Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Inhibitory effects of tannic acid in the early stage of 3T3-L1 preadipocytes
2	differentiation by down-regulating PPARy expression
3	Fangyuan Nie ^a , Yan Liang ^b , Hang Xun ^c , Jia Sun ^c , Fei He ^d , Xiaofeng Ma ^{a,*}
4	
5	^a , College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing
6	100049, China
7	^b , School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11
8	Beisanhuanxi Road, Beijing 100191, China
9	^c , State Forestry Administration, International Centre for Bamboo and Rattan Academy of Bioresource
10	Utilization, Beijing 100102, China
11	^d , Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urmuqi 830011, China
12	
13	
14	
15	
16	
17	
18	* Corresponding author.
19	Tel. /Fax: +8610-88256353 (X. Ma)
20	E-mail addresses: maxiaofeng@ucas.ac.cn (X. Ma)
21	

22 Abstract

23	Obesity is a medical condition of excess body fat negatively influencing morbidity and mortality via
24	non-communicable disease risks. Adipogenesis, the process of preadipocytes differentiate into adipocytes,
25	plays a pivotal role in obesity. Our previous study has proved that tannic acid (TA) showed anti-adipogenesis
26	effect in 3T3-L1 preadipocytes. However, the precise mechanism involved in the inhibition in adipocytes
27	differentiation by TA is unclear, thus is the subject of the present investigation. In this study, we determined
28	the effect of TA on different stages of 3T3-L1 preadipocytes differentiation, and found that when treating in
29	the early stage of differentiation, TA reduced lipid accumulation significantly. However, TA did not reduce
30	lipid accumulation when treating in mid- and late-stages of adipocyte differentiation. To further study which
31	gene TA had an impact on in the early stage of differentiation, we identified a number of genes associated
32	with lipid metabolism. The results showed that compared to control group, the mRNA levels of FAS, C/EBP α ,
33	and PPAR γ were significantly decreased (p<0.05), while the mRNA levels of adipsin, ap2 were increased
34	(p<0.05). However, TA had no effect on mRNA levels of ACC1 and ACC2. Western blot results showed that
35	TA down-regulated the expression of PPAR γ , which is a major factor in preadipocyte differentiation. In
36	addition, TA did not affect PI3K/AKT pathway. These results indicate that the anti-adipogenesis effect of TA
37	involves down-regulation of PPAR γ in the early stage of 3T3-L1 preadipocyte differentiation. Some potential
38	limitations of this study should be considered. All the results in this study were based on cell experiments.
39	However, the human bioavailability of TA is not clear. In the present study, the concentration of TA was 5 μ M,
40	so it was concerned about whether orally intake of TA could reach to the effective concentrations. This
41	important point needs to be clarified in vivo.

42

43 **Key words:** tannic acid; PPARγ; fatty acid synthase; inhibit; 3T3-L1 preadipocyte; lipid accumulation.

45 INTRODUCTION

Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have a negative effect on health, leading to reduced life expectancy and/or increased health problems.¹ Since involved in various serious diseases including type 2 diabetes, hypertension, coronary heart disease, apoplexy, osteoarthritis and cancers, obesity has become a worldwide public health threat.²⁻⁹

50 Obesity is resulted from increased adipose tissue mass, which is caused by increased fat-cell numbers 51 (hyperplasia) and size (hypertrophy), accompanied by the imbalance between energy intake and expenditure.¹⁰ Adipose tissue consists of mature adipocytes, preadipocytes, endothelial cells, macrophages, 52 fibroblasts, and adiposederived stem cells.¹¹ Preadipocytes are capable to propagate and differentiate into 53 mature adipocytes, which determine the number of fat cells throughout their entire lifespan.¹² Meanwhile, the 54 55 size of fat-cell depends on the lipid accumulation in the adipocytes. Therefore, adipose tissue mass can be 56 reduced by the inhibition of adipogenesis from preadipocytes to mature adipocytes or the prevention of 57 intracellular lipid accumulation.

58 Adipogenesis, the differentiation process of preadipocytes into adipocytes, plays a pivotal role in fat 59 metabolism.¹³ The 3T3-L1 mouse preadipocyte cell line, originally obtained from mouse embryos, has been commonly used to investigate the molecular mechanism of adipogenesis as an *in vitro* model system.¹⁴ The 60 61 3T3-L1 preadipocytes differentiated into adipocytes and express adipocytes-specific genes in the presence of adipogenic cocktail, containing 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, and insulin.¹⁵ 62 63 Peroxisome proliferator-activated receptor γ (PPAR γ), CCAAT/enhancer binding protein α (C/EBP α) are the major transcription factors expressed during adipogenesis in 3T3-L1 preadipocytes.^{16, 17} These major 64 transcription factors together activate the expression of adipocyte-specific genes including adipsin, adipocyte 65 66 fatty acid-binding protein 2 (aP2), Acetyl-CoA carboxylase 1 (ACC1), ACC2, and fatty acid synthase (FAS) 67 in adipogenesis.¹⁸⁻²⁰

68	In our previous study, we found that tannic acid (TA) could reduce lipid accumulation of 3T3-L1 adipocytes
69	dose-dependently. Moreover, TA showed strong capability of inactivating FAS with the half maximal
70	inhibitory concentration (IC $_{50}$) value of 0.14 $\mu M.^{21}$ However, the precise mechanisms involved remain unclear.
71	The purpose of this study is to investigate the possible mechanisms of TA on the regulation of preadipocyte
72	differentiation and/or on the lipid accumulation using the adipogenic cell line 3T3-L1.
73	MATERIALS AND METHODS
74	Reagents
75	TA (C ₇₆ H ₅₂ O ₄₆ , 98% HPLC), ethylenediaminetetraacetic acid (EDTA), dithiothreitol (DTT), insulin, dimethyl
76	sulfoxide (DMSO), dexamethasone, IBMX and Oil red O were purchased from Sigma-Aldrich (St. Louis, MO,
77	USA). Fetal bovine serum (FBS) was purchased from local Sijiqing biological engineering material company
78	(Beijing, China). Dulbecco's modified Eagle's medium (DMEM) was a product of Nissui Seiyaku, Tokyo,
79	Japan. Cell Counting Kit (CCK-8) was a product of Dojindo Laboratories, Kumamoto, Japan. The PCR
80	primers for human β -actin, PPAR γ , FAS, C/EBP α , adipsin, ap2, ACC1 and ACC2 were synthesized by SBS
81	Genetech Co. Ltd (Beijing, China). AMV and Oligo (dT) were purchased from Promega Corporation (Beijing,
82	China). Other reagents were of analytical grade.
83	Cell line and cultures
84	Mouse 3T3-L1 preadipocytes were purchased from the Type Culture Collection of the Chinese Academy of
85	Sciences, Shanghai, China. Cells were cultured in low-gucose DMEM containing 10% FBS at 37 °C in a
86	humidified atmosphere containing 5% CO ₂ . Medium was renewed every 2 days. When differentiated, 3T3-L1
87	preadipocytes were seeded in 6-well plate and grown for 2-4 days for differentiation. Two days after reaching

88 confluence, the medium was changed by high-glucose DMEM containing 10% FBS supplemented with 0.5

89	mM IBMX, 1 μ M dexamethasone, and 1.7 μ M insulin (d0). The cells were treated for 2 days (d2), and then
90	were cultured in high-glucose DMEM containing 10% FBS and 1.7 μM insulin for another 2 days. Thereafter
91	(d4), the cells were cultured in high-glucose DMEM containing 10% FBS up to day 8, and the medium was
92	renewed every 2 days. TA was conserved in DMSO before added into the culture medium.
93	CCK8 assay
94	3T3-L1 preadipocytes were seeded in a 96-well plate (5 \times 10 ³ cells/well) and then treated with TA in different
95	concentrations for 24 h. As for mature adipocytes, after 8 days of differentiation, adipocytes were seeded in a
96	96-well plate (5 \times 10 ³ cells/well) and then treated with TA in different concentrations for 24 h. Thereafter,
97	almost 1/10 CCK8 (1 ml CCK8 in 10 ml DMEM) was added into each well of a microtiter plate and
98	incubated for 2 h at 37 °C and then measured at 492 nm by a microplate spectrophotometer. Data were
99	obtained from the average of five experiment wells, and the assay was repeated three times.
100	Oil red O staining
101	Cells in 24-well plates were gently washed by phosphate buffer solution (PBS) for three times. 1 ml Oil red
102	O-isopropanol (six parts 0.6% Oil Red O dye in isopropanol and four parts water) was added into each well
103	and kept at room temperature for 15 min. Excess Oil red O was washed by water for three times, and then
104	photographed under the microscope. After that, each well was added 1 ml isopropanol for 15 min, and then
105	150 µl eluate was transferred to 96-well plates, and measured the optical density at 540 nm using a microplate
106	spectrophotometer (Multiskan, MK3).
107	Cell proliferation
108	Cell proliferation was determined by staining cells with propidium iodide (PI) labeling. Briefly, 1.5×10^5
109	cells/ml were incubated without or with TA (2.5, 5 µM) for 24 h. Afterwards, the cells were washed twice

110 with ice-cold PBS, and then PI was applied to stain cells as the kit directions. The status of cell staining was

Food & Function Accepted Manuscript

- 111 analyzed by flow cytometer (Becton Dickinson).
- 112 CCK8 was also used to determine cell proliferation. 3T3-L1 preadipocytes were treated with TA (1, 2, 3, 4, 5
- 113 µM) for six days and cell viability was detected every day. Cell viability enhancement represents the increase
- 114 in the number of cells.
- 115 RNA preparation from 3T3-L1 cells and RT-PCR
- 116 Total RNA was isolated from 3T3-L1 adipocytes using RNAsimple Total RNA Kit (TianGen Biotech,
- 117 Beijing). 5 µl total RNA from each sample was reverse-transcribed to cDNA with a cDNA synthesis kit
- 118 (TianGen Biotech, Beijing). The gene expression levels of FAS and PPARy were analyzed by quantitative
- real-time PCR (Mx 3000P, USA). The conditions for PCR were: initial denaturation at 95°C for 5 min and
- 120 followed by 45 cycles (95 °C, 15 s, 55 °C, 15 s, 72 °C, 20 s). The primer sequences were shown in Table 1.
- 121 Western blotting

122 Cells were washed three times with ice-cold PBS and harvested in RIPA lysis buffer with 1 mM PMSF, and 123 then lysed for 5 min on ice. The homogenate was centrifuged at 12,000 rpm for 10 min at 4°C and supernatant 124 was collected for FAS analysis. Equal protein extracts were separated using SDS-PAGE. Proteins were 125 electrophoretically transferred to PVDF membranes. Incubation with primary and secondary antibodies was 126 performed in Tris-buffered saline containing 5% non-fat dry milk for 2 h or more. After incubation, the 127 membranes were washed in Tris-buffered saline containing 0.1% Tween 20. ECL Western Blotting Detection 128 System was used for detection. The relative expression of proteins was quantified densitometrically with the 129 software ImageJ and calculated according to the reference bands of β -actin or GAPDH.

130 Statistics

131 Data were expressed as mean ± standard deviation (SD). The unpaired Student's t test was used to compare

the means of two groups. The statistical differences among three or more groups were determined by one-way

133	ANOVA with	Tukey's p	oost-test. T	he gel imag	es were analy	zed with t	he software (Juantity (One. 1	o values c	٥f
				<i>U L</i>	-			· ./			

134 0.05 or less were considered to be statistically significant.

135 **RESULTS**

- 136 TA inhibited the cell viability of preadipocytes, but not mature adipocytes.
- 137 In order to elucidate the effect of TA on the viability of 3T3-L1 cells, both undifferentiated preadipocytes and
- 138 differentiated mature adipocytes were assayed. The results showed that when treating with TA at the
- 139 concentrations of 3 µM or more, the viability of preadipocytes reduced significantly. However, TA did not
- 140 affect the viability of adipocytes. As shown in figure 1, the viability of fully differentiated adipocytes did not
- 141 reduce even when treated with 25 μ M TA.

142 (Figure 1)

143 TA inhibited cell proliferation of preadipocytes dose-dependently.

144 For the cell cycle progression, PI staining was used and flow cytometry analysis revealed that TA

- administration resulted in a significant reduction in the cell population in S phase (from 25.1 to 18.8%) and
- 146 G2/M phase (from 26.8 to 17.6%) with a concomitant increase in the cell population in G0/G1 phase (from
- 147 48.1 to 63.7%) at 48 h after induction (Figure 2A). These data suggested that TA inhibited the proliferation of
- 148 preadipocytes through inducing G0/G1 arrest.
- 149 CCK8 assay was used to detect cell proliferation case between untreated and TA treated 3T3-L1 preadipocytes.
- 150 Relative growth rate of the cells treated with different concentrations $(0, 1, 2, 3, 4, 5 \mu M)$ of TA was recorded
- 151 in six consecutive days. The results showed that TA inhibited the proliferation of preadipocytes dose- and
- 152 time-dependently, as Figure 2B shown.
- 153 (Figure 2)
- 154 TA inhibited the lipid accumulation of preadipocytes mainly in the early stage of differentiation.

155	In our previous study, we have reported that TA could suppress lipid accumulation in 3T3-L1 adipocytes. ¹⁸ To
156	further understand the role of TA on the process of adipocyte differentiation, we added 5 μM TA in different
157	stages of adipocyte differentiation, and stained cells with Oil red O after 8 days, then the stained lipids were
158	extracted with isopropanol to record the relative number of lipid droplets quantitatively, as shown in Figure 3.
159	Result showed that TA had the most significant inhibitory effect on the accumulation of lipid droplets when
160	added in the early stage of differentiation (primary 2 days).
161	(Figure 3)
162	TA down-regulated the mRNA levels of FAS, C/EBP α , and PPAR γ .
163	In the initial stage of cell differentiation, many genes associated with lipid synthesis were generated and began
164	to play its biological role in lipid synthesis. To further study which gene TA had an impact on in the early
165	stage of differentiation, we identified a number of genes associated with lipid metabolism. The results showed
166	that compared to control group, the mRNA levels of FAS, C/EBPa, and PPARy were significantly decreased
167	(p<0.05), while the mRNA levels of adipsin, ap2 were increased (p<0.05). However, TA had no effect on
168	mRNA levels of ACC1 and ACC2 (Figure 4).
169	(Figure 4)
170	As we know, PPAR γ gene started to transcript and translate in the primary 2 days of differentiation. In order
171	to prove whether the reduction of lipid accumulation caused by TA was related to PPAR γ pathway, we
172	detected the expression of PPAR γ by western blot. As shown in Figure 5A, TA administration in the early
173	stage of differentiation significantly down-regulated PPARy expression compared to control group. Similar to
174	the results of lipid accumulation, PPAR γ expression was not changed when treating with TA in middle and
175	late stage of differentiation.

TA did not affect PI3K/AKT pathway in 3T3-L1 preadipocytes. 176

177	PI3K/AKT pathway mediates PPAR γ and C/EBP α gene expression in adipocyte differentiation. In order to
178	determine whether TA affected the PI3K/AKT pathway, we detected p-AKT, p-ERK1/2 as well as total AKT
179	and ERK1/2 expression by western blot. As shown in Figure 5B, both of the two proteins were not influenced.
180	(Figure 5)
181	DISCUSSION
182	The development of obesity is characterized by increased number and size of adipocytes, ²² which are
183	regulated by genetic, metabolic and nutritional factors. ^{23, 24} Therefore, deciphering the mechanism of how
184	certain nutrients affect adipocyte differentiation and adipogenesis is important for the prevention of obesity

and related diseases. Polyphenols, abundant in functional foods (i.e. tea, vegetables and fruits), have recently attracted public attention due to their beneficial health effects.²⁵⁻²⁸ TA is a natural polyphenol existed in tea, coffee, immature fruits, etc. and has also been used as a food additive. In our previous study, TA was found to inhibit adipogenesis by down regulating the gene expression of PPAR γ and FAS.²¹ In the present study, the

189 detailed mechanism of TA on adipocyte differentiation was investigated.

FAS is a key enzyme in *de novo* fatty acid synthesis *in vivo* primarily in the fat cells. During preadipocytes differentiation period, the expression level and relative activity of FAS were both increased continuously. However, in the early stage of differentiation, FAS expression level is relatively low.²⁹ Our previous study showed that TA could inhibit FAS activity and reduce lipid accumulation of preadipocytes. However, in this present study, we found that TA exhibited strong activity of reducing lipid accumulation mainly in the early stage of differentiation. Therefore, the inhibitor effect of TA on FAS may be not the main reason of its anti-adipogenesis activity.

PPARs are ligand-activated transcription factors which regulate genes transcription in cell differentiation and
 lipid homeostasis.³⁰⁻³⁴ PPARs are a family including isoform of PPARα, PPARβ, PPARβ, PPARβ, in which

199	PPAR γ mainly contributes to energy storage by enhancing adipogenesis. ³⁵ PPAR γ is regarded as the main
200	regulator of adipogenesis because no other factor was found to rescue adipocyte formation when $PPAR\gamma$ is
201	knockout. ³⁶ PPAR _γ rapidly increases in expression during early adipogenesis, ³⁷⁻³⁹ when is the day 0-day 2
202	during the 3T3-L1 cells differentiation. Semenkovitch and colleagues have proven that FAS promotes PPARy
203	activation and adipogenesis which is demonstrated by FAS knockout experiments which shows FAS is
204	necessary to generate endogenous ligands for PPARy.40 In this study, we found that TA down-regulated
205	PPARy expression significantly. This result indicated that the anti-adipogenesis effect of TA may be related to
206	PPARy.
207	Adipsin, also known as complement factor D, is the first adipocytokine described. ⁴¹ As a fat cell derived
208	protein associated with lipid metabolism, adipsin mRNA levels in obese rats were lower than those of lean
209	rats. ⁴² It has been previously established that there was a negative correlation between the mRNA levels of
210	adipsin and FAS. In the present study, consistent with previous study, we found that TA down-regulated
211	mRNA levels of FAS but up-regulated mRNA levels of adipsin. As a key regulator of adipogenesis, ap2
212	facilitates intracellular mobilization of free fatty acids. ⁴³ It was reported that disruption of ap2 gene impaired
213	fat cell lipolysis and increased cellular fatty acid levels. ⁴³ The results of this study indicated that, after treated
214	with TA, the expression levels of PPARy, FAS and ap2 genes were not positively correlated. The detailed
215	mechanism involved was still unknown, however, these genes were regulated toward the same direction of
216	decreasing intracellular fatty acids.
217	PI3K/AKT pathway is up-stream of adipocyte differentiation pathways including PPARy pathway. TA and
218	other tannins were proven many biological functions, including anti-oxidation, antibacterial and
219	anti-inflammation mainly through PI3K/AKT pathway. Thus, in this study, to verify whether the lipid

220 reduction effect of TA was related to PI3K/AKT pathway, we measured the expression of p-AKT and

221 p-ERK1/2 in TA treated 3T3-L1 preadipocytes. Results showed that TA administration did not affect 222 PI3K/AKT pathway in 3T3-L1 preadipocytes. 223 As a main active compound of pomegranate, TA was reported to have the activities of reducing body-weight and food intake.44,45 However, the detailed mechanisms involved have not been fully clarified. From the 224 225 results above, we proposed that a possible way was that TA down regulated the expression of PPARy, FAS 226 and C/EBP α in the early stage of preadipocyte differentiation. Subsequently, the newly synthesized fatty acids, 227 which were main component of lipid droplets, were reduced significantly. 228 Preliminary experiments in our laboratory have found evidence that the inhibitory effect of TA on 3T3-L1 229 preadipocytes did not relate to non-specific sedimentation, while low concentration of TA (up to 36.7 µM) did not cause the protein sedimentation.²¹ In the present research, the highest concentration of TA used was much 230 231 lower than that could induce protein sedimentation, which demonstrated that the inhibitory activity of TA on 232 adipocytes did not due to protein non-specific sedimentation. 233 Some potential limitations of this study should be considered. All the results in this study were based on cell 234 experiments. Indeed, in regard to aiming to target intracellular genes for therapeutic applications, an important 235 issue is the bioavailability of TA. However, although studies have revealed the bioactivities of TA in human and rats, the human bioavailability of TA is not clear.⁴⁶ Bravo et al reported that rats were given diets 236 237 containing 20 g TA per Kg chow during a three week experimental period, only 4.6% of TA was found in the faces.⁴⁷ That is, the apparent digestibility of TA was 95.4%. So the bioavailability of TA is relative low. In the 238 239 present study, the concentration of TA was 5 μ M, so it was concerned about whether orally intake of TA could 240 reach to the effective concentrations. This important point needs to be clarified *in vivo*. To this aim, it may be 241 useful the study of the effect of TA on obese mouse or rat models.

242 In conclusion, TA could inhibit the differentiation and lipid accumulation of 3T3-L1 preadipocytes when treat

in the early stage of differentiation. TA down regulated the mRNA levels of three important markers (PPARy,

244	FAS and C/EBP α) that were induced when the cells have just starting to differentiate. In contrast, TA
245	administration in the middle and/or the late stage of differentiation program had a much weaker inhibitory
246	effect on lipid accumulation. Therefore, the results of this study suggest that the down-regulation of PPAR γ be
247	major roles on its anti-adipogenesis effect of TA.
248	ACKNOWLEDGMENTS
249	This work was supported by the Special Science and Technology Projects for Outstanding Young in Life
250	Sciences (KSCX2-EW-Q-19), the "12th five-year plan" period: the basic frontier project in life
251	sciences (KSCX2-EW-J-29), Youth Innovation Promotion Association, CAS, as well as High-Tech Research
252	and Development Program of Xinjiang (No. 201315108) and China Postdoctoral Science Foundation (No.
253	2013M540785).

254 CONFLICT OF INTEREST

243

255 The authors declare no conflict of interest.

256	REFERENCES
257	1. D.W. Haslam, and W.P. James, Obesity, Lancet, 2005, 366, 1197-1209.
258	2. C.L. Ogden, M.D. Carroll, B.K. Kit, and K.M. Flegal, Prevalence of obesity and trends in body mass
259	index among US children and adolescents, 1999-2010, JAMA., 2012, 307, 483-490.
260	3. K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P.
261	James, C.M. Loria, and S.C. Jr Smith, Harmonizing the metabolic syndrome: a joint interim
262	statement of the International Diabetes Federation Task Force on Epidemiology and Prevention;
263	National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation;
264	International Atherosclerosis Society; and International Association for the Study of Obesity,
265	Circulation, 2009, 120 , 1640-1645.
266	4. M. Zeyda, and T.M. Stulnig, Obesity, inflammation, and insulin resistance - a mini-review,
267	Gerontology, 2009, 55 , 379-386.
268	5. S.S. du Plessis, S. Cabler, D.A. McAlister, E. Sabanegh, and A. Agarwal, The effect of obesity on
269	sperm disorders and male infertility, Nat. Rev. Urol., 2010, 7, 153-161.
270	6. P.G. Kopelman, Obesity as a medical problem, Nature, 2000, 404, 635-643.
271	7. U.N. Das, Obesity: genes, brain, gut and environment, Nutrition, 2010, 26, 459-473.
272	8. Y.E. Bogaert, and S. Linas, The role of obesity in the pathogenesis of hypertension, Nat. Clin. Pract.
273	Nephrol., 2009, 5 , 101-111.
274	9. J.S. Rana, M. Nieuwdorp, J.W. Jukema, and J.J. Kastelein, Cardiovascular metabolic syndrome-an
275	interplay of, obesity, inflammation, diabetes and coronary heart disease, Diabetes Obes. Metab.,
276	2007, 9, 218-232.
277	10. C. Couillard, P. Mauriège, P. Imbeault, D. Prud'homme, A. Nadeau, A. Tremblay, C. Bouchard, and
278	J.P. Després, Hyperleptinemia is more closely associated with adipose cell hypertrophy than with
279	adipose tissue hyperplasia, Int. J. Obes. Relat. Metab. Disord., 2000, 24, 782-788.
280	11. A. Armani, C. Mammi, V. Marzolla, M. Calanchini, A. Antelmi, G.M. Rosano, A. Fabbri, and M.
281	Caprio, Cellular models for understanding adipogenesis, adipose dysfunction, and obesity, J. Cell
282	<i>Biochem.</i> , 2010, 110 , 564-572.
283	12. J.K. Sethi, and A.J. Vidal-Puig, Thematic review series: adipocyte biology. Adipose tissue function
284	and plasticity orchestrate nutritional adaptation, J. Lipid Res., 2007, 48, 1253-1262.
285	13. J.J. Cao, Effects of obesity on bone metabolism, J. Orthop. Surg. Res., 2011, 6, 30.
286	14. H. Song, K.C. O'Connor, K.D. Papadopoulos, and D.A. Jansen, Differentiation kinetics of in vitro
287	3T3-L1 preadipocyte cultures, <i>Tissue Eng.</i> , 2002, 8 , 1071-1081.
288	15. Q.Q. Tang, T.C. Otto, and M.D. Lane, Mitotic clonal expansion: a synchronous process required for
289	adipogenesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 44-49.
290	16. K.M. Sprott, M.J. Chumley, J.M. Hanson, and R.T. Dobrowsky, Decreased activity and enhanced
291	nuclear export of CCAAT enhancer-binding protein beta during inhibition of adipogenesis by
292	ceramide, <i>Biochem. J.</i> , 2002, 365 , 181-191.
293	17. P.C. Liu, M.A. Phillips, and F. Matsumura, Alteration by 2,3,7,8-tetrachlorodibenzo-p-dioxin of
294	CCAAT/enhancer binding protein correlates with suppression of adipocyte differentiation in
295	3T3-L1 cells, <i>Mol. Pharmacol.</i> , 1996, 49 , 989-997.
296	18. S.Y. Cho, P.J. Park, H.J. Shin, Y.K. Kim, D.W. Shin, E.S. Shin, H.H. Lee, B.G. Lee, J.H. Baik, and
297	T.R. Lee, (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and
298	secretion of adiponectin protein in 3T3-L1 cells, Am. J. Physiol. Endocrinol. Metab., 2007, 292,
299	E1166-E1172.

- P.C. Jou, B.Y. Ho, Y.W. Hsu, and T.M. Pan, The effect of Monascus secondary polyketide
 metabolites, monascin and ankaflavin, on adipogenesis and lipolysis activity in 3T3-L1, *J. Agric. Food Chem.*, 2010, 58, 12703-12709.
- 303 20. G.M. Thompson, D. Trainor, C. Biswas, C. LaCerte, J.P. Berger, and L.J. Kelly, A high-capacity
 304 assay for PPARgamma ligand regulation of endogenous aP2 expression in 3T3-L1 cells, *Anal.*305 *Biochem.*, 2004, **330**, 21-28.
- 306 21. H. Fan, D. Wu, W. Tian, and X. Ma, Inhibitory effects of tannic acid on fatty acid synthase and
 307 3T3-L1 preadipocyte, *BBA-Mol. Cell Biol. L.*, 2013, **1831**, 1260-1266.
- 308 22. S. de Ferranti, and D. Mozaffarian, The perfect storm, obesity, adipocyte dysfunction: and metabolic
 309 consequences, *Clin. Chem.*, 2008, 54, 945-955.
- 310 23. P.G. Kopelman, Obesity as a medical problem, *Nature*, 2000, **404**, 635-643.
- 24. S.R. Farmer, and J. Auwerx, Adipose tissue: new therapeutic targets from molecular and genetic
 studies: IASO Stock Conference 2003 report, *Obes. Rev.*, 2004, 5, 189-196.
- 25. O.Y. Kim, S.M. Lee, H. Do, J. Moon, K.H. Lee, Y.J. Cha, and M.J. Shin, Influence of quercetin-rich
 onion peel extracts on adipokine expression in the visceral adipose tissue of rats, *Phytother. Res.*,
 2012, 26, 432-437.
- 26. M.G.L. Hertog, E.J.M. Feskens, P.C.H. Hollman, M.B. Katan, and D. Kromhout, Dietary antioxidant
 flavonoids and risk of coronary heart disease: the Zutphen Elderly Study, *Lancet*, 1993, 342,
 1007-1011.
- 27 P. Knekt, J. Kumpulainen, R. Järvinen, H. Rissanen, M. Heliövaara, A. Reunanen, T. Hakulinen, and
 A. Aromaa, Flavonoid intake and risk of chronic diseases, *Am. J. Clin. Nutr.*, 2002, **76**, 560-568.
- 321 28. P.J. Mink, C.G. Scrafford, L.M. Barraj, L. Harnack, C.P. Hong, J.A. Nettleton, and D.R. Jacobs Jr.,
 322 Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal
 323 women, *Am. J. Clin. Nutr.*, 2007, **85**, 895-909.
- 29. N. Moustaïd, and H.S. Sul, Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells
 by differentiation and triiodothyronine, *J. Biol. Chem.*, 1991, 266, 18550-18554.
- 30. B. Desvergne, and W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of
 metabolism, *Endocr. Rev.*, 1999, 20, 649-688.
- 31. I. Issemann, and S. Green, Activation of a member of the steroid hormone receptor superfamily by
 peroxisome proliferators, *Nature*, 1990, **347**, 645-650.
- 32. A. Rogue, C. Lambert, R. Jossé, S. Antherieu, C. Spire, N. Claude, and A. Guillouzo, Comparative
 gene expression profiles induced by PPAR γ and PPAR α/γ agonists in human hepatocytes, *PLoS One*, 2011, **6**, e18816.
- 33. A. Rogue, C. Spire, M. Brun, N. Claude, and A. Guillouzo, Gene expression changes induced by
 PPAR gamma agonists in animal and human liver, *PPAR Res.*, 2010, 2010, 325183.
- 34. T.M. Willson, P.J. Brown, D.D. Sternbach, and B.R. Henke, The PPARs: from orphan receptors to
 drug discovery, *J. Med. Chem.*, 2000, 43, 527-550.
- 337 35. M.S. Rao, P. Kashireddy, S. Musunuri, and A. Okonkwo, Prevention/reversal of choline
 338 deficiency-induced steatohepatitis by a peroxisomeproliferator- activated receptor alpha ligand in
 339 rats, *In Vivo*, 2002, 16, 145-152.
- 36. A. Chawla, and M.A. Lazar, Peroxisome proliferator and retinoid signaling pathways co-regulate
 preadipocyte phenotype and survival, *Proc. Natl. Acad. Sci. USA*, 1994, **91**, 1786-1790.
- 342 37. M. Adams, C.T. Montague, J.B. Prins, J.C. Holder, S.A. Smith, L. Sanders, J.E. Digby, C.P. Sewter,
 343 M.A. Lazar, V.K. Chatterjee, and S. O'Rahilly, Activators of peroxisome proliferator-activated
 344 receptor gamma have depot-specific effects on human preadipocyte differentiation, *J. Clin. Invest.*,

345	1997, 100 , 3149-3153.
346	38. S. Muruganandan, A.A. Roman, and C.J. Sinal, Adipocyte differentiation of bone marrow-derived
347	mesenchymal stem cells: cross talk with the osteoblastogenic program, Cell Mol. Life Sci., 2009, 66,
348	236-253.
349	39. I. Tzameli, H. Fang, M. Ollero, H. Shi, J.K. Hamm, P. Kievit, A.N. Hollenberg, and J.S. Flier,
350	Regulated production of a peroxisome proliferator-activated receptor-gamma ligand during an early
351	phase of adipocyte differentiation in 3T3-L1 adipocytes, J. Biol. Chem., 2004, 279, 36093-36102.
352	40. I.J. Lodhi, L. Yin, A.P.L. Jensen-Urstad, K. Funai, T. Coleman, J.H. Baird, M.K. El Ramahi, B.
353	Razani, H. Song, F. Fu-Hsu, J. Turk, and C.F. Semenkovich, Inhibiting adipose tissue lipogenesis
354	reprograms thermogenesis and PPAR γ activation to decrease diet-induced obesity, <i>Cell Metab.</i> ,
355	2012, 16 , 189-201.
356	41. K.S. Cook, H.Y. Min, D. Johnson, R.J. Chaplinsky, J.S. Flier, C.R. Hunt, and B.M. Spiegelman,
357	Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve, <i>Science</i> ,
358	1987, 237 , 402-405.
359	42. G. Shillabeer, J. Hornford, J.M. Forden, N.C. Wong, J.C. Russell, and D.C. Lau, Fatty acid synthase
360	and adipsin mRNA levels in obese and lean JCR:LA-cp rats: effect of diet, <i>J. Lipid Res.</i> , 1992, 33 ,
361	31-39.
362	43. N.R. Coe, M.A. Simpson, D.A. Bernlohr, Targeted disruption of the adipocyte lipid-binding protein
363	(aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels, J. Lipid Res.,
364	1999, $40, 967-972$.
305	44. F. Lei, X.N. Zhang, W. Wang, D.M. Xing, W.D. Xie, H. Su, and L.J. Du, Evidence of anti-obesity
267	effects of the pomegranate leaf extract in high-fat diet induced obese mice, <i>Int. J. Obes. (Lona)</i> ,
269	2007, 51 , 1025-1029.
360	45. M.N. Al-initian, and F. Khan, Obesity. the preventive fole of the pointegranate (Funica granatum), Nutrition 2012 28 595.604
370	46 H Gin V Rigalleau O Caubet I Masquelier and I Aubertin Effects of red wine tannic acid or
371	ethanol on glucose tolerance in non-insulin-dependent diabetic patients and on starch digestibility in
372	vitro Metabolism 1999 48 1179-1183
373	47 I. Bravo R Abia M A Eastwood and F Saura-Calixto Degradation of polyphenols (catechin and
374	tannic acid) in the rat intestinal tract. Effect on colonic fermentation and faecal output <i>Br J Nutr</i>
375	1994, 71 , 933-946.
376	

Food & Function Accepted Manuscript

- Figure 1. Inhibitory effect of TA on the viability of 3T3-L1 preadipocytes and mature adipocytes.
- 380 A 3T3-L1 preadipocytes were treated with TA (0-7 μM) for 24 h. B Mature 3T3-L1 adipocytes were treated
- 381 with TA (0-25 μM) for 24 h. Cell viabilities were determined by the CCK-8 assay as described in "Materials
- and Methods". The percentage of cell viability was calculated as the ratio of TA treated cells to control cells.
- 383 Data represented the mean \pm SD of three independent experiments. *p<0.05 compared to control (0 μ M);
- 384 **p<0.01 compared to control (0 μ M).
- 385 Figure 2. Effects of TA on proliferation of 3T3-L1 preadipocytes.
- A Cells were treated with TA (0, 2.5, 5 μM) for 24 h, and then Flow Cytometry was used to determine cell
- 387 proliferation with a DNA-PI staining kit.
- B Growth curves of 3T3-L1 preadipocytes treated with TA (0, 1, 2, 3, 4, 5 μ M) for six days.
- 389 Cell viability was determined every day by CCK8 assay as described in "Materials and methods". The values
- 390 were from three times and triplicate tests.
- 391 Figure 3. TA exhibited different effect on 3T3-L1 adipocytes at different stages of cellular maturation.
- 392 A Cell culture was performed as described in the "Materials and methods". Photos of differentiated cells were
- taken at day 8 after Oil red O staining.
- 394 B Quantitative analysis of lipid accumulation. After Oil red O staining, lipid and Oil red O were dissolved in
- isopropanol and absorbance was measured at the wavelength of 492 nm. Control means no TA treatment; d0
- 396 means treatment with TA during the first two days of cell differentiation, and d02 means treatment with TA
- $during the first 4 days of cell differentiation and so forth. The concentrations of TA were 5 <math>\mu$ M.
- 398 Figure 4. Changes in lipid metabolism-related genes after TA treatment
- 399 A-G Expression of PPAR γ , FAS, C/EBP α , adipsin, ap2, ACC1 and ACC2 in TA treated cells. Cells were

- 400 incubated with 5 µM TA for 48 h (the first two days during cell differentiation) and the mRNA expression of
- 401 lipid metabolism-related genes were detected by RT-PCR.
- 402 Figure 5. Effect of TA on the expression of PPARy, p-AKT, and p-ERK1/2 in 3T3-L1 adipocytes at different
- 403 stages of cellular maturation.
- 404 Cells were incubated with 5 µM TA during different stage (d0, d2, d4, d6) or full stage (d0246) for 8 days.
- 405 Then the levels of PPARγ, AKT, ERK1/2, p-AKT, p-ERK1/2 were detected by Western blot.

407 Table 1. Primers used for RT-PCR

408

Gene	Sequences (forward/reverse)
β-actin	GTGGGCCGCTCTAGGCACCAA
	CTCTTTGATGTCACGACGATTTC
FAS	TTCGTACCTCCTTGGCAAAC
	GGCTGCAGTGAATGAATTTG
C/EBPa	GCCGAGATAAAGCCAAACAA
	CCTTGACCAAGGAGCTCTCA
PPARγ	GCATGGTGCCTTCGCTGA
	TGGCATCTCTGTGTCAACCATG
ap2	ACACCGAGATTTCCTTCAAACTG
	CCATCTAGGGTTATGATGCTCTTC
ACC1	GCTGTTCCTCAGGCTCACAT
	ACACCATGTTGGGAGTTGTG
ACC2	CGTGTCGATATCGTTGTTCTG
	CATGGTAGTGGCTTTGAAGGA
Adipsin	CATGCTCGGCCCTACATGG
	CACAGAGTCGTCATCCGTCAC

Food & Function Accepted Manuscript

Tannic acid inhibits lipid accumulation in the early stage of 3T3-L1 preadipocytes differentiation by downregulating PPARγ. 800x400mm (96 x 96 DPI)

329x121mm (72 x 72 DPI)

Figure 2 254x190mm (96 x 96 DPI)

Figure 3 328x641mm (72 x 72 DPI)

Figure 4 468x192mm (72 x 72 DPI)

Figure 5 597x336mm (72 x 72 DPI)