 & Table 2) this did not alter the bioactivity and, in all cases, the insulinotropic action was retained (Table 3). We have previously shown that the DH 32 hydrolysate has potent insulinotropic effects in humans\textsuperscript{54} thus confirming, in this instance, the ability of the present \textit{in vitro} model system to be predictive of \textit{in vivo} bioactivity.

There is a well-established link between an increase in oxidative stress and the development of T2DM.\textsuperscript{68} Therefore, ingestion of multifunctional peptides that act via the enteroinsular axis and also possess antioxidant activity could be a novel and beneficial dietary strategy in the management of T2DM. Enzymatic hydrolysis significantly enhanced antioxidant activity (Table 3). This is not surprising given that amino acid side chains and polar or charged residues contributing to the redox potential become exposed during hydrolysis.\textsuperscript{69, 70} Antioxidant activity increased with increasing DH and consistent with the higher DH, the DH 45 hydrolysate contained a greater abundance of low molecular mass peptides. Peptides with higher peroxyl radical scavenging activity typically contain 4-20 amino acid residues.\textsuperscript{71} Specific individual amino acids have been highlighted for their antioxidant capability include His\textsuperscript{69}, Cys\textsuperscript{72}, hydrophobic\textsuperscript{72} (Leu, Val and Tyr) and aromatic residues\textsuperscript{69} (Trp, Phe and Tyr). Interestingly, the DH 45 hydrolysate contains a higher proportion of Leu, His and Phe (Table 1) than DH 32 which may have contributed to the antioxidant activity reported here. Quantitative structure-activity modeling has shown that the location of the amino acid within the peptide sequence is an important determinant of antioxidant activity. In particular, peroxyl radical scavenging activity is increased if bulky hydrophobic amino acid residues are located at the C terminal and polar amino acids are located at the N terminal of a peptide.\textsuperscript{71} Therefore, the antioxidant activity reported here may be due to the combined action of antioxidant peptides and amino acids release during enzymatic hydrolysis. There was a notable decrease in the antioxidant activity of the DH 45 hydrolysate following SGID (Table 3). Peptides present in the DH 45 hydrolysate were further degraded by the gastrointestinal enzymes resulting in a 25% increase in the proportion of small peptides (Table 2). Pepsin preferentially cleaves hydrophobic amino acids. The observed loss of activity following peptic digestion may be explained if the DH 45 hydrolysate contained a high proportion of hydrophobic amino acid residues.

5. Conclusions

To our knowledge this is the first time that these four bioactive effects (GLP-1 secretion, DPP-IV inhibition, insulinotropic and antioxidant activity) have been studied in parallel. This work confirms that intact whey can induce GLP-1 secretion. More importantly we have identified two extensively hydrolysed whey protein hydrolysates that regulate insulin secretion, inhibit DPP-IV and have an antioxidant activity \textit{in vitro}. In
most instances, these bioactive effects were maintained or enhanced following SGID. The in vitro models employed here suggest these bioactive effects may be retained in vivo, however, this requires further validation through human studies. In summary, several novel findings from the present work support a potential glucoregulatory capacity/capability of whey protein hydrolysates acting via targets within the enteroinsular axis indicating that the whey protein hydrolysates evaluated herein may be a suitable multifunctional nutritional therapy for the management of T2DM.

Acknowledgements

Work described herein was supported by Enterprise Ireland under grant number TC20130001. Whey protein ingredients evaluated in this study were kindly supplied by Carbery Ingredients and Glanbia Nutritional. R.J. FitzGerald acknowledges the financial support of the Higher Education Authority under the Programme for Research in Third Level Institutions (cycle 4) as part of the National Development Plan 2007-2013.

Notes and references

70. Y. Li, B. Li, J. He and P. Qian, *J. Pept. Sci.*, 2011, **17**, 454-462.
Graphical Abstract:

Novelty:
This work identified extensively hydrolysed whey protein hydrolysates with multifunctional (insulinotropic, dipeptidyl peptidase IV inhibitory and antioxidative) bioactive properties.