Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

- ¹ Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and
- ² its quinones in catechin/nitrite systems under stomach simulating conditions.
- ³ Filis Morina^a, Umeo Takahama^{b,*}, Ryo Yamauchi^c, Sachiko Hirota^d, Sonja Veljovic-
- 4 Jovanovic^a
- 5
- ^a Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Republic
 of Serbia.
- ⁸ ^b Department of Bioscience, Kyushu Dental University, Kitakyushu 803-8580, Japan
- ⁹ ^c Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu
- ¹⁰ University, Gifu 501-1193, Japan
- ¹¹ ^d Faculty of Applied Health Sciences, University of East Asia, Shimonoseki 751-8503, Japan
- 12
- 13
- ¹⁴ *Corresponding author
- 15 Umeo Takahama
- ¹⁶ Department of Bioscience
- 17 Kyushu Dental University,
- 18 Kitakyushu 803-8580, Japan
- ¹⁹ e-mail: <u>takahama@kyu-dent.ac.jp</u>
- ₂₀ Fax: +81-93-582-6000
- 21
- 22
- 23

Table of contents entry

25

- ²⁶ Catechins in foods can be transformed into dinitorosocatechins and the quinones by salivary
- ²⁷ nitrite in the stomach, and the transformation can be suppressed by flavonols including
- ²⁸ quercetin and its 7-*O*-glucoside.

CAT, catechin; AH₂, ascorbic acid; AH^{*}, monodehydroascorbic acid; A, dehydroascorbic acid; Q and Q7G, quercetin and its 7-glucoside, Qox and Q7Gox, oxidation products; *, radicals

30

1.1	
	<u> </u>
	U.
	10
	0
	Ä
	Ð
	2
	U.
	1
	\mathbf{C}
	\mathbf{C}
	- A.
- 0	
	_
	0
	\bigcirc
	O

32 Abstract	t
-------------	---

33	Foods of plant origin contain flavonoids. In adzuki bean, (+)-catechin, quercetin 3-O-
34	rutinoside (rutin), and quercetin 7- O - β -D-glucopyranoside (Q7G) are the major flavonoids.
35	During mastication of foods prepared from adzuki bean, the flavonoids are mixed with saliva,
36	and swallowed in the stomach. Here we investigated the interactions between Q7G and $(+)$ -
37	catechin at pH 2, which may proceed in the stomach after the ingestion of foods prepared
38	from adzuki bean. Q7G reacted with nitrous acid producing nitric oxide ('NO) and a
39	glucoside of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. (+)-Catechin
40	reacted with nitrous acid producing 'NO and 6,8-dinitrosocatechin. The production of the
41	dinitrosocatechin was partly suppressed by Q7G, and the suppression resulted in the
42	enhancement of Q7G oxidation. 6,8-Dinitrosocatechin reacted further with nitrous acid
43	generating the o-quinone, and the quinone formation was effectively suppressed by Q7G. In
44	the flavonoids investigated, the suppressive effect decreased in the order Q7G \approx quercetin >
45	kaempferol > quercetin 4'-O-glucoside > rutin. Essentially the same results were obtained
46	when (-)-epicatechin was used instead of (+)-catechin. The results indicate that nitrous acid-
47	induced formation of 6,8-dinitrosocatechins and the o-quinones can be suppressed by
48	flavonols in the stomach, and that both a hydroxyl group at C3 and ortho-hydroxyl groups in
49	B-ring are required for the efficient suppression.
50	
51	Key words: adzuki bean, catechin radicals, dinitrosocatechins, flavonols, nitric oxide ('NO),

⁵² nitrous acid.

53

⁵⁴ Abbreviations used: Q7G, quercetin 7-glucoside; Q4'G, quercetin 4'-glucoside; Qox,

⁵⁵ oxidation product of quercetin; Q7Gox, oxidation product of quercetin 7-*O*-glucoside.

56

57

58 Introduction

Quercetin glycosides and catechins are the common flavonoids found in plants such as adzuki 59 bean, apple, buckwheat, cacao, onion, and tea¹⁻⁵. During the ingestion of foods or beverages 60 prepared from such plants, flavonoids are mixed with saliva in the oral cavity, and then 61 swallowed in the stomach, where the pH is around 2. Under such conditions, nitrite in saliva, 62 which is produced from salivary nitrate by nitrate-reducing bacteria in the oral cavity⁶, is 63 transformed into nitrous acid ($pK_a = 3.3$). The concentration of nitrite in mixed whole saliva 64 ranges from 0.05 to 1 mM⁷. Nitrous acid ($E^{\circ} = 0.983$ V; 0.865 V at pH 2.0, calculated value) 65 can generate reactive nitrogen species such as NO^+ , NO_2 and N_2O_3 by self-decomposition, 66 and can react with (+)-catechin ($E^{o'} = 0.49$ V, pH 2.0) (1a and 1b), quercetin ($E^{o'} = 0.45$ V, 67 pH 2.0) (3) 8,9 (Fig. 1) and other polyphenols producing nitric oxide ('NO) $^{10-13}$. The major 68 reaction products of catechins and quercetin have been reported to be 6.8-dinitrosocatechins 69 $(2a \text{ and } 2b)^{14}$ and 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (5)^{15,16},70 respectively. The differences in the oxidation products are supposed to be due to the 71 differences in the reactivity of 'NO with semiguinone radicals of (+)-catechin and quercetin 72 generated in (+)-castechin/nitrous acid and guercetin/nitrous acid systems, respectively¹⁷. 73 The functions of 'NO produced by the above reactions in the stomach is reviewed 18 , and the 74 functions include antimicrobial activity^{19,20}, inhibition of stress-induced gastric mucosal 75 injury²¹, increase in gastric blood flow, mucus formation²²⁻²⁴, and inhibition of lipid 76 peroxidation by scavenging the peroxyl and and alkoxyl radicals of unsaturated fatty acids²⁵. 77 On the other hand, nitrous acid can produce carcinogenic nitrosoamines through the N-78 nitrosation of secondary amines or amides ²⁶⁻²⁹. In flavonoids, catechins are effective 79 inhibitors of the N-nitrosoamine formation^{14, 30-32}. 80

Recently, it has been reported that (+)-catechin in the methanol extract of adzuki bean and (-)-epicatechin in the methanol extract of apple are transformed into **2a** and **2b**, respectively,

83	after their incubation in mixed whole saliva under acidic conditions ^{33,34} , and that 2a and 2b
84	are oxidized by nitrous acid 17,33 . The oxidation products are postulated to be <i>o</i> -quinones of 2a
85	and 2b from the results that ascorbic acid reduces the oxidation products to 2a and 2b and
86	that thiocyanate reacts with the oxidation products producing 6'-thiocyanate-6,8-
87	dinitrosocatechin and 6'-thiocyanate-6,8-dinitrosoepicatechin, respectively ³³ . In addition,
88	quercetin effectively suppresses the oxidation of $2a$ and $2b$ ¹⁷ . Quercetin 7-O-glucoside
89	(Q7G)(4) is a major flavonoid in adzuki bean in addition to (+)-catechin ^{4,5} , and Q7G can be
90	postulated to be as reactive as quercetin because of the presence of a free hydroxyl group at
91	C3 and ortho-hydroxyl groups in the B ring. The presence of both Q7G and (+)-catechin in
92	adzuki bean prompted us to investigate the effects of Q7G on the nitrous acid-induced
93	formation of 2a and 2b from catechins and on the formation of <i>o</i> -quinones from 2a and 2b .
94	The main aim of this study is to explore the possible interactions of Q7G with catechins
95	and 2a and 2b during their oxidation by nitrous acid under stomach simulating conditions. In
96	addition to the above interactions, the interactions of (+)-catechin and 2a and 2b with
97	quercetin 3-rutinoside (rutin), quercetin 4'-glucoside (Q4'G), and kaemoferol were also
98	studied in the presence of nitrous acid. Taking the results obtained in this study into account,
99	the importance of interactions of flavonols with catechins and 2a and 2b during their
100	reactions with nitrous acid in the stomach is discussed from the point of prevention of
101	formation of 2a and 2b and the quinones.

102

Results and Discussion

Reaction of Q7G with nitrous acid

Figure 2A shows nitrite-induced changes in absorption spectra of Q7G in 50 mM KCl-HCl (pH 2.0). After the addition of sodium nitrite, absorption peaks of Q7G at 254 and 366 nm decreased increasing the absorbance at 288 nm. Such spectral changes have been reported

Food & Function Accepted Manuscript

108	during nitrous acid-induced oxidation of quercetin, and the oxidation product (Qox) is
109	determined to be 5 ¹⁵ .
110	The reaction product of Q7G (Q7Gox) was separated as a single peak by HPLC at the
111	retention time of 2.9 min (Fig. 2B). In Fig. 2B, Qox (retention time, 3.4 min) was co-
112	chromatographed. The UV/visible absorption spectrum of the product had a peak at 289 nm
113	with a shoulder around 320 nm, and the absorption spectrum was similar to Qox (Fig. 2C). To
114	understand the relation between Q7Gox and Qox, Q7Gox was incubated with β -glucosidase.
115	During the incubation of Q7Gox for 40 min, its concentration decreased irrespective of the
116	presence or absence of β -glucosidase in the similar way with a half time of approximately 20
117	min, but the decrease in the presence of the glucosidase accompanied the formation of a
118	compound that was identified to be Qox from the retention time and UV/visible absorption
119	spectrum. Therefore, we estimated that Q7Gox was a glucoside of 5.
120	Figure 3 shows the effects of nitrite concentration on the consumption of Q7G and
121	quercetin and the formation of Q7Gox and Qox. The concentrations of both quercetin (\bigcirc)
122	and Q7G (\bullet) decreased by nitrite without significant differences. The result suggests that
123	Q7G was oxidized by nitrous acid as effectively as quercetin. During the decrease in the
124	concentrations of Q7G and quercetin, their oxidation products, Q7Gox (\blacksquare) and Qox (\Box),
125	were produced. Their production roughly correlated with the consumption of their mother
126	compounds.
127	Rate constants of the consumption of Q7G and quercetin were estimated under anaerobic
128	conditions by postulating the following reaction;
129	Quercetin/Q7G + HNO ₂ \rightarrow Quercetin/Q7G radical + NO + H ₂ O (1)
130	The values were $(12.5 \pm 1.2) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$ (n = 4) for Q7G and $(13.5 \pm 1.1) \times 10^2 \text{ M}^{-1}$
131	min^{-1} (n = 4) for quercetin. The oxidation of Q7G and quercetin by nitrous acid was faster
132	under aerobic than anaerobic conditions, suggesting the contribution of 'NO2 produced by the

133	autoxidation of 'NO to the oxidation of Q7G under aerobic conditions. It has been reporte	d
134	that the suppressive effect of Q7G is about 50% of that of quercetin for the lipid peroxida	tion
135	induced by 2,2'-azobis(2-amidopropyl) dihydrochloride in egg yolk phosphatidylcholine l	arge
136	unilamellar vesicles ³⁵ . The smaller effect can be attributed to the difference in the solubil	ity
137	to lipid bilayer between Q7G and quercetin.	
138		
139	Characterization of reaction products of (+)-catechin	
140	Figure 4 (I and II) shows HPLC of (+)-catechin and products generated in (+)-	
141	catechin/nitrous acid systems, and Fig. 4 (III) shows their absorption spectra. Accompany	ving
142	the reaction of (+)-catechin with nitrite under acidic conditions for 10 min, 2a was formed	l
143	(trace I-2). The retention time (7.5 min) and absorption spectrum (peak at 274 nm with a	
144	shoulder around 320 nm) were identical with those of 6,8-dinitrosocatechin, which had be	en
145	prepared in this study (see Experimental section). As the mechanism of 2a formation,	
146	following reactions have been proposed ^{17,33} .	
147	(+)-Catechin + HNO ₂ \rightarrow (+)-Catechin radical + NO + H ₂ O	(2)
148	(+)-Catechin radical + NO \rightarrow Mononitrosocatechin	(3)
149	Mononitrosocatechin + HNO ₂ \rightarrow Mononitrosocatechin radical + 'NO + H ₂ O	(4)
150	Mononitrosocatechin radical + $NO \rightarrow 2a$	(5)
151	During further incubation of the reaction mixture, the concentration of (+)-catechin decrea	ased
152	without increasing the concentration of 2a , and a new component (P1) was produced (trac	e I-
153	3). From the retention time (7.0 min) and absorption spectrum (peak at 269 nm with a	
154	shoulder around 320 nm) and from the ascorbic acid-induced disappearance of P1 increas	ing
155	the concentration of 2a by 33% (II -3), P1 was postulated to be a quinone of 2a . The	
156	postulation is supported by not only its reduction to 2a by ascorbic acid but also its	
157	transformation into 6'-thiocyanate-6,8- by thiocyanate at pH 2 ³³ . o-Quinones of caffeic ac	id,
158	chlorogenic acid, and rutin also react with thiocyanate at pH 2 producing the thiocyanate	

Food & Function Accepted Manuscript

159	conjugates, which are hydrolyzed to oxathiolone derivatives and NH ₃ ^{36,37} . Following	
160	reactions may be possible for the formation of <i>o</i> -quinone from 2a .	
161	$2\mathbf{a} + HNO_2 \rightarrow 2\mathbf{a} \text{ radical} + NO + H_2O$	(6)
162	$2 \times (2\mathbf{a} \text{ radical}) \rightarrow 2\mathbf{a} + 2\mathbf{a} \text{ quinone}$	(7)
163	Effects of Q7G on the formation of 2a and P1 were studied. Under the experimental	
164	conditions of trace II-2, both P1 and 2a were produced in a (+)-catechin/nitrous acid syste	m
165	during the incubation for 10 min. The addition of Q7G to the above system and the	
166	incubation for 10 min resulted in the formation of Q7Gox that was estimated from the	
167	retention time and the absorption spectrum. The formation of Q7Gox accompanied the	
168	inhibition of P1 formation by about 80% and enhancement of 2a production by about 30%	',
169	suppressing slightly the decrease in the concentration of (+)-catechin (trace II-3). The resu	ılt
170	suggests that Q7G might have interacted with (+)-catechin and 2a during their reactions w	ith
171	nitrous acid. Therefore, we studied the interactions of Q7G with (+)-catechin and 2a under	.
172	stomach simulating conditions.	
173		
174	Interactions of Q7G with catechins	
175	Figure 5A shows interaction of Q7G with (+)-catechin during their reaction with nitrous ad	cid.
176	The formation of $2a$ was enhanced by about 20% by 5 μM Q7G, and suppressed by about	
177	20% by 50 μ M Q7G (\blacksquare). The enhancement may be explained by the increase in 'NO	
178	production by Q7G/nitrous acid systems (see below). The consumption of (+)-catechin wa	as
179	suppressed by about 35% by 5 and 15 μM Q7G and by about 65% by 50 μM Q7G (\Box).	
180	According to reactions $2-5$, we can deduce that the suppression of (+)-catechin consumption	on
181	may be due to Q7G-dependent reduction of semiquinone radical of (+)-catechin, and that t	he
182	suppression of 2a formation may be due to the reduction of semiquinone radicals of both (+)-

1		h		
	ī	è		
	i			
1	i	r		
	Ì			
	1	P.		
	1	L.	R	
	Į		H	
	ì			
	Ĵ			
	(
	1		9	
	(
	ļ		1	
_	1	2		
1				
	Ì			2
	ł		14	
	1	Ч	Ч	
	1	p.		
	1	p.	4	
	l			
		2	2	
			ſ	
			l	

183	catechin and mononitrosocatechin. Nitrous acid-induced formation of semiquinone radical of
184	(+)-catechin has been reported ¹¹ .
185	Figure 5A also shows effects of (+)-catechin on the nitrous acid-induced consumption of

186	Q7G and the formation of Q7Gox. The consumption of Q7G during 1 min incubation
187	increased nearly linearly with the increase in Q7G concentration (\bullet), and 50 μ M (+)-
188	catechin enhanced the consumption of 5 μM Q7G by about 40% and the consumption of 15
189	and 50 μM Q7G by about 20% (). The enhancement of Q7G consumption by (+)-catechin
190	accompanied the enhancement of Q7Gox formation (compare \blacktriangle and \triangle). These results can
191	be explained by the oxidation of Q7G by semiquinone radicals generated during the reactions
192	of (+)-catechin with nitrous acid. Such interaction between (+)-catechin and quercetin has
193	been reported to proceed in the presence of nitrite under acidic conditions ¹⁷ .

 $_{194}$ 6,8-Dinitrosoepicatechin (**2b**) was formed in the reaction mixture that contained 50 μ M

(-)-epicatechin and 0.5 mM sodium nitrite in 50 mM KCl-HCl (pH 2.0), and it was

¹⁹⁶ postulated that **2b** might be formed by reactions 2–5, in which (+)-catechin was replaced by

¹⁹⁷ (-)-epicatechin. The formation of **2b** was suppressed by Q7G, and the suppression increased

with the increase in the concentration of Q7G (\blacksquare) (Fig. 5B). The consumption of (–)-

¹⁹⁹ epicatechin was also suppressed, and degree of the suppression increased with the increase in

concentration of Q7G (\Box). Furthermore, (–)-epicatechin (50 μ M) enhanced the nitrous acid-

induced consumption of Q7G as (+)-catechin (compare \bullet and \bigcirc), and the enhancement was

accompanied by the increase in Q7Gox formation (compare \blacktriangle and \triangle). The result in Fig. 5B

suggests that Q7G can also react with semiquinone radicals generated in (-)-

²⁰⁴ epicatechin/nitrous acid systems.

205

Interactions of Q7G with 2a/2b

207	6,8-Dinitrosocatechin (2a) isolated by preparative HPLC in this study was partly transformed
208	into 2b during its concentration and lyophilization. It has been reported that 2a and 2b are
209	mutually transformed ¹⁴ . Then, we studied the effects of Q7G on nitrous acid-induced
210	oxidation of 2a and 2b using the isolated dinitrosocatechin that was a mixture of 2a and 2b
211	(Fig. 6A). Accompanying the oxidation of 2a/2b by nitrous acid, P1 and P2 were produced as
212	reported previously $^{17,33}.$ Their formation was completely suppressed by 30 and 100 μM Q7G
213	(\blacksquare). The concentration of Q7G required for 50% inhibition was estimated to be 7 μ M from
214	the figure. It has been reported that 50% inhibition of the formation of $(P1 + P2)$ from $2a/2b$
215	is observed at about 10 μ M quercetin under the conditions similar to Fig. 6A 17 . The
216	suppression of $(P1 + P2)$ formation accompanied the inhibition of the consumption of $2a/2b$
217	(\Box). Furthermore, the inhibition of the formation of (P1 + P2) by Q7G accompanied the
218	enhancement of Q7G consumption (compare $ullet$ and \bigcirc) and Q7Gox formation (compare $llet$
219	and \triangle) (Fig. 6B). These results suggest that Q7G can inhibit the formation of P1 and P2 by
220	scavenging semiquinone radicals produced in 2a/2b/nitrous acid systems by reaction 6, if P1
221	and P2 are <i>o</i> -quinones derived from 2a and 2b , respectively, as described in Fig. 4.

222

²²³ NO production.

²²⁴ During the reactions of nitrite with Q7G, catechin, or **2a/2b** under acidic conditions, 'NO ²²⁵ should be produced by reactions 1, 2, 4, and 6. Then, nitrite-induced 'NO production was ²²⁶ studied in the presence of the above flavonoids in 50 mM KCl-HCl (pH 2.0) (Table 1). The ²²⁷ rate of 'NO production in the nitrous acid/Q7G system increased with the increase in Q7G ²²⁸ concentration. The rate constant of 'NO production by Q7G was calculated to be $(3.6 \pm 0.6) \times$ ²²⁹ $10^3 \text{ M}^{-1} \text{ min}^{-1}$ using the data in Table 1, postulating that 'NO was produced by reaction 1. The ²²⁰ rate constant in the presence of quercetin was calculated to be $(3.9 \pm 0.3) \times 10^3 \text{ M}^{-1} \text{ min}^{-1}$.

These values were about 2.8-folds of the rate constants for the decreases in concentrations of

232	Q7G [$(12.5 \pm 1.2) \times 10^2 \text{ M}^{-1}\text{min}^{-1}$] and quercetin [$(13.5 \pm 1.1) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$]. One of the
233	reasons for the larger rate constants for 'NO production is the rapid reduction of nitrous acid
234	to 'NO by semiquinone radicals of not only Q7G but also quercetin and/or rapid
235	disproportionation of the semiquinone radicals to the mother compounds and quinones that
236	are transformed rapidly into 5 from quercetin and a glucoside of 5 from $Q7G^{38,39}$. The rate
237	constants of 'NO production were calculated from the initial slope of 'NO production. This
238	may also be a reason for the larger rate constants of 'NO production than those of the
239	consumption of Q7G and quercetin.
240	Table 1 also shows the rates of 'NO production in the presence of (+)-catechin, (-)-
241	epicatechin, and isolated 2a/2b. Catechin-induced 'NO production under stomach simulating
242	conditions has been reported ^{11,13} . Nitrous acid-induced 'NO production in the presence of 50
243	μM (+)-catechin or (–)-epicatechin was less than 30%, and the 'NO production in the
244	presence of 50 μ M 2a/2b was about 45% of that in the presence of 50 μ M Q7G. The slower
245	'NO production by 2a/2b than Q7G can be explained by the difference in the rate constants of
246	nitrous acid-induced oxidation of $2a/2b [(6.5 \pm 2.5) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}]^{17}$ from that of Q7G
247	$[(12.5 \pm 1.2) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}]$ (see above). Although the rate constants of nitrous acid-
248	induced oxidation of (+)-catechin [(6.7 ± 1.0) × 10 ² M ⁻¹ min ⁻¹] and (-)-epicatechin [(5.8 \pm
249	0.2) × 10 ² M ⁻¹ min ⁻¹] were similar to that of nitrous acid-induced oxidation of 2a/2b ^{17,34} ,
250	NO production in the presence of (+)-catechin or (-)-epicatechin was significantly slower
251	than that in the presence of 2a/2b . The difference can be explained by 'NO consumption by
252	semiquinone radicals derived from (+)-catechin and (-)-epicatechin but not 2a/2b by
253	reactions 3 and 5. The addition of 50 μ M 2a/2b to Q7G/nitrous acid systems increased the
254	rate of 'NO production; the rates in the presence of both 2a/2b and Q7G were larger than the
255	sums of the rate in the presence of 2a/2b alone and the rates in the presence of Q7G alone at
256	any concentrations of Q7G studied, supporting the insignificant reaction of 'NO with
257	semiquinone radical of $2a/2b$. The addition of 50 μ M (+)-catechin or (–)-epicatechin to

Food & Function Accepted Manuscript

258	Q7G/nitrous acid systems increased the rate of 'NO production, but the rates in the presence
259	of both catechin and Q7G were smaller than the sums of the rate in the presence of (+)-
260	catechin or (-)-epicatechin alone and the rates in the presence of Q7G alone, especially when
261	the concentrations of Q7G were 5 and 15 μ M. These data can be explained by the
262	consumption of 'NO by semiquinone radicals of (+)-catechin and (-)-epicatechin, both of
263	which were produced in catechin/Q7G/nitrous acid systems.

264

²⁶⁵ Interactions of (+)-catechin and 2a/2b with other flavonols.

Rutin, Q4'G, and kaempferol were consumed by nitrous acid (Table 2, column 1), and the rate constants of the consumption were calculated from the data. The values were (1.3 ± 1.0) , (2.8 ± 0.8) , and $(6.2 \pm 1.2) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$ (n = 9) for rutin, Q4'G, and kaempferol, respectively, and the values were smaller than those of Q7G [$(12.5 \pm 1.2) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$] and quercetin [$(13.5 \pm 1.1) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$]. These results are in accordance with a previous report on nitrite-induced oxidation of 50 µM quercetin, Q4'G, rutin, and kaempferol in 50 mM KCl-HCl (pH 2.0) (6.2, 0.9, 0.2, and 1.0 µM/min, respectively)¹⁰.

The effects of 100 μ M (+)-catechin and 2a/2b on nitrous acid-induced consumption of 273 rutin, Q4'G, and kaempferol are also shown in Table 2 (columns 2 and 3). Both (+)-catechin 274 and 2a/2b enhanced the consumption of above flavonols, and the enhancement of the 275 consumption seemed to increase in the order rutin < O4'G < kaempferol. Furthermore, Table 276 2 shows the effects of flavonols on nitrous acid-induced formation of 2a from (+)-catechin 277 (column 4) and (P1 + P2) from 2a/2b (column 5). The formation of 2a and (P1 + P2) was 278 inhibited by Q4'G and kaempferol but not rutin, and degrees of the inhibition were smaller 279 than those of the inhibition by Q7G (Figs. 5 and 6). The data in Table 2 and Figs. 5 and 6 280 indicate that both a free hydroxyl group at C3 and *ortho*-hydroxyl groups in the B ring are 281 essential for the effective inhibition of the nitrous acid-induced transformation of (+)-catechin 282

283	into 2a and 2a/2b to P1/P2. It has been reported that the hydroxyl group at C3 is a target for
284	the oxidation of flavonols ⁴⁰⁻⁴² .

285

Importance of interactions of catechins with flavonols

Flavonoids mixed with saliva in the oral cavity reach the gastric lumen where they can react 287 with nitrous acid derived from nitrite, which is produced by nitrate-reducing bacteria in the 288 oral cavity. The results of this study show that 2a and 2b are possibly produced in the 289 stomach after the ingestion of (+)-catechin- and (-)-epicatechin-containing foods, beverages, 290 or dietary supplements (Fig. 7). The possibility is supported by the reports about the 291 production of **2a** and **2b** in the mixtures of acidified whole saliva and the methanol extracts of 292 adzuki bean³³ and apple³⁴, respectively. Recently, however, we observed nitrite-induced 293 formation of **2b** by acidification of the juice obtained by mastication of apple fruit, but could 294 not observe the formation of **2a** by acidification of the juice obtained by mastication of boiled 295 adzuki bean (unpublished results). From these results together with the results of in the 296 present study and ref. 33 and 34, we can deduce that (i) the detectable amounts of 297 nitrosocatechins are not always produced in the stomach after the ingestion of catechin-rich 298 foods or beverages, and that (ii) the formation of 2a/2b are dependent on the concentration of 299 the components, which can interfere the reactions of catechins with nitrous acid and can 300 scavenge catechin semiquinone radicals. The formation of 2a/2b in the stomach may be 301 efficient because of the lower O₂ concentration in gastric juice. It has been reported on the 302 increase in the efficiency of 2a/2b formation with the decrease in O₂ concentration³³. 303 The methanol extract of adzuki bean contained 636 ± 45 , 165 ± 18 , 41 ± 3 , and 29 ± 2 304 nmol/g of (+)-catechin, Q7G, quercetin, and vignacyanidins, respectively (means with SDs, n 305 = 3), whereas that of boiled aduzki bean used to obtain the juice by mastication contained 138 306

 $_{307}$ \pm 41, 58 \pm 15, 20 \pm 4, and 18 \pm 2 nmol/g of Q7G, quercetin, and vignacyanidins, respectively

 $_{308}$ (means with SDs, n = 3), as phenolic components that could be readily oxidized by nitrous

acid. Vignacyanidins are cyanidin-catechin adducts present in adzuki bean and can be 309 oxidized by nitrous acid 43 . The molar ratios of (+)-catechin to the sum of the other 310 components were calculated to be about 2.7 and 1.4 in the former and the latter, respectively. 311 The difference in the ratio may contribute to the **2a** formation in the mixture of acidified 312 whole saliva and the failure of its formation in the acidified juice, which was obtained by 313 mastication of boiled adzuki bean. The oxidation products of quercetin and Q7G, namely, 5 314 and its glucoside, may decompose to more stable components. It is known that 5 decomposes 315 to 2,4,6-trihydroxyphenyl glyoxylic acid and 3,4-dihydroxybenzoic acid, which are derived 316 from the A- and B-ring of 5, respectively⁴⁴. Taking the report into account, we can deduce 317 that the glucoside of 5 decomposes to a glucoside of 2,4,6-trihydroxyphenyl glyoxylic acid 318 and 3,4-dihydroxybenzoic acid. The oxidation products of viganacyanidins are supposed to 319 be the polymers 43 . 320 The major antioxidative polyphenols of apple juice are chlorogenic acid, (-)-epicatechin, 321

and quercetin 3-glycosides such as arabinoside, xyloside, galactoside, glucoside, and 322 rhamnoside 45,46 . The molar ratio of (-)-epicatechin to chlorogenic acid is about 0.5³⁴ and that 323 of (-)-epicatechin to quercetin glycosides is calculated to range from about 1.6 to 4 using the 324 data in ref. 47. In the apple polyphenols, (-)-epicatechin can react more rapidly with nitrous 325 acid than chlorogenic acid and quercetin 3-glycosides. This is deduced by comparing the rate 326 constant of the reaction of nitrous acid with (-)-epicatechin [$(5.8 \pm 0.2) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}$] 327 with those of reactions of nitrous acid with chlorogenic acid $[(1.6 \pm 0.3) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}]^{34}$ 328 and a quercetin 3-glycoside, rutin $[(1.3 \pm 1.0) \times 10^2 \text{ M}^{-1} \text{ min}^{-1}]$ (see above). Then, the 329 observation of nitrite-induced **2b** formation in the acidified apple juice can be explained by 330 the more efficient reaction of nitrous acid with (-)-epicatechin than with the other 331 polyphenols. According to the above discussion, the ingestion of a dietary supplement of 332 catechins is supposed to result in the production of 2a/2b in the stomach because of the 333 absence of polyphenols that suppress the nitrosation. It has also been reported about the 334

335	nitrous acid-induced formation of 6,8-dinitirsoepigallocatechin gallate and
336	dinitrisoprocyanidin B2 from epigallocatechin gallate and procyanidin B2, respectively ^{14,30} .
337	If 2a and/or 2b are produced in the gastric lumen after the ingestion of catechin-rich foods,
338	beverages, or dietary supplements, 2a/2b can be oxidized to the o-quinones. The o-quinones
339	may be absorbed in the body from the stomach and the intestine to give oxidative stresses to
340	cells. The stresses may be due to the increased reactivity of o-quinones under neutral
341	conditions than acidic conditions. The increased reactivity may contribute to the cytotoxic
342	and carcinogenic effects through generation of reactive oxygen species, formation of
343	polymers and glutathione-conjugate, binding to DNA, and alkylation of essential
344	macromolecules such as DNA and proteins ⁴⁸⁻⁵¹ . Fortunately, the formation of <i>o</i> -quinones
345	from $2a/2b$ may not be so efficient in the stomach, because ascorbic acid ⁵² and thiocyanate ⁵³
346	derived from gastric juice and saliva, respectively, are present in gastric juice. The former can
347	reduce both semiquinone radicals and o-quinones to 2a/2b, and the latter can react with o-
348	quinones generating thiocyanate conjugates (Fig. 7). Furthermore, flavonols such as quercetin
349	and Q7G can effectively suppress the formation of o-quinone by reducing the semiquinone
350	radicals (Fig. 7).
351	It has been reported that daily consumption of an aqueous green tea extract does not
352	impair human health ⁵⁴ , but high doses of catechins and other flavonoids as dietary

Food & Function Accepted Manuscript

impair human health ⁵⁴, but high doses of catechins and other flavonoids as dietary
supplement have adverse effects for human health ⁵⁵⁻⁵⁷. The adverse effects of catechins are
discussed to be due to the production of undesired products from catechins in the intestine
and the liver ^{56,57}. The present study suggests the nitrosation of catechins and the oxidation of **2a/2b** in the stomach may also contribute to the adverse effects of high doses of catechins, if
the **2a/2b** and the quinones are absorbed to the body from the gastrointestinal tract. It has
been reported that, in addition to quinones, **2a/2b** are toxic for Caco cells ¹⁴.

359

360 Experimental

361 **Reagents**

362	(+)-Catechin (1a), (-)-epicatechin (1b), quercetin (3), kaempferol, and rutin were obtained
363	from Sigma-Aldrich Japan (Tokyo). 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-
364	methyl-1-triazene (NOC 7) (purity $> 90\%$) was obtained from Dojindo (Kumamoto,
365	Japan). β-Glucosidase from sweet almond was obtained from Oriental Yeast Co., Ltd.
366	(Osaka, Japan). Quercetin 4'-glucoside (Q4'G) was isolated from onion bulbs as reported
367	previously with some modifications ⁵⁸ .

368

369 Apparatus

370	UV/visible absorption spectra were recorded using an UV-2450 spectrophotometer
371	(Shimadzu, Kyoto, Japan). Analytical and preparative HPLC was carried out using a
372	Shimadzu LC-10AS pump combined with a SPD M10Avp photodiode array detector
373	(Shimadzu). The columns used for analytical HPLC were a Shim-pack CLC-ODS (15 cm x 6
374	mm i.d.) and a Shim-pack VP-ODS (15 cm x 4.6 mm i.d.) (Shimadzu), and the column used
375	for preparative HPLC was Shim-pack CLC-ODS) (25 cm \times 2 cm i.d.) (Shimadzu). The
376	mobile phases were mixtures of methanol and 0.2% formic acid or methanol and 25 mM
377	KH ₂ PO ₄ , and their flow rates were 1 and 9 mL/min for analytical and preparative HPLC,
378	respectively. Atmosphere-pressure chemical ionization (APCI) and electrospray ionization
379	(ESI) mass spectra were obtained with a Shimadzu LCMS QP8000 α quadrupole mass
380	spectrometer equipped with APCI or ESI ion source. Sample was delivered into the ion
381	source using Ascentis express C18 column (15 cm x 2.1 mm i.d; particle size, 2 μ m) (Sigma-
382	Aldrich Japan, Tokyo). The mobile phase was 40% methanol containing 0.2% formic acid
383	and the flow rate was 0.2 mL/min. ¹ H and ¹³ C nuclear magnetic resonance (NMR) spectra
384	were recorded with ECX-400P FT-NMR spectrometer (JEOL, Tokyo, Japan) with
385	dimethylsulfoxide- d_6 (DMSO- d_6) as the solvent and tetramethylsilane as the internal
386	standard.

3	8	7

Isolation of quercetin Q7G

Q7G was isolated by the method developed in this study. Dried adzuki seeds (300 g) were 389 boiled in 700 ml of distilled water for 30 min, and the water extract was filtered under 390 reduced pressure. The pH of the filtrate was adjusted to 2.0 by adding 6 M HCl and then 391 extracted with 200 mL of ethyl acetate. For better separation of the ethyl acetate from water, 392 the mixture was centrifuged at 3000g for 5 min. The above ethyl acetate extraction procedure 393 was repeated three times, and ethyl acetate fractions were combined. After removing water in 394 the ethyl acetate fraction by anhydrous sodium sulfate, ethyl acetate was evaporated *in vacuo*. 395 The residue was dissolved in 2 mL of a mixture of methanol and 25 mM KH_2PO_4 (2:3, v/v), 396 and then applied to the preparative HPLC column. After washing the column with a mixture 397 of methanol and 25 mM KH₂PO₄ (1:6, v/v) for 5 min, the concentration of methanol in the 398 mobile phase was increased stepwise using the following mixtures [methanol and 25 mM 399 KH_2PO_4 (1:3, 1:2, and 2:3, v/v)]. Each mobile phase was flowed for 20 min, and Q7G was 400 detected at 360 nm. 401

A compound assigned to be Q7G was eluted at about 7 min after the mobile phase was 402 changed to the mixture of methanol and 25 mM KH₂PO₄ (2:3, v/v). The fraction of Q7G was 403 collected and solvents in the fraction were evaporated in vacuo. The residues were dissolved 404 in 2 mL of methanol and purified by repetition of dissolution in methanol and precipitation 405 with water. The purity of Q7G was estimated by analytical HPLC using a Shim-pack VP-406 ODS column (15 cm \times 4.6 mm i. d.). The mobile phase was a mixture of methanol and 25 407 mM KH₂PO₄ (2:3, v/v) and the flow rate was 1.0 mL/min. When no significant contaminants 408 were detected, the precipitate was lyophilized (35 mg from 2.1 kg of adzuki bean). The 409 structure of isolated Q7G was confirmed by spectral data 5,59 : UV-vis (methanol) λ_{max} nm (ϵ) 410 255 (22.000) and 373 (19.500); negative APCI-MS m/z (relative intensity, %) 301, (40, [M -411 glucose]) and 463 (100, [M - H]); negative ESI-MS m/z 463 (100, [M - H]); ¹H NMR 412

(DMSO-*d*₆) δ 3.20 (m, 1H, H-4"), 3.29 (m, 1H, H-2"), 3.32 (m, 1H, H-3"), 3.47 (m, 1H, H-413 5"), 3.49 (m, 1H, H-6"a), 3.73 (m, 1H, H-6"b), 5.09 (d, J = 7.3 Hz, 1H, H-1"), 6.43 & 6.44 (d, 414 J = 2.2 Hz, 1H, H-6), 6.78 (d, J = 2.2 Hz, 1H, H-8), 6.91 & 6.92 (d, J = 8.7 Hz, 1H, H-5'), 415 7.57 & 7.58 (dd, J = 8.2, 2.3 Hz, 1H, H-6'), 7.73 & 7.74 (d, J = 2.2 Hz, 1H, H-2'), 12.52 (s, 416 1H, OH); ¹³C NMR (DMSO-*d*₆) δ 61.17 (C-6"), 70.11 (C-4"), 73.67 (C-2"), 76.95 (C-3"), 417 77.69 (C-5"), 94.80 (C-8), 99.29 (C-6), 100.44 (C-1"), 105.21 (C-4a), 115.90 (C-2'), 116.12 418 (C-5'), 120.59 (C-6'), 122.34 (C-1'), 136.62 (C-3), 145.61 (C-4'), 148.13 (C-2), 148.48 (C-3'), 419 156.26 (C-8a), 160.90 (C-5), 163.22 (C-7), 176.55 (C-4). 420

421

422 Isolation of 6,8-dinitrosocatechin

6.8-Dinitrosocatechin was isolated as reported previously^{17,33}. In brief, (+)-catechin (29 mg) 423 in 100 mL of 50 mM KCl-HCl (pH 2.0) was incubated with 5 mM nitrite for 5 min under 424 anaerobic conditions, and then the reaction mixture was extracted with 50 mL of ethyl 425 acetate. After removing ethyl acetate, the residue was dissolved in 3 mL of 57% methanol in 426 0.2% formic acid (v/v) to apply to the preparative HPLC column. The mobile phases were 427 mixtures of methanol and 0.2% formic acid. The concentration of methanol was increased 428 stepwise as follows, 14, 20, 25, and 33% (v/v), and the mobile phases were flowed for 5, 15, 429 15, and 25 min, respectively. A fraction assigned to be 6,8-dinitrosocatechin, which was 430 eluted around 7 min after changing the mobile phase to 20% methanol, was collected. After 431 removing methanol in the fraction, the residue was lyophilized. The yield was 8–10 mg. LC-432 MS analysis of the isolated dinitrosocatechin gave two peaks (2a and 2b) with retention times 433 of 2.1 and 3.4 min, respectively, when the mobile phase was 35% of methanol in 0.2% formic 434 acid. The structures were confirmed to be a mixture of 6.8-dinitrosocatechin (2a) and 6.8-435 dinitrosoepicatechin (2b) as reported previously 17,33. 436

437

438 Reactions of Q7G, catechin, and 6,8-dinitrosocatechin with nitrous acid

439	All reactions of flavonoids with nitrite were studied in 1 mL of 50 mM KCl-HCl (pH 2.0)
440	under aerobic or anaerobic conditions. Anaerobic conditions were established by bubbling
441	argon gas through the reaction mixture for 2 min. After initiating the reactions by adding 0.5
442	mM sodium nitrite, argon gas was blown gently on the surface of the reaction mixture during
443	the reaction period.
444	The interactions of Q7G with (+)-catechin, (-)-epicatechin, or isolated 6,8-
445	dinitrosocatechins (2a/2b) were studied in the reaction mixture (1 mL) that contained various
446	concentrations of Q7G and 50 μ M (+)-catechin, (-)-epicatechin, or 2a/2b in 50 mM KCl-HCl
447	(pH 2.0). When required, quercetin and other flavonols were used instead of Q7G. Reactions
448	were initiated by adding 0.5 mM sodium nitrite. After incubation for 1 min, 50 μL of the
449	reaction mixture was analyzed by HPLC (see below).
450	
451	HPLC analysis of reaction products
451 452	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a
451 452 453	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)-
451 452 453 454	HPLC analysis of reaction productsThe reactants and the products of the above reactions were separated and quantified using aShim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)-epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or
451 452 453 454 455	HPLC analysis of reaction productsThe reactants and the products of the above reactions were separated and quantified using aShim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)-epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin
451 452 453 454 455 455	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of
451 452 453 454 455 456 457	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of 1:1 (v/v) was used to quantify rutin, Q7G and the reaction products of Q7G and quercetin.
451 452 453 454 455 456 457 458	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of 1:1 (v/v) was used to quantify rutin, Q7G and the reaction products of Q7G and quercetin. Quercetin, Q4'G, and kaempferol were quantified using the mixture of 2:1 (v/v). The
451 452 453 454 455 456 457 458 459	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of 1:1 (v/v) was used to quantify rutin, Q7G and the reaction products of Q7G and quercetin. Quercetin, Q4'G, and kaempferol were quantified using the mixture of 2:1 (v/v). The concentrations of reactants and products were estimated from the areas under the peaks: (+)-
451 452 453 454 455 456 457 458 459 460	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of 1:1 (v/v) was used to quantify rutin, Q7G and the reaction products of Q7G and quercetin. Quercetin, Q4'G, and kaempferol were quantified using the mixture of 2:1 (v/v). The concentrations of reactants and products were estimated from the areas under the peaks: (+)- catechin and (-)-epicatechin at 280 nm; 2a , 2b , P1, and P2 at 320 nm; Q7G, quercetin, rutin,
451 452 453 454 455 456 457 458 459 460 461	HPLC analysis of reaction products The reactants and the products of the above reactions were separated and quantified using a Shim-pack CLC-ODS column. The mobile phases used to quantify (+)-catechin, (-)- epicatechin, and their products were mixtures of methanol and 0.2% formic acid (1:4, 1:3, or 1:2, v/v). The products of 2a and 2b formed in the presence and absence of Q7G or quercetin were quantified using a mixture of methanol and 0.2% formic acid (2:5, v/v), and the ratios of 1:1 (v/v) was used to quantify rutin, Q7G and the reaction products of Q7G and quercetin. Quercetin, Q4'G, and kaempferol were quantified using the mixture of 2:1 (v/v). The concentrations of reactants and products were estimated from the areas under the peaks: (+)- catechin and (-)-epicatechin at 280 nm; 2a , 2b , P1, and P2 at 320 nm; Q7G, quercetin, rutin, and Q4'G at 360 nm; Qox and Q7Gox at 290 nm.

Food & Function Accepted Manuscript

462

463 Hydrolysis of reaction product of Q7G

464	Q7G was oxidized in the reaction mixture (1 mL) that contained 0.1 mM Q7G and 0.2 mM
465	sodium nitrite in 50 mM KCl-HCl (pH 2.0) for 6 min, and then 0.3 mL of 0.1 M Na_2HPO_4
466	was added to adjust the pH to 6.8. The solution of pH 6.8 was incubated for 10, 20, 30, and
467	40 min after addition of 20 μL of β -glucosidase (2 mg/mL), and an aliquot (50 $\mu L)$ of each
468	incubated solution was applied to a Shim-pack VP-ODS column (15 cm x 4.6 mm i.d.). The
469	mobile phase was a mixture of methanol and 25 mM KH_2PO_4 (1:2, v/v).
470	
471	Measurements of 'NO production
472	Nitrite-induced 'NO production was recorded using a Clark-type electrode (Rank Bothers,
473	Cambridge, UK) at 30°C with a polarization voltage of $-0.7 \text{ V}^{25,60}$. The reaction mixture (2
474	mL) contained 5, 15, and 50 μM Q7G in 50 μM KCl-HCl (pH 2.0). When required, 50 μM
475	(+)-catechin, (-)-epicatechin, or 2a/2b was added. After removing air from the reaction
476	mixture by bubbling argon gas, 0.5 mM sodium nitrite was added to initiate 'NO production.
477	The rate of 'NO production was estimated from the slope, using an ascorbic acid/nitrous acid
478	system for calibration.
479	In the ascorbic acid/nitrous acid system, one molecule of ascorbic acid produces two
480	molecules of 'NO under acidic conditions by the following reaction, if the concentration of
481	nitrous acid is more than two times of that of ascorbic acid
482	Ascorbic acid + 2HNO ₂ \rightarrow Dehydroascorbic acid + 2'NO + 2H ₂ O (8)
483	The amount of `NO produced by addition of 50 μM ascorbic acid in the presence of 0.5 mM
484	sodium nitrite in 50 mM KCl-HCl (pH 2.0) was essentially the same as the amount produced
485	by 50 μ M NOC 7 in the same buffer, one molecule of which produces two molecules of 'NO,
486	indicating the usefulness of an ascorbic acid/nitrous acid system for calibration of 'NO
487	production.
488	

Food & Function Accepted Manuscript

489 **Presentation of Data.**

490	Each experiment was repeated more than three times. Typical data or means with SDs are
491	presented in Figures and Tables. The statistical significance of the differences between
492	groups was evaluated by Student's <i>t</i> -test.

493

494 Conclusion

- ⁴⁹⁵ The ingestion of nitrate-rich leafy vegetables such as lettuce and spinach results in the
- ⁴⁹⁶ increase in the concentration of nitrite in mixed whole saliva ^{7,61}. If catechin-rich foods,
- ⁴⁹⁷ beverages, or dietary supplements are taken under such conditions, nitrosation of catechins
- and oxidation of 2a/2b to the *o*-quinones can proceed in the stomach. The nitrous acid-
- induced formation of 2a/2b and the *o*-quinones can be suppressed by ascorbic acid in gastric
- ⁵⁰⁰ juice cooperating with antioxidative flavonols in foods and beverages. Thus, the results of the
- ⁵⁰¹ present study suggest that the ingestion of catechin-rich dietary supplements accompanied
- with components, which can reduce the semiquinone radicals of catechins and 2a/2b, may
- ⁵⁰³ decrease the adverse effects of catechins.
- 504

505 Acknowledgement.

Part of this study was supported by Grants-in-Aid for Scientific Research (22500790 and

- ⁵⁰⁷ 23500986) from the Ministry of Education and Science in Japan. S. Veljovic-Jovanovic and
- 508 F. Morina acknowledge the partial support from Ministry of Education, Science and
- ⁵⁰⁹ Technological Development of Republic Serbia (III43010).

510

511 **References**

C. Ölschläger, I. Regos, F.J. Zeller and D. Treutter, *Phytochemistry*, 2008, 69, 1389 1397.

Food & Function Accepted Manuscript

. .

514	2.	S. Bhagwat, D.B. Haytowitz and J.M. Holden, USDA database for the flavonoid
515		content of selected foods. Release 3.1; 2013, Available from
516		http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/Flav/Flav3-1.pdf
517	3.	AM. Danila, A. Kotani, H. Hakamata and F. Kusu, J. Agric. Food Chem. 20007, 55,
518		1139-1143.
519	4.	K. Yoshida, T. Kondo, M. Ito and T. Kondo, ITE Lett. New Tech. Med. 2005, 6, 226-
520		231.
521	5.	SI. Tebayashi, S. Matsuyama, T. Suzuki, Y. Kuwahara, T. Nemoto and K. Fujii, J.
522		Pesticide Sci. 1995, 20, 299-305.
523	6.	J.J. Doel, N. Benjamin, M.P. Hector, M. Rogers and R.P. Allaker, Eur. J. Oral Sci.
524		2005, 113, 14-19.
525	7.	A.S. Pannala, A.R. Mani, J.P.E. Specer, Y. Skinner, K.R. Bruckdorfer, K.P. Moore and
526		C.A. Rice-Evans, Free Radic. Biol. Med. 2003, 34, 576-584.
527	8.	P. Janeiro and A.M.O. Brett, Anal. Chim. Acta 2004, 518, 109-115.
528	9.	A.M.O. Brett and ME. Ghica, <i>Electoroanalysis</i> 2003, 15, 1745-1750.
529	10	U. Takahama, T. Oniki and S. Hirota, J. Agric. Food Chem. 2002, 50, 4317-4322.
530	11	. L. Peri, D. Pietraforte, G. Scorza, A. Napolitano, V. Fogliano and M. Minetti, Free
531		Radic. Biol. Med. 2005, 39, 668–681.
532	12	B. Gago, J.O. Lundberg, R.M. Barbosa and J. Laranjinha, Free Radic. Biol. Med. 2007,
533		43, 1233-1242.
534	13	. B.S. Rocha, B. Gago, R.M. Barbosa and J. Laranjinha, <i>Toxicology</i> 2009, 265, 41-48.
535	14	S.Y.H. Lee, B. Muerol, S. Pollard, K.A. Youdim, A.S. Pannala, G.G.C. Kuhnle, E.S.
536		Debnam, C. Rice-Evans and J.P.E. Spencer, Free Radic. Biol. Med. 2006, 40, 323-334.
537	15	S. Hirota, U. Takahama, T.N. Ly and R. Yamauchi, J. Agric. Food Chem. 2005, 53,
538		3265-3272.

- T.N. Ly, C. Hazama, M. Shimoyamada, H. Ando, K. Kato and R. Yamauchi, *J. Agric. Food Chem.* 2005, 53, 8183-8189.
 S. Veljovic-Jovanovic, F. Morina, R. Yamauchi, S. Hirota and U. Takahama, *J. Agric.*
- 542 *Food Chem.* 2014, 62, 4951-4959.
- ⁵⁴³ 18. B.S. Rocha, C. Nunes, C. Pereira, R.M. Barbosa and J. Laranjinha, *Food Funct*. 2014,
 ⁵⁴⁴ 5, 1646-1652.
- ⁵⁴⁵ 19. N. Benjamin, F. O'Driscoll, H. Dougall, C. Duncan, L. Smith, M. Golden and H.
 ⁵⁴⁶ McKenzie, *Nature* 1994, 368, 502.
- ⁵⁴⁷ 20. J. Xu, X. Xu and W. Verstraete, J. Appl. Microbiol. 2001, 90, 523-529.
- M. Miyoshi, E. Kasahara, A.M. Park, K. Hiramoto, Y. Minamiyama, S. Takemura,
 E.F. Sato and M. Inoue, *Free Radic. Res.* 2003, 37, 85-90.
- ⁵⁵⁰ 22. H.H. Björne, J. Petersson, M. Phillipson, E. Weizberg, L. Holm and J.O. Lundberg, *J.* ⁵⁵¹ *Clin. Invest.* 2004, 113, 106-114.
- J. Petersson, M. Phillipson, E.A. Jansson, A. Patzak, J.O. Lundberg, *Am. J. Physiol. Gastrointest. Liver Physiol.* 2007, 292, G718-G724.
- J.O. Lundberg, E. Weitzberg and M. T. Gladwin, *Nat. Rev. Drug Discov.* 2008, 7, 156 167.
- J. Volk, S. Gorelik, R. Granit, R. Kohen and J. Kanner, *Free Radic. Biol. Med.* 2009,
 47, 496-502.
- ⁵⁵⁸ 26. M. Eichholzer and F. Gutzwiller, F. *Nutr. Rev.* 1998, 56, 95-105.
- K. Ohsawa, S.Y. Nakagawa, M. Kimura, C. Shimada, S. Tsuda, K. Kabasawa, S.
 Kawaguchi and Y.F. Sasaki, *Mutat. Res.* 2003, 539, 65–76.
- M. De Lucia, L. Panzella, A. Pezzella, A. Napolitano and M. D'Ischia, *Chem. Res. Toxicol.* 2008, 21, 2407–2413.
- ⁵⁶³ 29. B.S. Rocha, B. Gago, C. Pereira, R.M. Barbosa, S. Bartesaghi, J.O. Lundberg, R. Radi
- and J. Laranjinha, *Curr. Drug Targets*, 2011, 12, 1351-1363.

- ⁵⁶⁵ 30. L. Panzella, P. Manini, A. Napolitano and M. d'Ischia, *Chem. Res. Toxicol.* 2005, 18,
 ⁵⁶⁶ 722-729.
- ⁵⁶⁷ 31. K. Tanaka, T. Hayatsu, T. Negishi and H. Hayatsu, *Mutat. Res.* 1998, 12, 91-98.
- 32. S. Masuda, S. Uchida, Y. Terashima, H. Kuramoto, M. Serozawa, Y. Deguchi, K.
- ⁵⁶⁹ Yanai, C. Sugiyama, I. Oguni and N. Kinae, *J. Health Sci.* 2006, 52, 211-220.
- ⁵⁷⁰ 33. U. Takahama, R. Yamauchi and S. Hirota, *Free Radic. Res.* 2014, 48, 956-966.
- ⁵⁷¹ 34. S. Hirota and U. Takahama, *Food Sci. Technol. Res.* 2014, 20, 439-447.
- J. Terao and M.K. Piskula, in Flavonoids in Health and Disease, ed. C.A. Rice-Evans
 and L. Packer, Marcel Dekker, New York, 1998, pp. 277-293.
- ⁵⁷⁴ 36. U. Takahama, M.Tanaka, T. Oniki, S. Hirota and R. Yamauchi, *J. Agric. Food Chem.* ⁵⁷⁵ 2007, 55, 4169-4176.
- ⁵⁷⁶ 37. U. Takahama, M. Tanaka and S. Hirota, *Free Rardic. Res.* 2010, 44: 293-303.
- 38. A.K. Timbola, C.D. de Souza, C. Giacomelli and A. Spinelli, *J. Braz. Chem. Soc.* 2006,
 17, 139-148.
- ⁵⁷⁹ 39. A.M. Bondžić, T.D. Lazarević-Pašti, B.P. Bondžić, M.B. Čolović, M.B. Jadranin and
 ⁵⁸⁰ V.M. Vasić, *New J. Chem.* 2013, 37, 901-908.
- 40. L.V. Jørgensen, C. Claus, J. Ulla, L.H. Skibsted and L.O. Dragsted, *Free Radic. Res.* 1998, 29, 339-350.
- I.G. Zenkevich, A.Y. Eshchenko, S.V. Makarova, A.G. Vitenberg, Y.G. Dobryakov
 and V.A. Utsal, *Molecules* 2007, 12, 654-672.
- 42. H. Ohashi, T. Kyogoku, T. Ishikawa, S Kawase and S. Kawai, *J. Wood Sci.* 1999, 45,
 53-63.
- 43. U. Takahama, R. Yamauchi and S. Hirota, *Food Chem.* 2013, 141, 2600-2606.
- 44. B.M. Fahlman and E.S. Krol, J. Photochem. Photobiol B: Biology 2009, 97, 7123-131.
- ⁵⁸⁹ 45. Y. Lu and L.Y. Foo, *Food Chem.* 1997, 59, 187-194.

- 46. J.-S. Xiao, L. Liu, H. Wu, B.-J. Xie, E.-N. Yang and Z.-D. Sun, *J. Agric. Food Chem.* 2008, 56, 2096-2101.
- ⁵⁹² 47. C. Manach, A. Scalbert, C. Morand, C. Remesy and L. Jimenez, *Am. J. Clinic. Nutr.* ⁵⁹³ 2004, 79, 727-747.
- 48. J.L. Bolton, M.A. Trush, T.M. Penning, G. Dryhurst and T.J. Monks, *Chem. Res. Toxicol.* 2000, 13, 135-40.
- ⁵⁹⁶ 49. A.G. Siraki, T.S. Chan and P.J. O'Brien, *Toxicol. Sci.* 2004, 81, 148–159.
- ⁵⁹⁷ 50. P.J. O'Brien, *Chem. Biol. Interact.* 1991, 80, 1–41.
- ⁵⁹⁸ 51. E.L. Cavalieri, K.-M. Li, N. Balu, M. Saeed, P. Devanesan, S. Higginbotham, J. Zhao,
 ⁵⁹⁹ M.L. Gross and E.G. Rogan, *Carcinogenesis* 2002, 23, 1071-1077.
- G.M. Sobala, C.J. Schorah, M. Sanderson, M.F. Dixon, D.S. Tompkins, P. Godwin and
 A.T. Axon, *Gastroenterology* 1989, 97, 357-363.
- ⁶⁰² 53. C.P. Schultz, M.K. Ahmed, C. Dawes and H.H. Mantsch, *Anal Biochem*. 1996, 240, 7 ⁶⁰³ 12.
- 54. J. Frank, T.W. George, J.K. Lodge, A.M. Rodriguez-Mateos, J.P.E. Spencer, A.M.
- ⁶⁰⁵ Minihane and G. Rimbach, J. Nutr. 2009, 139, 58-62.
- ⁶⁰⁶ 55. S. Egert and G. Rimbach, *Adv. Nutr.* 2011, 2, 8-14.
- ⁶⁰⁷ 56. A.H. Schonthal, *Mol. Nutr. Food Res.* 2011, 55, 874-875.
- ⁶⁰⁸ 57. J.D. Lambert, S. Sang and C.S. Yang, *Mol. Pharmaceutics* 2007, 4, 819-825.
- ⁶⁰⁹ 58. S. Hirota, T. Shimoda and U. Takahama, J. Agric. Food Chem. 1998, 46, 3497-3502.
- ⁶¹⁰ 59. L. Jurd, in The Chemistry of Flavonopid Compounds, ed. T.A. Geissman, Macmillian
 ⁶¹¹ Co., New York, 1962, pp. 107-155.
- 612 60. U. Takahama and S. Hirota, *Chem. Res. Toxicol.* 2012, 25, 207-215.
- 613 61. C.P. Bondonno, L.A. Downey, K.D. Croft, A. Scholey, C. Stough, X. Yang, M.J.
- ⁶¹⁴ Considine, N.C. Ward, I.B. Puddey, E. Swinny, A. Mubarak and J.M. Hodgson, *Food*
- *Fuct.* 2014, 5, 849-858.

Food & Function Accepted Manuscript

616	
617	Fig. 1. Compounds concerned in this study. 1a, (+)-catechin; 1b, (-)-epicatechin; 2a, 6,8-
618	dinitrosocatechin; 2b , 6,8-dinitrosoepicatechin; 3 , quercetin; 4 , quercetin 7- <i>O</i> -β-D-
619	glucopyranoside; 5 , 2-(3,4-dihydroxybenzoyl)- 2,4,6-trihydroxy-3(2 <i>H</i>)-benzofuranone.
620	
621	Fig. 2. Nitrous acid-induced oxidation of Q7G. (A) Nitrite-induced changes in absorption
622	spectra. The reaction mixture (1 mL) contained 25 μ M Q7G in 50 mM KCl-HCl (pH 2.0).
623	Sodium nitrite (0.2 mM) was added to spectrum 1, and scanning was repeated 10 times at 1
624	min intervals. Light path of the measuring beam was 4 mm. (B) HPLC of the oxidation
625	product of Q7G (Q7Gox). B-1, before incubation of 50 μ M Q7G; B-2, after incubation of 50
626	μ M Q7G with 0.25 mM NaNO ₂ for 2 min in 50 mM KCl-HCl (pH 2.0). An oxidation product
627	of quercetin (Qox) was co-chromatographed for comparison. Mobile phase, methanol and
628	0.2% formic acid (1: 1, v/v). (C) Absorption spectra of Q7G, Q7Gox, and Qox in the mobile
629	phase.
630	
631	Fig. 3. Nitrite-induced oxidation of Q7G and quercetin. The reaction mixture (1 mL)
632	contained 50 μ M Q7G or quercetin in 50 mM KCl-HCl (pH 2.0). The reactions were initiated
633	by adding various concentrations of NaNO2 under anaerobic conditions. After 1 min of
634	incubation, the concentrations of the reactants and products were determined by HPLC as
635	described in Materials and Methods. (\bigcirc), quercetin remained; (\bigcirc), Q7G remained; (\Box),
636	Qox formed; (\blacksquare), Q7Gox formed. Formation of Qox and Q7Gox was estimated from the
637	peak area of HPLC at 290 nm. Each data point represents mean with SD ($n = 3-4$).

638

Fig. 4. Characterization of reaction products of (+)-catechin. (I) HPLC. The reaction mixture
contained 0.1 mM (+)-catechin and 0.2 mM NaNO₂ in 50 mM KCl-HCl (pH 2.0). (I-1)

641	before addition nitrite; (I-2) 10 min after addition of nitrite; (I-3) 25 min after the addition of
642	nitrite; (I-4) 15 min after addition of 1 mM ascorbic acid to (I-3). (II) HPLC with Q7G. The
643	reaction mixture contained 0.1 mM (+)-catechin and 0.5 mM NaNO ₂ in 50 mM KCl-HCl (pH
644	2.0). (II-1) before addition of nitrite; (II-2) 10 min after addition of nitrite; (II-3) 10 min after
645	addition of nitrite in the presence of 0.1 mM Q7G. HPLC was performed using a Shim-pack
646	CLC-ODS and the mobile phase was a mixture of methanol and 0.2% formic acid (1:3, v/v).
647	Numbers in parenthesis, peak areas of 2a . (III) Absorption spectra of 2a and P1in the mobile
648	phase. AH ₂ , ascorbic acid; Cat., (+)-catechin.
649	
650	Fig. 5. Interactions of Q7G with (+)-catechin (A) and (-)-epicatechin (B). The reaction
651	mixture contained various concentrations of Q7G with and without 50 μM (+)-catechin or
652	(–)-epicatechin in 50 mM KCl-HCl (pH 2.0). One min after the addition of 0.5 mM NaNO ₂
653	under anaerobic conditions, the reaction mixture was analyzed by HPLC. Mobile phases were
654	mixtures of methanol and 0.2% formic acid. (A) 1:4 (v/v); (B) 1: 3 (v/v). Each data point
655	represents mean with SD (n = 3-4). (\bullet and \bigcirc) consumption of Q7G in the absence and
656	presence of catechins, respectively; (\blacktriangle and \triangle) formation of Q7Gox in the absence and
657	presence of catechins, respectively; (\blacksquare) formation of 2a and 2b in the presence of (+)-
658	catechin and (–)-epicatechin, respectively; (\Box) consumption of (+)-catechin or (–)-
659	epicatechin.

660

Fig. 6. Interactions of Q7G with 2a/2b. The reaction mixture contained 50 μ M 2a/2b and various concentrations of Q7G in 50 mM KCl-HCl (pH 2.0). One min after the addition of 0.5 mM NaNO₂ under anaerobic conditions, each component was quantified by HPLC. (A) Q7G-dependent inhibition of 2a/2b oxidation and (P1 + P2) formation. (B) 2a/2b-dependent enhancement of Q7G oxidation. The mobile phase was a mixture of methanol and 0.2%

666	formic acid (2:5, v/v). (\Box) 2a/2b remained in the reaction mixture; (\blacksquare) formation of P1 +
667	P2; (\bullet and \bigcirc) oxidation of Q7G in the absence and presence of 2a / 2b , respectively; (\blacktriangle and
668	\triangle) formation of Q7Gox in the absence and presence of 2a / 2b , respectively. Each data point
669	represents mean with SD ($n = 3-4$). In (A), error bars are within the squares.
670	
671	Fig. 7. Possible reactions among nitrous acid, catechins, and 2a/2b . AH ₂ , ascorbic acid; AH,
672	monodehydroascobic acid; A, dehydroascorbic acid; CAT, catechins; Q, quercetin; Qox,
673	oxidized quercetin; Q7G, quercetin 7-O-glucoside; Q7Gox, oxidized Q7G; ', symbol for
674	radical. References 17 and 33 were referred to prepare this figure.

675

Q7G (µM)	0	5	15	50		
		NO produced (µM/min)				
No addition	0	10.3 ± 2.6	29.6 ± 5.5	73.8 ± 12.3		
50 uM (\pm) antophin	20.9 ± 3.8	28.9 ± 2.6	41.8 ± 5.2	98.4 ± 19.2		
50 μm (+)-catechin		(93%)	(83%)	(104%)		
50 ··· M () amiastashin	21.5 ± 4.1	30.9 ± 2.4	47.7 ± 4.3	100.4 ± 14.4		
50 μM (-)-epicatechin		(97%)	(93%)	(105%)		
50 mM 2a/2h	$33.5\pm4.0*$	50.9 ± 7.1	81.2 ± 9.9	120.7 ± 18.9		
50 μM 2 a/2b		(116%))	(129%)	(112%)		

Table 1. NO production in flavonoid/nitrous acid systems.

⁶⁷⁸ Reactions were initiated by addition of 0.5 mM sodium nitrite under anaerobic conditions.

Each data represents mean with SD (n = 3-4). *, significant differences in 'NO production

compared with 50 μ M (+)-catechin or 50 μ M (–)-epicatechin (P < 0.05). A number in

parenthesis is the ratio of NO production rate in presence of Q7G with (+)-catechin, (-)-

epicatechin, or **2a/2b** to the sum of NO production rate in the presence of Q7G alone and that

in the presence of (+)-catechin, (-)-epicatechin, or 2a/2b alone.

	Consumption of flavonols (µM/min)			Formation of	Formation of
				2a	(P1+P2)
				(per min)	(per min)
				(arbitrary unit)	(arbitrary unit)
Addition	(1)	(2)	(3)	(4)	(5)
(100 µM)	No addition	(+)-catechin	2a/2b	(+)-catechin	2a/2b
Without flavonols				21.2 ± 0.2	21.4 ± 2.5
10	0.1 ± 0.1	0.2 ± 0.1	0.7 ± 0.1^{b}	n.s.d.	n.s.d.
Rutin (µM) 30	2.5 ± 0.4	3.7 ± 0.3^{a}	3.8 ± 0.3^{b}	n.s.d.	n.s.d.
100	10.7 ± 1.1	11.4 ± 4.5	12.8 ± 2.7	n.s.d.	n.s.d.
10	1.0 ± 0.1	1.1 ± 0.2	3.7 ± 0.5^{b}	21.1 ± 0.1	19.4 ± 1.1
Q4'G (µM) 30	5.3 ± 0.4	6.9 ± 0.1^{a}	9.5 ± 0.2^{b}	20.8 ± 0.2	14.6 ± 0.5^{d}
100	13.9 ± 1.1	20.4 ± 0.5^a	23.5 ± 0.4^{b}	$19.7 \pm 0.8^{\circ}$	9.7 ± 0.2^{d}
10	3.3 ± 0.6	5.2 ± 0.6^{a}	4.6 ± 1.0	20.0 ± 0.6^{c}	13.0 ± 1.2^{d}
Kaempferol(µM) 30	10.7 ± 0.2	12.3 ± 1.0^a	12.6 ± 2.4	18.9 ± 0.8^{c}	7.5 ± 0.6^{d}
100	23.8 ± 1.1	32.5 ± 3.2^{a}	41.8 ± 3.0^{b}	18.0 ± 0.2^{c}	6.5 ± 0.2^{d}

⁶⁸⁵ Table 2. Interactions between flavonols and (+)-catechin or **2a/2b**.

All reactions were performed in 50 mM KCI-HCI (pH 2.0). One min after the addition of 0.5 mM NaNO₂, the reaction mixtures were analyzed by HPLC. Each data represents mean \pm SD (n = 3). ^{a and b}, significant differences between columns 1 and 2 and between columns 1 and 3 (P < 0.05); ^{c and d}, significant inhibition of formation of **2a** (column 4) and (P1 + P2) (column 5), respectively, by rutin, Q'4G and kaempferol (P < 0.05). n.s.d., no significant difference between the values without rutin.

ĠН

695

696

697

⁶⁹⁹ Fig. 2

700

- 704
- 705
- 706
- 707

- 712
- 713
- 714
- 715

